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LINEAR COMBINATIONS OF D.D. STANCU
POLYNOMIALS

OCTAVIAN AGRATINI

1. INTRODUCTION

In the paper [10], D. D. Stancu has introduced and investigated a linear
operator P* which maps the space C[0, 1] into itself and is defined by

(@) o 13
(B ) (x) Eﬂwm,k(x,a)f(m),
where

k-1 m—k-1

[T (x+vo) T (1-x+po)
m v=0 p:O

(l+a)(1+20)...(1+m=lo)

o being a parameter which may depend only on the natural number m. If o is non-
negative, then these operators preserve the positivity of the function £, We remind
that w, , (-;a) are known as “the fundamental polynomials of Stancu” and, by

using the factorial powers we can write
M\ (k) (m—k,~a] 7 {[m ~a]
W, (x;0)= P DAt § ) L T by e

It is easy to check the following statements: P{*' f interpolates the function
£ at the extremities of the interval [0, 1]; for oo =—1/m, the operator becomes the
Lagrange interpolating polynomial corresponding to the equally spaced nodes k/m,

k= 6,_7_n; for a.=0, P,,f") coincides with the classical Bernstein operator.

In the next section we shall present some basic results connected with these
operators, which have been established by D. D. Stancu and several other authors.
In the last part of the paper we shall deal with certain linear combinations of
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Stancu polynomials which under definite conditions, approximate a function more
closely than the above polynomials.

2.A SURVEY OF THE MAIN RESULTS CONCERNING
THE OPERATOR P.* :

Firstly, we remark that, by using a probability distribution which is
connected with the Markov-Pélya urn scheme, a probabilistic interpretation of the

polynomials PS* f has been given in [11].
In [10], Stancu has established a relation between two consecutive terms of
the sequence (P{™ f),a >0, which involves the second order divided differences

(P ()= (P f) (x) =
Z (x+va)(1-x+m-v— la)le.v(x.a)[,\; v+l v+1’f}

(1+m0t)(1+m—10c) m+1’ m

m(m+l)

This representation has led to the study of the monotonicity properties, as
follows: if fis convex (concave) of first order on [0,1], then the sequence (P £)

is decreasing (increasing) on [0,1]. By using the beta function, the author has
proved that for a.> 0 and every x €(0,1) the following identity

m\ B(xa™ +k,(1-x)a™ +m—k)
mx (X300) = a ]
k B(xa™ ,(1-x)a™)

holds. Consequently, P.* can be represented by means of the Bernstein operator

B,, according to the formula
I x l-x
1

L .
(1) PO @ =—— [t (=0 (B, dt, xe(0,1).
(I l—x)
Bli=,—|%
a o
Concerning the estimate of the order of approximation, D. D. Stancu has

proved

i)if f €Cl[0,1], then |f(x)~ (P, f) (1)[< %(D(f, 3),

i) if £ €C'[0,1], then | (x)- (P £) (x)ls%ﬁw(f',ﬁ),

here & = {(1+oum)/(m+om)}"’*.

Further, Gonska and Meier [3] have improved the values of the constants
finding 5/4, respectively 5/8.
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Furthermore, Stancu has found various representations of the remainder term
R f = f — P{ f. We quote here the following formulae [14]:

(R £) (x) = Z (x+ka)(1-x+m—1— ka)wm_,k(x;a)[x,ﬁ,ﬁ;f}
m(1+m lot) i m m
and
R fyy=-zD LMy e L

I+o

where &, ,,&, ,,&, ; are distinct points on [0,1]. If we assume that f €C?(0,1),
we can obtain the relation

(R,E,"’f_)(x)

or an integral representation

s x) 1 +mo

Trg ) Gk &y (0.,

1
RN D= [ RPW)O L Od, v (0=x-0),.
0

Under the hypotheses 0 <o =a(m) — 0 as m—> « and fpossesses a second
derivative at a point x €[0,1], an asymptotic estimate of Voronovskaja type was
given
_l+ma x(1-x)

1+a  2m

where €% (x) tends to 0 when m tends to . According to paper [13, p. 36],
the result is also valid if a=oa(m) is a non positive number so that
—-mo(m)<e, where 0<e<1/2 and xe€[g,1—€]. If we further assume that

ma(m)—>a,a>-1/2, then we can write lim mf(x)- (P f)(x)]=
-(1/2)y(A+a)x(1-x) f"(x).

