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156 Titus Petrila

For a flow past an obstacle (Q, taking into account also the slip condition on

the boundary of (C), i.e., ü 'ñ is known of boundary, the determination of the

complex potential comes to an exterior Neumann or a Dirichlet problem for the

Laplace operator (in terms of <p and ry) with a certain behavior at infinity.
Let us consider tbe case when the obstacle (Q is a wing profile wich

performs a general displacement (a "rototranslation") of parametres (1, z, to) in
our fluid.

Then the complex potential will be an analytic function in every point of the

finite plane, having a singularity at infinity. More precisely, in the neighborhood of
inlrnity the fuirction f (z) has a development of the form

.f (t)=wØz+l l2rilnz + '..+ao+a,lz+'.',
where w*=u_-iv. is the complex velocity at infinity and f is a so-called

circulation (the multiformity period of the real part q of the complex potentiall)'

As regards the circulation f in the case of great importance in aerohydrody-

namics, when the profile (Q has a sharp trailing edge z o, where the 'Jump" of the

semitangents is pn,-1<p<0, this circulation must be chosen so that the boun-

dedness of the velocity in the neighborhood of this point is ensrued. More

precisely, f = Ll + Mm + t/co (a so-called "Couchet rule"), where the coefficients

L, M, N depend upon the given Profile.
We remark now that, if instead of a complex potential/we would consider

the complex velocity ,={, then this will be a holomorphic function in the
dz'

whole outside of the profile (C), which also includes the point of infinity. To be

more exact, in the neighborhood of infrnity, this function has the following

development

w(z;t)=r. *å I.+* åå*
lTtt z z- x-

It is just the regularity of this complex velocity that suggests us the use of this

function for CVBEM and not the complex potential / as we would have been

templet to. Of course, the boundary conditions must be written in terms of this

complex velocity.
ln what follows we want to determine the fluid flow induced by the general

displacement (rototranslation) of parameters (l,m,a) of our given profil" (?:
in the mass of the considered inviscid fluid. For mole generality, we would

suppose that the considered fluid has already an initial flow, named basic flow,

of 
"omple* 

velocity w a(z), a flow which will be superposed on that produced by

the displacement of the profìle (O.We shall denote by (=((tJ),8 el0,2n) Ihe

parametrical equation of the Jordan rectifiable curve C, which is a 2n perio'

dical function, bounded and derivable in [0, 2n]\{Bo}, where Ç(þ)*0 and((P) < lvÍ, M being a fin.te constant. Tl
using rhen our previou, ."rurt., 

**n-.ï'.ï,ît,îiT: ol, 
[rr]Í,*i,r,r,,belong to a class (a) having the following properties [1]:la' They are horomorphic in tne pianå o,, Ë*å.pt for a fìnite ntunber ofpoints zo. which are singurar points for these Íìmctions. Let us denote by Di thedomain D, from which one has taken off these singular points.

2a, The circulaton r, must be equar to the sum of the circulations due to thepresence of the given singularities.
As regards the- unknown function w(z), thecomplex velocity of the resultant

fl"ffi1îäi"*#,:ff"yi-oì'åo'*up.,position, it berongs ro a crass (b)
lb' They are horomorphic functions in D = D, /(e), except ftri the samepoints zn, whichare 

fr.lhem singurar p"iro of tn" sam" *r.o"as for rr,, (z); atinfinity their behavior is identical i,itf, tfrut of w u(z) , i.e.,

,!,Y-'f¿=w(@)=wn(æ).
2b, In the neighborhood of the tr.ailing ed.ge zr=((00) e C,, where thesemitangents angle is n._ pn, we have

w(z) = (t - , r.; ttr( t - i:) g@), g(z ,) + 0.

3b' In the points of the curve c, thefunctions ]r.(((B) berong to the crass

'í;r"ï ::îrî:',i'#'"11:îl"t'"ns 
on c except the rngurar point z,= ((00 ),

wG$Ð=ffi,
where w* e Ho in the same neighborhood, which lneans that w. (((þ)) is sc1:a_rately Holderian on the upper side and on the lower side of the profile i, theneighborhoo d of z, = ((po).

,br,"*11;T"*"0:iJS;lï'*'c thev satis$'z, except athe angurar point, the

orr" nlh... 
is a real continuous function v(B) such thar for every p e[0,2n]\ {Bu}

w(((fi))= u¡B¡!(QI + t + im + ill[Ç(þ) _ z n],l(G)l
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158 Titus Petrila

where z A e(c) aîd t(t)'m(t),(t) are the given functions of time determining the

rototranslation of the profile (C).

