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1. INTRODUCTION

The most well-known interpolatory itérative methods have been studied by
several authors ([3], [4], [8], [13], [14], [15], [16] and [19]) also in the case of
operator equations. These methods have the advantage of a higher efficiency when
compared with the methods that use the Fréchet derivatives of the corresponding

-Operators, and, moreover, they may be applied even when the Fréchet derivative
vanishes at some points in the neighborhood of the solution ([2] and [16]). On the
other hand, the construction of the finite difference operators may be difficult for a
large class of general operators.

In this note we shall consider second degree polynomial operators; for these
operators the divided differences at any four points are the null trilinear operators.
These equations belong to an important ‘class which has many applications in
practice [2]. gl o .

In Sections 2 and 3 we construct the divided differences of some particular
operators, and the Lagrange interpolatory polynomial in the Newton form. In
Section 4 we study the convergence of two interpolatory iterative methods, namely
the chord method and the Steffensen method. We have considered that this study

- may present some interest because of the conditions for the convergence, which

are simpler than in the general case.

2. DIVIDED DIFFERENCES

Let X and Y be two normed linear spaces and F: X > Y a mapping. Denote
by Z(X,Y) the set of linear continuous operators from X into Y and by
Z(X',Y) the set of i-linear continuous operators from X' into Y.
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DEFINITION 1 [14). Given the distinct points x,,x, €X, the mapping
[x1,%,s F1e Z(X,Y) is called the first order divided difference of F on the

points x, ,x; if’

a) [x), %55 F](xy =2)) = F(x,) - F(x,);
b) if F is Fréchet differentiable at x,, then [x;, x,; F1= F'(x,).

The higher order divided differences are constructed recursively.

DEFINITION 2. [14]. Given the distinct points  x,...,x;,, €X,i>2, the
mapping [x,,...,x,,; F1e Z(X',Y) is called the i-th order divided difference of

F on the points x,,...,x,,, if
a) [x,..., %, Fl(x,,, —x) =[xy, x5 Fl=[x,,..., x 3 FJ;
b) if there exists the i-th order Fréchet derivative of Fon x, €X, then

[xs,...,xs;F]:%F(‘)(xs),
i

DEFINITION 3. [14]. The divided difference [x,,...,x,,,; F] is called Symmie-
tric with respect to x,,...,x,,, if the equalities

(21) [xla---sxi+];F]:[xkl5""xk-

i+l ?

F]
hold for any permutation (ks ki) of (1,2,..,i+ 1)

Remark. When X =R then it is well known that the equalities (2.1) hold.
However, these equalities do not generally hold for any normed space X.

Example 1. Let X=R’>, Y=R and F: R® > R. Denote x; =(u;,v,) eR?,
I=1L2,u #u, and v, #v,. Any of the following two expressions defines a first
order divided difference of F on xy and x; :

[xz,xl;F]:_[F(ul,w)—F(uz,v,), F(u2,U])—F(u2,yz))

L by —v,

[x,,xz;F]=(F(u2’vz)_F(u"UZ), F(ul’DZ)—F(uI’UI)J-

It is obvious that, in general [x 1>%35 F]#[x, x; F], which means that these
divided differences are not symmetric with respect to the points x,, x,.
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For symmetric divided differences we may consider in this case the
expression '

[xl,xz;F]=%([F(u1,v|)—F(u2,vl)+F(uz,vz)—F(ul,uz)j',

Mgty oL

F(ty,01) = F(uy,0,) F(ul,vz)—nul,v,)D_
vy =¥y v, =0,

Example 2. Let V be a Banach space over the field K (K=R or C) and
consider 4 € Z(V) a linear continuous operator on V. The scalar A € K is an

eigenvalue of A iff the equation
Av-w=9

has at least a solution »#8. In this case, v is an eigenvector of 4 correspond-
ing to A. AT .
For determining an eigenpair (v, ), consider a linear continuous mapping

G:V—> K and the Banach space X=V x K with the norm {|x(|= max {||2||, |A|},
v .
x=[x),v eV,A eK. Let F: X — X be defined

- _(Av—-?w)
22) D= . ):

e . .
Denoting by 6, =(0) the null element of X, then the eigenpairs are the
solutions of the equation
F (x ) = 9] .

We shall construct for F the divided differences, and we shall show that for
123 the i-th order divided differences are the i-linear null operators.

Remark. When V=K', it is usually considered the quadratic function

G@) = %v’ v, instead of a linear one. We have shown in [3] and [4] that for the

choice G(v)= %v'v the norm of the second derivative has the constant value 2,
n

smaller when compared to the constant value », which corresponds to the second
quadratic function.

