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ON THE MONOTONE CONVERGENCE
OF AN EULER-CHEBYSHEFF-TYPE METHOD
IN PARTIALLY ORDERED TOPOLOGICAL SPACES

IOANNIS K. ARGYROS

1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x" of the nonlinear operator equation

(N F(x)=0

in a linear space E;, where F is defined on a convex subset D of D, with values in
a linear space E, . '

We have recently shown that if £, and £, are Banach spaces, then under stan-
dard Newton-Kantorovich hypotheses the Euler-Chebysheff-type method of the form -

(2) Yo =X, _[xn’xn]_lF(xn)
(3) Xns1 =V _[xn’xn]_l([xn’yn]_[xn’xn])(yn _xn) Xo eD (nZO)

converges with order almost three to a locally unique solution x~ € D of equation
(1). Here [x, y] denotes a divided difference of order one, which is a linear operator.

We introduce and study the monotone convergence of the iterations {v,} and
{x.} (n 2 0) given by

“4) F,)+[x,,x,1(w, ~v,)=0

(%) Fx,)+[x,,%,1(», -x,)=0

(6) (x5 Yul =[x, %, (w0, —v,) +[x,, x,1(@,,, -w,)=0
and

(7 s ¥ 1= 0205 %, D (2 = 2+ [, %, 1 (1~ 9,) =0

to approximate a solution x~ of equation (1).
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The Euler-Chebysheff method (or the method of tangent parabolas) converges
with order three ([5], [6])- However, with the exception of some special cases, this
method has no practical value in a Banach space setting because it requires an
evaluation of the second Fréchet-derivative at each step (which means a number of
function' evaluations proportional to the cube of the dimension of the spac?).
Discretized versions of this method were considered by Ul’'m [8] and Potra [7].' QI m
used divided differences of order one and two, whereas Potra u.se:d dlv%ded
differences of order one only. However, Potra used hypotheses on divided diffe-
rences of order two in his convergence theorem [7, p. 91]. The order of con-vergence
of his iteration is 1.839 .... The order of convergence of our iterations is almost
three. Moreover, we use hypotheses on divided differences of order one only.

2. MONOTONE CONVERGENCE

We shall assume that the reader is familiar with the meaning of a divided
difference of order one and the notion of a partially ordered topological space
(POTL) ([1}, [21, [7], [9]). Moreover, from now on we shall assume that E, and E,
are POTL-spaces.

We can now state the main result.

THEOREM 1. Let F be a nonlinear operator defined on a convex subset D ofa
regular POTL-space E, with values in a POTL-space E,. Let vy and x, be two
points of D such that

%) vy S X

9) F(v,) <0< F(x,).

Suppose that F has a divided .difference of order one on Dy = (U4 %9)=
={x€E |v,<x<x} D satisfying

(10) Ay =[x, %] has a continuous nonnegative left subinverse By,
(1) [x,,120 forall v, <ysxo,

(12) [x,0]-[x,y]1<0 if vy

and

(13) [z,w]+[w,q]——[z,z]—[v,z]20 if v<w<z forsome q e{v,z).
Then there exist two sequences {U,}, {x,} n20 satisfying approximations

OaU?

(14) v(,Sw(,SUIs...SwnSvnHSx,,HSyns...Sx,SyOSxO,

. - * » N ® -

(15) lim», =v", limx,=x and v,x €D, with v <x .
n—» 0 n—>w L
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Moreover, if the operators A, =[x,,x,] are inverse nonnegative, then any

solution u of the equation F(x)=0 in (v,,x,) belong to @ ,x"y.
Proof. Let us define the operator

P:{0,x,—0,) > E|, B(x)=x-B,(F(v,)+ 4,(x)).
This operator is isotone and continuous. We can have in turn
P (0) = ~ByF(2,) 20,
P (xg =) = %y — 0y = ByF (xy) + By (F(x0) = F(24) = Ay (%, ~0,))
S xg =V + By (1%, 05 1= [x0, %o D) (% —2,)  (by (9))
Sxy— Uy

since [x,, v, 1<[x,,x,] by (12).