Under the hypothesis that fhas the derivative of order 2p at x, Miihlbach [8]
obtained a generalization of this result.

Mastroianni and Occorsio [5] studied the sequence (P* )P of deri-

i (x)
b

(R f) ()= S+

- vatives of order p (0<p<m) of (P!* f). For feC*[0,1] they proved

lim (P )P (x)= £ P (x), ‘where x €[0,1] and o=a(m)=o(m™). The

same authors [6] introduced and 1nvest1gated the iterates of Stancu operator,
defined as follows

(B= L (BEYERS (B =B (B, j>1.
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They proved the following limiting relation
lim (PS) (f3%) = f(O)+(f (D= f(0) x,

j=reo

uniformly on [0,1], for any o2 0.

Finally, we mention two important papers: [1] and [2]. In the former, Della
Vecchia elaborated a well-informed synthesis of the principal results obtained in
the theory of uniform approximation of continuous functions by means of various
classes of linear positive operators of D. D. Stancu, and in the latter Di Lorenzo

and Occorsio achieved a systematic presentation of Stancu polynomials P,,g“) .

3.A NEW RESULT

In [6] it was treated a linear combination of the iterates of Stancu
polynomials defined by the operatorial formula S, ,,:=I—(I—P,,f°‘>)" =

J (K .
= (—1)‘_1(_) (P{*?Y', where I represents the identity operator. S, , gives a
i

i=1

better approximation than P{® =8 for sufficiently smooth functions. For the

same operator P.*’ we study here another type of linear combinations based on
the works of Rathore [9] and May [7].

In what follows, we denote e; 0,11 R, e;(x) =x/,j>0. Let d,d,,....d;
be k +1 arbitrary, fixed and distinct positive integers. We define

) ¢(0,0)=1 and c(i,k)=d,."ﬁ (d,-d;)", k=0

j=0
J#i
These coefficients enjoy the properties

3) i c(i, k) =1; i c(i,k)d " =0, 1<m<k.

i=0 i=0
Indeed, let us take L, f the Lagrange interpolating polynomial correspond-
ing to the function f'and the nodes d,-" ,i= ﬂ,

' k
(L) (=Y, ————f(d")
= a2
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where u(x)z(x-'—d&')(x-d,—')...(xf-d,:' ). Tt is' clear that for anym<k,
(Lye,) (x)=e,(x). Forx=0, this implies (L,e,) (0)=1 and (Le,) (0)=0 for
1< m< k. On the other hand, we can write

Dt d" = i c(i,kyd™
dy—d)..).d-d) =

k
(Lkem (O)=:§2
i=0

which leads us to (3).
By using the coefficients defined Ly (2), we are able to form a linear combi-
nation of Stancu operators as follows:

R
) (DS, 1) (x)= Y, c(i kY (Pyo f) ().
i=0

For d, =1, one obtains D, , = P, Also, we have (D , f) (%)= (%)

m,{)
for x, =0 and x, =1..
THEOREM 1. The following identities
1

o
o o _ o — L
(5) Dm‘,(e0 =e;, Dm’kel =g, Dm,ke2 =——7e, + e,
o+1 o+

hold.
Proof. Taking into account the next idexntities [10, Lemma 4.1]

(PPe) (x)=1,  (P¥e)(x)=x,

(P,ﬁa)ez) (x) =1—1—i x(1-x)
+o N

+ x(ﬁc + a)) ,
in
and the relation (4), we casily obtain the desired result. |
At this point, we introduce the s-th order central moments of the operator

P{* | thatis p,, ,(0;x)= (P{™@3) (x), where o, = e —xe,. : -

It should be mentioned that the recurrence relation for the central moments
of the Markov-Pélya distribution has been established by D. D. Stancu [12].
LEMMA 1. Let us assume that 0 <. The following identity
[s/2] ;
(6) m'u,, (o x) = Z 0, (a;x) m, m21, 5§20, x€[0,1],

i=0

holds, where 0, (o; x) are polyno:nials in x of degree less than or equal to s.