The divided differences of the corresponding operators F may be easily
constructed.
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2 :
Let x, =] ' i—1 13 h:
(& x, (AI,JGX’I—1,3 and k:(a)ex l=12

I

For determining the first order divided differences of # we have that

F(xy)- F(x,)= [A(vz ‘”1)—‘[(7L +A 2) (v, - v,)+(k -2 1) (v, +7,)]
_ G(v, -v,)
whence it follows that

; 1
[x,,%,; F1k, =(Ah! "5+ A) By vy (0, 4, ))J

[x, Xy Xy Kk k, = 2
. 0
th Slnf:e the above divided difference does not depend on x,,i=13, it foll
at the hlgher order divided differences are the null multilinear operators, iy
Consider now the matrix 4 eo# (K) ForV=K"and X - K"

rator (2.2) is given by the relations > the ope-
; = i(x ,-..,an o

where hi=ln+l

FE(x)=a,x'+. ag w3 +(a — 3™y g a1t T
and for G(v) -1 we may take i i ol

h - . n+|(x)_-xi -1,
where 7, €{l,...,n} is fixed. We have denoted x = (x', Lx" ), X" e g

ng an

unkn, i
own elgenvalue of A and v=(x', . y "y a correspondmg eigenvector

r h

b
! a !
[ 12 a,,o e, Ay
a b, .
21 22 “aw azi e a a
[x],ngF]z . 3 il ?" 2,'n+l
a a
6] n2  ees amo bnn an,n+]
0 1 0 0

. v 1 n+l1 n T
with b, =g, —E(x{' +x*"),i=1n and A et = ——l(x2 +x),i=1
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i

Consider now x, e K" and &, =(h,...,h"™"), hy=(h,.. K" )eK"'.
The second order divided differences of F on x,,x,, x, are

1 n+l 1 I\ 1

—Eh,z 0 0 = h,

2

0 —%h;’” S 0 —%hf hy

[x), %, %35 Flhhy = : ;

1 1 Z

0 0 "—h;H "'_hqn hl
2 2 hrH—]

0 0 0 0 ]

for all Ay, h, eK™',
It can be easily seen that the above finite differences are symmetric with

respect to the points considered.

Example 3. Let T:X — X be given by

T(x)=y+ B, (x)+B,(x),

with y eX fixed, B, e Z(X) and B, the restriction to the diagonal of X x X of a
bilinear symmetric operator B, € Z(X*,X), i.e., B,(x)= B, (x,x).

Let x; €X,i =1,3 be three points. The first order divided differences of T
on x; and x, are :

%), %03 TV = By (B) + By (%, + x5, 1), By €X,
while the second order ones are given by
(%1, %5, %33 T by = By (B, hy), By, by €X.
It is clear that, in this case too, the higher order divided differences are the-

null multilinear operators.
Example 4. Let X=Y = ([0, 1] be the Banach space of contlnuous func-
tions on [0, 1], equipped with the max norm. We consider the mapping

F:.C[0,1]— C[0,1] given by
1
F(x)(s)= [ K(s,t,x(1)) dt,
0

where K:[0,1]x[0,1]x R — R is a continuous function.
The first order divided differences of F on the points x,,x, €C[0,1], when

x, (1) #x,(1), t €[0, 1] are given by

K(s,t,x,(8)) = K(s,¢t,x/()) 1
[x,,%y; Flh= j O h(t)dt, heClo,1].
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Indeed, it can be seen that

- _ [ Kt ()= Ko, 1,3, (1)
[, %55 F](x, -xl)—oj T
= F(x,) - F(x,),

(x, (1) - x,(2)dt =

and so relation a) from Definition 2.1 is satisfied,

If K admits a partial derivative with respect to the third argument on R, then
relation b) from Definition 2.1 is also verified for all (s, ¢, x) €0, 1]x[o0, I]xR.

It can be casily seen that these divided differences are Symmetric with
respect to x; and x,,

For the higher order divided differences we consider x; € [0, 1, i=1,n+1
with x,.(t)atxj (2) for i#j and ¢ [0, 1].
Denote
[xiﬁ X0 K] i K(S’ t’xi+l (t)) _K(S9 taxi (t))’
X (1) ~x,(2)

1=

2

[xv Xy f,x Z.K]_[x;'+15xi+2;K]_[xi’fo;K]
LIEAe T I e BN, B s
Xy (1) =x,(2)
[x[+1,-"’xi+J;K]_[x"""’xi+s—l;K]
X,-”(t)—x,-(t)
With these notations, we easily obtain that

Wiz 1,..5.',";?1"— 1,

[XI’x"V”,“.’x'}S;K]: H i=1,...,n’—S+1.

1
[X,-,xr+|,x:'+2;F]hlh2 =I[x,.,x,.+,,x,+2;K]h,(t)h2(t)dt, i=Ln-1
0

and, in general,

1
L¥isosxi s Flby b, =f[x,.,...,x,.ﬂ;K]h,(t)...hs(t)dt, isLn-stl.
0

3. INTERPOLATION
Let ! X 5Y be a mapping and x, -eIX,i = 17117, some distinct points,
Consider the polynomial operator L, eX>Y given by
(3.1) LJX‘).?‘F(M)H%,xg;F](x—X.H

+...+[x,,x2,...,x,,H;F‘](x—x,,)...(x—-x,).
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The following result holds.