By Kantorovich's theorem [4], operator P, has a fixed point
z, €(0,x, =0, ): P(z,)=2,. Set w, =v, +z,, then we have estimates

F(vy)+ 4y (wy —vy) =0,

F(wy)=F(wy)-F(v,)- A, (w, —0,)<0
and

Uy SWy < xg.
We define the operator

P:i(0,x, —w,) > E, Py(x)=x—By(F(xy)+4,(x))
This operator is isotone and continuous. We can have in turn
P,(0)=B,F(xy) =0,
P, (xy — W) =x, ~ Wy +ByF(wy)+ By (F(xy) - F(wy) — Ay (%) — W, )<
<xy =Wy + By ([xg, Wo1-[x4, X, D) (%0 —wy) <(by (9))
Lxy—Wy,

since [x,,w,]1<[xy,x,] by (12).
By Kantorovich's theorem there exists z, €(0,x,—w,) such that
P,(z,)=z,. Set y, = X, —z,, then we have the estimates

F(xy)+A4,(yy—x,)=0,

F(J’o)zF(J’())'F(x())_A()(J’U ~x4)20
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and
vy W, <y <X

We now define the operator
P:(0,x, -0y > E;, P(x)=x-B, (LyBiE(y)+ 4y (x)),
where L, =[xy, x,1=[x¢>¥0 ]
This operator is isotone and continuous. We have in turn
P,(0)=~ByLyByF(1,)20 by (9)
P, (% — ) = Xp — ¥ — By LoByF(p) +
+By (Lo By (F(xy) = F(0)) = [x0, %, 1(xg =00))-
But, by (11) and (12), we can have
LBy F(xg)~ F0 ) ~[x0. %01 (X =00)=
= (LyBy [0 1~ [Xos %o D (%o —0)S
<(Ly ~[%0, %0 D) (g = 24) S —[%gs ¥ 1 (%9 —0) < 0.

Therefore, we have
Py(xy—vy) <x, — V.

By Kantorovich’s theorem there exists z; €(0,x, -~ v,y such that
P,(z,) = z;. Set v; = W, + 2z, then we have estimates
=Ly (wy —vy) + 4y (0 —wy) =0

and
Ly(w, —v4)20.

Furthermore, we can define the operator
P,:(0,x, ~0,) > E,, Py(x)=x+B,(LyByF(x,) -4, (x)).
This operator is isotone and continuous. We have in turn
P,(0) = ByLyByF(x0)20 by (9),
Py (x, —0y) =%y — Uy +ByLyByF(vy) +
+ By (Lo By (F(x0) = F(0)) = Ay (X0 =¥9)) < %o = Vo

(by using the same approach as for P3). By Kantorovich's theorem there exists
z, €(0,x, —v,) suchthat P,(z,)=z,. Set x; =y, -z, then we have estimates

=Ly (yy — %) + Ay (x -y)=0
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and
Ly(yy —x,)<0.

From approximation (6) we now have
v, —wy =W, + By Ly(w, ~v,)—w, =By Ly(w, —v,)20.

Hence, we obtain w, <v,
Moreover, from approximation (5) we have

_ X =Yy =Yy + By Ly (¥ ~ %y) = ¥y = By Ly (¥, — %,) <O0.
That is, we get x, < y,,.
Furthermore, we can obtain in turn
Uy =X =Wy + By Ly(wy —vg) —(yy + By Ly (yy = %y)) = .
=Wy — Yo + By Loy(Wy —Vy +x0 — ) =
=0y = By LyF (1)~ (x, — ByF(x,)) +
+B'UL0 vy = ByF(vy — By F(vy))—ByLy(v,) +
+ByLo(x9) — By Ly (xg — ByF(xy)) = _
=0, =X = By(F(vy) ~ F(x4)) =By Ly By (F(v,) = F(xy)) =
== By[vy, x0 1= By Ly By [0y, %5 1) (v, = x,).
But using hypotheses (12) and (13) we have
By Ly By [0y, %01+ By [0, %, 1< By Lo By Ay + By [0y, %41 <
SByLy+By[vy,xy 1< By(Ly +[vy,x,]) <
SBO[yOsq]SB()40 <.

We now obtain v, < x,.
From all the above we have

Uy SWy SV Sx, Sy, 5X-

By.hypothesis (12),, it follows that the operatbr A4, has a continuous.
nonnegative left subinverse B, for all #>0. Proceeding by induction, we
can show that there exist two sequences {v,}, {x,} (n>0) satisfying (4) ~ (7) and

(14) is a regular space E, and as such they converge to some v",x" €D,. That is,
we have

. L * .
limy, =v <x = lim x,.
n—o n-y>o
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If v, <u<x, and F(x)=0, then we can obtain
Ay (v — 1) = Ay (x5 = BoF (%)) — Agu =
= Ay (x, — 1) — Ay B (F(x¢) - F(u)) =
= Ay (I - By[xy,u]) (%, —u)20, since By[x,,uls By, < I

Similarly, we show A4, (w, —u) < 0.
If the operator A, is inverse nonnegative, then it follows from the above
w, Su<y,. Proceeding by induction, we deduce that w, <u<y,, from which it

follows that w, <V, SW, SUS Y, $X, S Vs for all n>0. That is, we have
v, <u<x, forall n=0. Hence, we get v <u<x’

That completes the proof of the theorem.
In what follows, we shall give some natural conditions under which the

points v and x* are solutions of equation F(x)=0.

