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CVBEM FOR THE FLUID FLOW DETERMINED
BY THE MOTION OF A DIRIGIBLE BALLOON
IN A WIND STREAM

TITUS PETRILA

: : ith appropriate boundary conditions, which is
governing the fluid flow. More precisely, this system of P.D.E."(also called the
Euler system) can be Wty in the simplest barotropic case; in the form

8p EREN, b
—+d V)=0
fy _IV(_pV) |

p Z» +grad p= 1

? g(p),
where the unknowns are p (the mass Gsity), p (the
velocity), while £ is the known distributic

pressure) and (w, v) (the
of the external forces and gisagiven

function. . ' '

in the case of an incompressible and po.

tial flow, the above system''¢could
be replaced by ( - .

divi=0Aroty =

a couple of real harmonjce
functions ¢ and y such ‘that v=grad ¢ = —kxgrey  \While F)=p(x, )+
+1y(x,)) is an analytic function representingzﬂ'-above_memioned complex
potential of the flow. o : _

which, in 2-D problems, allows the introduction £
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For a flow past an obstacle (C), taking into account also the slip condition on
the boundary of (C), i.e., V-7 is known of boundary, the determination of the
complex potential comes to an exterior Neumann or a Dirichlet problem for the
Laplace operator (in terms of ¢ and ) with a certain behavior at infinity.

Let us consider the case when the obstacle (C) is a.wing profile wich
performs a general displacement (a “rototranslation”) of parametres (1, m, ®) in
our fluid.

Then the complex potential will be an analytic function in every point of the
finite plane, having a singularity at infinity. More precisely, in the neighborhood of
infinity the function f(z) has a development of the form

f(@)=w,z+T[2nilnz+...+a,+a,/z+...,

where w_, =u, —iv, is the complex velocity at infinity and " is a so-called

circulation (the multiformity period of the real part ¢ of the complex potential f).
As regards the circulation I in the case of great importance in aerohydrody-
namics, when the profile (C) has a sharp trailing edge z,., where the “jump” of the
semitangents is pm,—~1<p <0, this circulation must be chosen so that the boun-
dedness of the velocity in the neighborhood of this point is ensured. More
precisely, T = LI + Mm+ No (a so-called “Couchet rule”), where the coefficients

L, M, N depend upon the given profile.
We remark now that, if instead of a complex potential f we would consider

the complex velocity w E%, then this will be a holomorphic function in the
whole outside of the profile (C), which also includes the point of infinity. To be
more exact, in the neighborhood of infinity, this function has the following

development

b
w(z;t)=w +_1"Tl+b_2+_3

It is just the regularity of this complex velocity that suggests us the use of this
function for CVBEM and not the complex potential £ as we would have been
templet to. Of course, the boundary conditions must be written in terms of this

complex velocity.
In what follows we want to determine the fluid flow induced by the general

displacement (rototranslation) of parameters (1, m, ®) of our given profile (O),
in the mass of the considered inviscid fluid. For more generality, we would
suppose that the considered fluid has already an initial flow, named basic flow,
of complex velocity wy(z), a flow which will be superposed on that produced by

the displacement of the profile (C). We shall denote by £=C(B),B €[0,27) the
parametrical equation of the Jordan rectifiable curve C, which is a 27 perio-
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di i
ical function, bounded and derivable in [0,27]\ {B,}, where é(B) 0 and
) , #0 an

givenby z, =¢(py).
at the functions Wy (z2)

&P < M s M being a finite constant. The angular point is
g Using then our previous results, we can state th
clong to a class (a) having the following properties [1]:

la. They are holomorphic in the plane D :

points . 1> except for a finite number of

which are singular points for these functio
domain D, from which one has taken off these sin

2a. The circulaton T 5 must be equal to the s
presence of the given singularities,

As regards t i
gards the unknown function w(z), the complex velocity of the resultant

flow obtained b g
_ y the above-mentioned iti g
having the following s ed superposition, it belongs to a clasg (b)

' 1b. The)./ are holomorphic functions in
.pomt_s Z,, ‘WhJCh are for them singular points
mfinity their behavior is identical with that of

ns. Let us denote by D, the
gular points.

um of the circulations due to the

D=D;/(C), except for the same
of the same nature as for 5(2); at
we(2),ie., 7

Jim w(z) = w(e) = w, (o).