THEOREM 3.1. [14]. If the mapping F admits symmetric divided differences
from the first order to the n+ 1-th order with respect to the points X, x €X,

i=1,n+1, then the following relations hold:

3.2) L,(x)=F(x), i=Ln+1
(3.3) F(x)—L,,(x)z[x,x],...,xn”;F](x—xn+,)...(x—xl).

Let Dc X be an open subset and suppose that the restriction G = F| pisa
homeomorphism between D and F(D). The following result can be easily
obtained.

LEMMA 3.1. [14]. If the mapping [x,,x,; Gl e Z(X,Y), Xy, X, €D is inver-
tible, then
[ylyyZ;Gq]:[xlaxz;G]—la

where G™'is the inverse of G and Yi=G(x;),i=1,2.

4. ITERATIVE METHODS FOR SECOND DEGREE
POLYNOMIAL OPERATOR EQUATIONS

In the following we shall consider second degree polynomial operator
equations

4.1 F(x)=0,
with F:X — X which satisfies then
(4.2) [x,v,2,¢ Fl=0,, Vx,y,z,t €X,

83 being the trilinear null operator.
It follows that F also satisfies
(43) F(x) =F(x1)+[xl,xz;F](x—x|)+[x,,x2,x;F](x—x2)(x—x,),
where [x,,x,,x; F] does not depend on x,,x, and x (see also Examples 2.2

and 2.3). \
We are interested in the convergence of the chord method and Steffensen
method for this equation. _

The chord method is given by the iteration

4.4) Xyl =X, —[x,,_,,xk;F]"F(xk_, ) k=12, x5,x €X



40 Emil Ciitinag, Ton Piviloju 8

or, equivalently,
(4.5) Yot =X =[N, 0 FT F(xy), k=12, X0, % €X.
For the Steffensen method, it is considered an auxiliary function g:X —» X
and the equation
(4.6) x-g(x)=0,

equivalent to (4.1). The sequence (x, ), ., is then constructed by the iteration

(4.7) et =% =0, 800 ) FI7 F(xy ), k=0,1,...,x, eX
Oy
(4.8) Xer1 = 8(x, ) —[x, . 8(x, ); FT™ F(g(x)), k=0, L...,x eX.
It can be easily verified that the two relations above define the same sequence.
Because of the special form of equation (4.1), we shall see that the
conditions for the convergence of the sequences generated by (4.4) — (4.5) and

(4.7)~ (4.8) are much more simplified as compared to the general case of an
arbitrary equation (4.1).

The convergence of the chord method. Let o =|f[x, y, ; Fll| and x, eX.
Denote B(x,,r)={x €X|llx-x5[|<7},7>0. Consider bt eB(xo, ¥) and d, =
=|lx, ~x,||. The following result holds.

THEOREM 4.1, If the mopping F and the elements X0, X% €X, and
a,r,by,d, €R, satisfy

i) there exists [xq,x,; F]™!

) bya(2r +dy) = g <1, with by =[x, x; FTI7Y|

i) ab®[|F(xo) =g <1, ab?||F(x,) [|<e!.  where "’=1b0 e
-q
L5
2
8I
iV) 0 +dosrs
ab(l-¢,)

then the sequence (X )iso generated by (4.4) is well defined and its ele-
ments belong to B(xy,r). Moreover, (X )yso s convergent, and denoting
x* =k1im X, rhén F (x*)=0. The fbllowing estimation a'lsollholds':

- w

k

!
* 80
”x xlc ”S(xb(l—s(l))
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Proof. We shall first prove that, if X,y €B(x,,r), then there exists
[x,y; F1"" and
(4.9) I0x, y; F1[< .
Let =[x, %,; F1" ([, x; F~[x, y; F]).
It can be easily seen that
ITl<Boa(2r +d,),
whence by ii) it follows the existence of (/- T )" and the inequality (4.9).