5b. They fulfrll the equality ! *Q¡ dz =I' , where the circulation of the

C

flow f is chosen so that one has the boundedness of the velocity in z, , i'e',

| = Ll + Mm+ Nn, where the coeffrcienTs L, M,ly' are given with the obstacle (Q'
' Now let us consider the difference w(z)-wn@). This function, known

together with w(z), is a hoiomorphic function in the whole outside of (c). using

the Cauchy formula for this function' we get

w(C)=wa(Ç)-; J 
UQa".* 

J 
ylgù 

ror ÇeD'
Lttt C 2 Þ

This integral equation, which is a singular one with Cauchy kernel, will be

the main instrument for the development of the CVBEM' More precisely, this

equation witl be considerêd the integral representation joined to the boundary

problem formulated in terms of the holomorphic function w(z) - w aQ)'

Finally, in order to use the boundary conditions on C, we perform

e-+Ç. =((B-) e C\{zo}
ancl so we get

w(Ç(þ.)) =,,¡(E(p.)) * i ffidp.* i #?#'u
This is the boundary integral equation which could be used in a BEM. But

our CVBEM avoids this equation which seems to be'a considerable sirnplification.

By separating the real parts of both sides o1 the singular integlal equation,

we get u Rr.dhol- integral equation, which, under our assumptions, has a conti-

nuo6 kernei. Studying the existence ofthe solutions ofthis equatiou by Fledholm

alternative we Çan state that this equation has a unique solution which ftilfills the

circulation conclition.

Considering then a systetn of nodal points zçtz1;...:r l,ZFzF, t,"''itl =20

on the curve C together with the system of the piecewise interpolating I'agrange

functìons on each arc C, (linking the points z¡ -, and :,), asystem which takes

into account the beliaviol'in the neighborhood of :¡, we can write

w(q(Þ)) - rv, (((0)) =f {,, , -w u) L 
¡ ,

4 5
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have the expressions

L, (t) =

while for j = F - 1, F, F +l rhey are

(t -"¡_,)/(2, -2.¡_)
(t-zj+r)l(t¡-"¡*r)

0

t eC,

¡ eC¡+t

otherwise,

Lr'-,(t)=

LoQ) =

((t - z r) I (t r -t - " ¡))t/(t-rt), for t eC,

(t-zr-r)lee_t-zp-z), for t eC,,_,

otherwise,

for t eC,

fbr r e C,*,

otherwise,

for t eCon2

for I e Cr,.n,

otherwise.

0,

l-((t -zr)/Go_r -zr))t(t-rù ,

| - ((t - z r) I (" r * 1 - z r)t/(t - Ð,

0,

(t - r, n ) I (, o * t - z t, n z),
Lo*,(t)= ((t - z¡) I (t, * t - z t ) 

r/(r -tr),

0,

using subseq,ently the general calculations already performed for 7,,(z),
i'e', for L,r=Z,Q*) l2l, if w(zr)-wu(zu)=rt -ivo and L.,o =Mo, +iNo,;
we are led again to the real algebraic hornogeneous system

,,u =f Mo,u,+i, Nr,r,
j=t j=1

-{nvt=L Msv,+l N,or,,,
j_-t j=t

which v,,ill 'oe couipleted, in this case, by the complex equafion

trL.r, I t¡r<¡d(=l or, equivalentiy,by
i=t C

s¿ u,Re I t¡f<¡cr5+v, tm I t¡1ç¡cl(=¡
i_t ( ¡.

n

| ,,, r,n I t¡tCl,t( = I v, Re J LjG) d<.
i--t ,' ¡=t (

rvhele
¿i (((P)) for .i + F - 1, þ-, F + 1



160 Titus Petrila

These last two real equations allow us to determine an unique solution of the

above homogeneous system which also includes the data on C. This unique

solution, once introduced in the integral representation ofthe problem (i,e., in our

case the Cauchy formula), leads to the complete determination of the complex

velocity in every point of the flow domain.

3. Let us now considet' the fluid flow produced by the motion of a self-pro-

pelled dirigible ballon in a uniform stream of wind whose velocity is a priori
given.

We assume that both the dirigible motion and the velocity of the wind stream

depend explicitly on time, Besides the unsteady behavior, the mentioned flow of
the inviscid and incornpressible air is supposed to be plane and potential. Neither

external forces nor the influence of the ground are considered, the dirigible being

all the time at a sufficiently great distance from it.
As concerns the contour of the dirigible balloon, it could be expressed by an

explicit equation of the type

8
k s e [-2,1].x+iY=

2
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fixed. By cumulating this "attack" velocify (-l(t),- m(t)) with thc velocity of the
wind (basic) sheam (u 6,v s), the Jukovski hypothesis leads to the followi¡g yalne

of the circulation f = -6n(vn - m).