2b. In the neighborhood of the trailing edge z, =
g =

semitangents angle is 7 — Um, we have e

W)= (=2 )"0 g(2), g(z,) %0
3b. I i
n the points of the curve C, the functions w*(Q(B)) belong to the class

H, ie., they are Holderian functions on C except the

el angular poi =
in whose neighborhood one has S i

w (6(B))
[G(B) ~&(By )/ -m

where w" €H, in the same nei
neighborhood, which means th ] i
: 5 at 3
rat_ely Holderian on the upper side and on the lower s iy
neighborhood of zp =E(By). ,
4.b' In the points of the ¢
following boundary condition:

There is a real continuous function v
one has

w(G(B)) =

. pa-
ide of the profile in the

urve C they satisfy, except at the angular point, the

(B) such that for every B e[0,2n]\{B,}

b mmE(B) el
w(G(B)) = v(p) Gy ioli®) -z,
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where z, €(C) and I(t), m(¢),(t) are the given functions of time determining the
rototranslation of the profile (C). >
5b. They fulfill the equality J w(z)dz=1", where the ci!r_culation of the
c
flow T is chosen so that one has the boundedness of the velocity in z., ie.,
I = Ll + Mm+ Nn, where the coefficients Z, M‘N are given with the obstacle (O).
Now let us consider the difference w(z)—wy(z). This function, known
together with w(z), is a holomorphic function in the whole outside of (C). Using
the Cauchy formula for this function, we get b

(D) () < | wiDian ol f P848) 4for Gue,
271 z={ 27 o Zail prp v
This integral equation, which is a singular one with Cauchy kernel, will be
the main instrument for the development of the CVBEM. More precisely, this
equation will be considered the integral representation joined to the boundary
problem formulated in terms of the holomorphic function w(z)—wg(z).
Finally, in order to use the boundary conditions on C, we perform

(8 =4PB) eC\zp)

and so we get

WE(B ) =5 B D |
C

w(l&B)-CB) . L T wsGB) EB)
e 9B é[—————dB.

£(B) -G8 t 5B -G

This is the boundary integral equation which could be used in a BEM. But
our CVBEM avoids this equation which seems to be a considerable simplification.

By separating the real parts of both sides of the singular integral equation,
we get a Fredholm integral equation, which, under our assumptions, has a conti-
nuous kernel. Studying the existence of the solutions of this equation by Fredholm
alternative we can state that this equation has a unique solution which fulfills the
circulation condition.

Considering then a system of nodal points zy,2y,... 25|y ZpZpa 15005 %0 =50
on the curve C together with the system of the piecewise interpolating Lagrange
functions on each arc C; (linkingthe points z;_; and z;), a system which takes
into account the behavior in the neighborhood of =, we can write

BN~y BN =D O, =) L.

where '
L,(&P)) for j#F-1F,F+1

Le, for L, = Z, (z4) -

we are led again to the real algebraic homogeneous system
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have the expressions

(=21} (572 21h) nee,

L(r)= ("“Zjn)/(zj 7274 1) teC;,,
0

' . otherwise,
while for j=F—1, F F+1 they are
t_
( ZF—-2)/.(\ZF_|—ZF_2), fOI’ teCl“-l
Lp_ ()= ((t_Z[)/(Z_f_]—Z;))”(]_u) for teC
’ F
0,
otherwise,
1*((t_zﬁ‘)/(zﬁ-1 _Z/r)]/(ljl), for ¢t eC.
P
B (1) ST (2 YL 5 oy i g gl e
~F ]
0
) otherwise,
(t—zF+2)/(zFH—zF+2), for 1eCp,,
Lp(t)= (({_Zf)/(ZF+| —Zp)”(lm“), for teC
F+1
0
g otherwise,

Using subsequently the general calculations already performed for [ ( ),
| i v A e
[2], if 1v(zk)—va(zk)Eztk —iv, and Ly=M_+iN,,;
K J

K
n n

€=, Myu;+ 3 Ny,
J=1 j=1

n id

T WARS)

O WVt 2, Ny,
J=1 j=1

g et
which will be completed, in this case, by the complex equation

=

gl

2 W f Lj(&)dS =T or, equivalently, by
c

i=1

i

2 u, Re [ LjC) do+v, Im [ Li©ag=r
/= a G

"

Y Im [ Q) dg= 3 v, Re [ 1) de.
® =1 ¢

/=1
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These last two real equations allow us to determine an unique solution of the
above homogeneous system which also includes the data on C. This unique
solution, once introduced in the integral representation of the problem (i.e., in our
case the Cauchy formula), leads to the complete determination of the complex
velocity in every point of the flow domain.

3. Let us now consider the fluid flow produced by the motion of a self-pro-
pelled dirigible ballon in a uniform stream of wind whose velocity is a priori
given.