Now we show that x, € B(x,, 7). From i) it follows that x, is well defined,

and from (4.5), for k=1 we get
I
0
[l = x||<b |7 (x, )”za
Using this inequality and the hypothesis iv) one obtains

—0 4 d, <,

€
sz —xOHS”xZ X ”+ “xl —XOHS (xb(l"go)

Le., x, € B(x,,r). .
Now, using (4.3) with x = x, and taking into account (4.4) - (4.5), it follows
that
17 Cey Y I< ad? || F (x| 1F (o)), .

whence, by iii),

POl — el =L
|l (x2 _abz 0 abZ 0

Let £ €N and suppose that x,_,, x, € B(x,,r), and
1 -
F(x, Ds—¢
” (k ])“ (sz 0
1 Gr Sl
X< —¢, .
k ab2 0
It easily follows that x, , , is well defined, that

1
|7 "kaSbHF(xk)HSWSO



42 Emil Citinag, Ion Pavilo 10

and that
k k
[lx, 4 _xollsz lx: . —xll=x, —x0||+z X001 —x; 1<
i=0 i i =1
1 Eogii £l
Sdy+— 3 Ef<dy e L0 gy
Ly ab(l-¢,)

ie, x,,, €B(x,,r).
Using (4.3) we get
1 Jk+1

llF(xk+,)HSabanm)H-HF(xk_l)'nsésé’*'?"i' =t

It can be easily shown that (X4 )¢ 20 is a Cauchy sequence, hence it conver-
ges and satisfies the stated estimation.

The convergence of the Steffensen method. We shall consider that the
mapping g from (4.6) is given by '

(4.10) R 8(x)=x - AF(x),

with & e X a fixed scalar.
In this assumption, the following relations are obvious:

(4.11) F(8(x)) = F(x) = -ALx, g(x); F] F(x)
(4.12) [x,y; g1=1~Alx,y; Fl,

I being the identity mapping on X.
From (4.11) it follows that

(4.13) IF N NI<I1L = ALx, g(x); FI)- | F(x)).

Denote again by o the constant expression ||[x, y,z; F]||, and consider
x, €X.

Assume that
(4.14) 11— Alx, y; Flil<y, forall x,y € B(x,,r),

and some y > 0. The following theorem holds.

THEOREM 4.2. If x, X, the mapping F and the positive numbers a,B,y,r
are such that

1) g(x,) €B(x,,r) and there exists [xy,g(x,); F17,

11 Interpolatory Iterative Methods

i) p=Poly +1) r<1, with B=|[x,,g(x,); F1"" |,

i) 8 = 082 || F (x, )| < 1, with 5=i%,,

8y 8, ( 1 | |) :
i = +—|;<r,
) max{aysa—ao) as\1-5, 1
then the following relations hold: . . » 4
J) the sequence (x,), ., given by (4.7) is well defined and converges;

ji) denoting x” = lim x,, then F(x")=0;
2k

. ¥
i) 1" =%, [ ——2——  k=0,1,....
e =x, |l oy (1-8,)

Proof. For x, g(x) € B(x,, r), using that :
Dx0> 8Cxo)s F17 (%o, 8(x0); F1-[x, g(x); FD|I<Baly +1) r = p <1,

it follows that there exists [x, g(x); F1" and

(4.15) s 11 s =3,
We shall use the identity
(4.16) F(y)=F(x)+[x, g(x); F1(y - x) +
X, 8(x); Fl(y—x) (y-g(x)), Vx,yeX.
From (4.7), for k=0 we get

)
0 <r,

82
It =5l <P IFGIS IRl RG0S s

ie., x, € B(x,,r).
Further,
llg(x;) — 0o 1<l g(x,) - g(xg)||+

+1g(xo) = xplI< ¥ |lx, _x_o”*"M“F(xo)Hs
<% + A 8058—0(—1—+m)5r,
od(1-8,)  yad® " ad\1-8, ¥5
which shows that g(x,) € B(x,, r). Taking into account (4.6), it results that
F(x) = F(xo) +[x0, 8(x ) F1(x, —xy) +
+[x),x0, 8(x); Fl(x, =) (%, ~ g(xy))
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and by (4.7), (4.8) and (4.11) we get
1FGe)lI< a8y |7 (x|,
whence for 8, = ad?y [IF(x,)| we obtain
8, <82

Suppose now that x, , 8(x;) € B(x,,r) and that

2!

802 y i= l!

IF(x")l<

a,

Then, obviously, x, , , is well defined and

llxy . —X|I<8 1ECx )],
and

”xk+1 -8(x)I= 8y ”F(xk)“

For proving that x, _ ,, 8(x, 1) €B(x,y,r), first we have for X, that

k k
(B ~Xp ”SZ % —xi”SZ SHF(xr)”S
(=0 i=0

< <r
=0 C‘SIT ady(1-8,)
and for g(x,,,) we obtain
Ilg(xk+1)—x0 llSllg(xk+l)—g(xo)ll+llg(xo)—xo||5
S”[xo’xkﬂ;g]”'“xkﬂ ‘xo“"‘lM'“F(xo)HS

< 60. +1M8°:8~°(~1‘+m)3r
ad(1-8,) " ad’y ad\1-3, ' oy

It can be easily seen that (X )iso 1S a Cauchy sequence, and hence it
converges.

The stated evaluation of the error can be obtained from
21(
80

ady(1-8,)

“ka —x, 1<

for m— . The theorem is proved,
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