(t(t¡,st6¡¡

-.l I

(\, nu)

l-ig. 1

We have taken into consideration above the fact that the irrage of our plofìlc
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This equation implies, besides the symmetry of the configuration vs. the real

axis (i,e., the axis of dirigible), the existence of a trailing edge, located at the point

of the abscise .x = k and where the angles of the semitangents with the real axis

are respectively tkn.
In fact, the above profile is of Karmann-Trefftz type [4], the connection

between the parameter p of the preceding section and the just introduced

parameter fr being given by , 
þ' 

= + In the sequel we shall use the uul.r, 1-"-J l-¡r k 3

(r\
for /cl k=:l. As regards the stream of wind (the basic flow in terms of the

\3/
previous section), it will be defined by its complex velocity l4tu@; t) = un - ir n =

=(2t +1)-i3t2, while the displacement of the dirigibte is defined by /(r) - _3tt 
,

m(t) = /, where / = 0, 1,... (the successive time instants) (see Fig' 1).

As to the value of the circulation f , which has to ensure the boundedness of
the velocity in the neigborhood of the sharp trailing edge, it will be established by

considering, instead of the flow produced by the dirigible motion, with the velocity

(t(t),m(t)) in a fluid initialy at rest, the "dual problem", i'e., that of an opposite

fluid stream of velocity (-l(t),- m(t)) past our profile (dirigible) supposed now

^, 
( - ! .01 of radius 

3

\ 2. ) ; : and whose poinl. Z = I con'esponds to the shalp trail-

ing edge.

T'he kinematic (slip) condition at the points of the dirigible contour will

= + l , where t4) = l:-iv is the lookecl-f'ol complox
d¡ l.

(dirigiblc), tlu'ough the mapping , is a circtunfêr'ence cente¡'ocl

3

be wr,itten as
v+v -m
u+uu-l

(relative) velocity of the fluicl flow ys. the system <lf axìs xoy,rtgidly linked to thc
prof,rle (dirigible).

As regards the nodes 81, z2 ; 23r... ; zn (zt=2, ) choseil counterclockwise

on the contour of the dirigible, they are obtained by allowing lhe rcal pararneter
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of the explicit contour equation to take lhe values -2, -1.9, -1.7, -L4, -1.2,
-1.0, -0.8, 0.6, -0.4, -0.2,0.0, -{.5, -0.7, 0.9, l; the leading edge is the node

zt =--2.13790, while the trailing edge is the node zp1216=I.3333 (see Fig' 2).

(dirigible), both the x- andy- steps of the respective mesh being equal to _r.
which means 961 poinrs (see Fig. 3). 3'

Eig.2

By irnposing also the additional conditions, which state the equality of the

flow velocity at the sharp trailing edge and at its neighboring nodes, i.e.,

u.F | - uF = Ltr; + | and I F -t =r F =y F.r, with I¡ : 16 (a compulsory requirement

for avoiding some logarithmic singularities in calculation of lo!o-) and

îr/o*r)), we are led to the solving of a linear algebraic system of 60+2
(circulation condition) real equations with 56 unknowns.

Since the slip condition written at all the 27 remaintng nodes (j * F -1,

F, F+l) and al zr., (or zn*,) that means'' -'u -"!, =d-!1, j =1,30
u, tuu - I dx l,=",

j + 16,77 , eliminate v, in the favor of u j , we are led again to an overdetermined

nonhomogeneous system but this time of 62 equation withzg unknowns.
The Gauss elimination method (using Borland C ++ Compiler) allows us

to find the unique solution of this system. Once it is obtained the value

tt, -iv, =fiþ¡) at the node z, eC, j = 1,30, we can proceed to the determining

of the unknown function lt(z)oll.(")=f *,T,(z). This will be done at the

rnesh points of a squared neighborhood, 
'oi 

size [-5,5] x [-5,5], of the profile

Fig. 3

Finally, the (abso,rute) verocity of the resultant fluid flow ys. a fixed systemof axes, obtained by the above-mentìån"i .rp.rposition, wil be determined bycalculating the vecto¡ /(u+ r,v + m) in the same mesh points and atdifferent timemoments (see Fig. 4, 5 and 6).
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