THEOREM 2. Under hypotheses of Theorem 1 suppose F is continuous at v°
and x". If one of the folowing conditions is satisfied . '

@ x" =y,

(b) E, is normal and there exists an operator Q:E, > E,, ( 0(0) =0) which
has an isotone inverse continuous at the origin and such that A,<T for

sufficiently large n,
(c) E; is normal and there exists an operator R:E, — E,(R(0)=0) conti-

nuous at the origin and such that A, < R for sufficiently larg n,
(d) operators Ay are equicontinuous for all n20,

and :
(e) E, is normal and [u,0]<[x,y] if usx and v<y,

then we have
F")=F(x")=0.

Proof. (2) Using the continuity of F and F (v,)<0<F(x,), we get
F(")<0< F(2"). Thatis, we obtain F(x")=F(")=0.
(b) By (4) and (6)
02F@,)=4,@,-w,)zv, -w,)

0 < F(x,) = A, (X, = ¥,) 2 O(X, =¥
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Hence, we get
0207'F@v,)2v, ~w,, 0<Q'F(x,)<x,-y,.
Since E; is normal and "ﬁ_?}o v, ~-w,) =nlj—{130 (x, =y,)=0, we have nli_r)rolo QO'F,)=
= nl'_u)r‘}o o' F(x,)=0. Hence, by continuity, we get F(» )= F(x")=0.
(c) As above, we get
02F@w,)2R(v,~-w,), O0sSF(x,)<R(x,-y,)

Using the normality of E, and the continuity of Fand R, we get F(v*) = F(x")=0
(d) From the equicontinuity of the operator 4, we have lim 4, (v, —w, )=

= nl'_LE[.}O A,(x,—y,)=0. Hence, by (4) and (6)
F@')=F(x")=0.
(e) Using hypotheses (10) — (14), we get in turn
OSF(yn)zF(yn)_F(xn)_An(yn _xn)=
= (4, = [ %D (3 = 9,) U0, %)= 12" X D (%, = 2,).

Since E» i . iy g .
ince E, is normal and nh_{r:o (x, —y,)=0, we get ,.l% F(x,)=0. Moreover,
from hypothesis (12)

[x",x"1(x, —x" ) S[x",x,1(x, —x") =
= F(x,)— F(x ) <[xy, % 1(x, —x)

and by the normality of E, JF(x) =nlir)n F(x,). Hence, we y:t F(x")=0. The

“result F(»")=0 can be obtained similarly.

The proof of the theorem is now complete.
As in Theorems 1 and 2, we can prove the following result (see also [7,

: Theorem 6.2]:

. fFHEOREM 3. Assume that hypotheses of Theorem 1 are true. Then the appro-
ximations

Yn = X%p _BnF(xn)’
xn+|=yn+BnLn(yn—xn)’ Ln=[xn’xn]_[xn»yn]
w,=v, —BnF(vn)
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and
Vpai =w, +BnLn(wn _vn)

where the operators By are nonnegative subinverses of A, generate two sequences
{v,} and {x,} (nZ 0) satisfying approximations (4) — (7) and (14). Moreover, for

any solution u €y, x,) of the equation F(x)=0 we have
ue(,,x,) (nz0).

Furthermore, assume that the following are true:

(a) E, is a POTL-space and E, is a normal POTL-space;

(b) lim x, =x" and lim v, =v;

n—»w h—>®©

(c) F is continuous at v" and x°;

and

(d) there exists a continuous nonsingular nonnegative operator T such that
B, 2T for sufficiently large n. Then

F(")=F(x")=0.

Remarks. (a) Our conditions coincide with (44) and (50) in [7, p. 98]. In case
E =E,=R, our conditions (12) and (13) are satisfied if and only if F is
differentiable on Dy, and F, F' are convex on Dy.

(b) 1t follows from all the above that our method uses the same or simpler
conditions than those used in all previous results ([4] - [9]) but the order of
convergence is faster [3].

(¢) Similar results can immediately follow if the divided difference [x,, X, |

is replaced by [x0, %6100 =2 <x, in 10y, [x,,x,] is replaced by [%,5 V]
(n>1) in(4)— .
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