Proof. Knowing that the operator P{ g iaterpolatory at both sides of the

m

interval [0,1], (6) becomes true for x =0 andx =1.
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- Next,-we consider only 0 <x<1. We recall an old result concerning the
Bernstein operators (see [4, § 1.5, pp. 13 — 14]). If we consider the expressions

ms(x)=z ( )x (1-x)"" (i-mx)", then for a ﬁxed s, T, ,(x) is a polyno-
‘ S\

mial in x and m; in x of degree <&, in m of degree [s/2]. Thu; we can write
[s/2] A _ .
T, ()= Z ¢, (x)m', where 9, ; are polynomials in x of degree <s, indepen-

dent of m. By using the relation (1) we have

1-5

1 x 1-s _
[ @-ne T, (nd=
0

1 Mzl =R e

]
=]
P
Q=
“b—l
Q||
=
~—
W
<

For any integer k21, we can write
1—x
= B( +k, ———) i
i o H (x'}'ja]

ki Ad
B(M )It l-t) 't dt B[-)i,l x] + o U+ jou
o’ o o o

which represents a polynomial in x of degree k. The above identities complete the
proof of our lemma. '
We further assume that O<a=a(m)—>0 as m—> . Keeping the nota-

tions used in the above proof, for s>1; it results ¢, ;(0)=0 and we can put

o, ()= i a, ; ,t*. The coefficients a,; , are independent of o. For x €[0,1]
k=1
and 0 <o we have
-l

0, (e x)i<}: las,kIH X+J% < b s

1+ jo

where b, ; = max, . |4, ; ;|- Now, we can state the following result:

LEMMA 2. If 0 <ou(m) —> 0 as m—>o, then there exists a constant B, ; such that

@) 19, (a; x)|<B,;» x€lo, 1].
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THEOREM 2. Let us assume that 0<a(m)—0 as m—>. For any s=1 one
has

O(m-(“l) ), m—» o,

” Dm (P =

where “ : “ stands for the sup norm on C[0,1}.
Proof. By using relations (4) and (6), we get

k
(Dr(::,k(Pi)(x) = Z C(j, k) l’ldjm,s((x';x) =

j=0

k [s/2]

=" (k) (d;m) Y 0, (%) (d;m) =

j=0 i=0
1 210 (o;x) &

AT
i mF! i)

i=0 j=0 j

k .
According to (3), we have Z c(j,k)d ¢ =0 for s-i=1,2,....k. We
j=0
shall consider s—i=k+1. Taking into account (7), we further write
(s/2)

(D540 (IS Z 8, (0 x>|z IC(J,k)IdS _—my—

where v is a constant that depends on the numbers s,d,,d,,...,d, but is inde-
pendent of m. The result follows.

THEOREM 3. Let us assume that 0<a(m)—>0 as m—co. If f is bounded on
[0, 1] and is 2k +2 times differentiable at some point x €[0,1], then
[(DE o) ()= f ()| Com™ 0,
where Cy is a constant that depends on k.

‘ Proof. By using the Taylor expansion to f, we can write for all ¢ €[0,1]

U2 4 (r)
| fw=1e+ 3, L2

r=1

\ where A is bounded and hm h(u) = 0. By virtue of the linearity of the operator

XY+ (2= 1)2 B - x),

>0

Dy, , and by relations (4) and (5) we obtain
2k +2 f(r)( "

(D Y (X) = f(x) = Z

k
(D%, @5 ) (x)+ X (s kNP Rapan ) (%),

j=0
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where Ry, = (pi'”zh(- —x). Choosing s =2k+2 in (6), from the boundness of

h, Lemma 2 and the Cauchy inequality it results that there exists a constant y
which depends on & and d; such that

N
>

(P8 Ry ) () Sym ™70

Theorem 3 follows from (3) and Theorem 2.
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