We assume that both the dirigible motion and the velocity of the wind stream
depend explicitly on time. Besides the unsteady behavior, the mentioned flow of
the inviscid and incompressible air is supposed to be plane and potential. Neither
external forces nor the influence of the ground are considered, the dirigible being
all the time at a sufficiently great distance from it.

As concerns the contour of the dirigible balloon, it could be expressed by an
explicit equation of the type

x+iy= : -k, se[-2,1].

k
3 i~[]— 2 ]
s+1+iy2—s5—-5°

This equation implies, besides the symmetry of the configuration vs. the real
axis (i.c., the axis of dirigible), the existence of a trailing edge, located at the point
of the abscise x =k and where the angles of the semitangents with the real axis
are respectively +kmn.

In fact, the above profile is of Karmann-Trefftz type [4], the connection
between the parameter | of the preceding section and the just introduced

1= 4
parameter k being given by 1—”~ = —1;5 In the sequel we shall use the value B

for k(k =%) . As regards the stream of wind (the basic flow in terms of the
previous section), it will be defined by its complex velocity Wp(z;f) = uy —ivy =
=(2f+1)—13t?, while the displacement of the dirigible is defined by /(¢) = 312,
m(t) =t, where £ =0,1,... (the successive time instants) (see Fig. 1).

As to the value of the circulation I, which has to ensure the boundedness of
the velocity in the neigborhood of the sharp trailing edge, it will be established by
considering, instead of the flow produced by the dirigible motion, with the velocity
(1(2), m(1)) in a fluid initialy at rest, the “dual problem”, i.e., that of an opposite

fluid stream of velocity (=/(¢),—m(t)) past our profile (dirigible) supposed now
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fixed. By cumulating this “attack” velocity (~/(¢),— m(t)) with the velocity of the
wind (basic) stream (uy, vy ), the Jukovski hypothesis leads to the following value
of the circulation T = —6n(v, — m).

¥

- (), m(ty)

-

Fig. 1

We have taken into consideration above the fact that the image of our profile

) kS z-1\3
(dirigible), through the mapping i i (—) , 1s a circumference centered
S AN+
3

1 D
at [—2—, O) of radius > and whose point Z =1 corresponds to the sharp trail-

ing edge.

The kinematic (slip) condition at the points of the dirigible contour will
v+ v, —m*dy| .
utuy -1 dx|,
(relative) velocity of the fluid flow vs. the system of axis xoy, rigidly linked to the
profile (dirigible).

As regards the nodes z,,z2,,z5,...,25 (z;, =z2;) chosen counterclockwise
on the contour of the dirigible, they are obtained by allowing the real parameter

be written as , where w=u-iv is the looked-for complex
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of the explicit contour equation to take the values -2, -1.9, ~1.7, -1.4, —1.2,
~1.0, -0.8, —0.6, —0.4, —0.2, 0.0, —0.5, -0.7, 0.9, 1; the leading edge is the node

z, =~2.13790, while the trailing edge is the node z.,z, =13333 (see Fig. 2).
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Fig. 2

By imposing also the additional conditions, which state the equality of the
flow velocity at the sharp trailing edge and at its neighboring nodes, i.e.,
Up | =Up=tp,, and vy_| =v, =v,,, with =16 (a compulsory requirement
for avoiding some logarithmic singularities in calculation of ZF (zp_,) and
L (z;,,)), we are led to the solving of a linear algebraic system of 60 +2

(circulation condition) real equations with 56 unknowns.
Since the slip condition written at all the 27 remaining nodes (j# F -1,

vj:—vB—m:_dl

F, F+1) and at z,_, (or z,. that means ————— :
) F—1 ( F+l) uj+uB_[ dxz:ZJ

j=13

j#16,17, climinate v i in the favor of u ;> We are led again to an overdetermined

nonhomogeneous system but this time of 62 equation with 29 unknowns.
The Gauss elimination method (using Borland C ++ Compiler) allows us
to find the unique solution of this system. Once it is obtained the value

u; —iv; = W(z ;) at the node z ;eC,j= Bﬁ, we can proceed to the determining

3 ~
of the unknown function W(z)~W (z)= Z W.L,(z). This will be done at the
: 4z

mesh points of a squared neighborhood, of size [-5,5] x [-5,5], of the profile
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(dirigible), both the x — and y

which means 961 points (see Fi
ol

— steps of the respective mesh being equal to L
3

g. 3).

5

ﬁ

N Fa
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-5

4

| S

Finally, the (absolute) velo

of axes, obtained by the above

moments (see Fig, 4, 5 and 6).

Fig. 3

b

city of the resultant fluid flow vs. a fixed system

-mentioned superposition, will be d i
o . h : , etermined by
alculating the vector V/ (u+1,v+m) in the same mesh points and at different time
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