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ANTIPROXIMINAL SETS IN THE BANACH SPACE C(o*; X)

S. COBZAS

For a normed space X, a nonvoid subset M of X and an element x e X
denote by d(x, M)=inf {||x-y|:y € M} the distance from x to M and by
Py(x)={yeM:||x-y|l=d(x, M)} the set of all nearest points to x in M. The
set M is called proximinal if P, (x)#0 for all x e X and antiproximinal if
Py (x)=0,forall x e X\ M. (Observe that P, (y)={y}, forall y e M.)

Klee [19] denoted by N; the class of all normed spaces containing an' anti-
proximinal closed convex set and by N, the class of all normed spaces containing
an antiproximinal bounded closed convex set. Using James’ characterization of
reflexivity in terms of support functionals of the unit ball, V. Klee loc. cit. showed
that a Banach space belongs to the class &, if and only if it is nonreflexive.
The first example of a Banach space of class N, was found by M. Edelstein and
A. C. Thompson [13] — the Banach space ¢, contains an antiproximinal bounded
- symmetric closed convex body. By a convex body we mean a convex set with
nonvoid interior. In [8] it was shown that the Banach space ¢ belongs to the class
N, too, and this property is shared by any Banach space of continuous functions
isomorphic to ¢, [9]. The existence of bounded closed antiproximinal convex sets
in more general spaces of continuous functions was proved by V. P. Fonf [15].
Recently V. S. Balaganskii [3] has proved the existence of bounded antiproximinal
convex bodies in any Banach space C(7), for an arbitrary compact Hausdorff space
T. By a result of D. 'Amir [1], a Banach space C(T) of real-valued continuous
functions on a compact Hausdorff space 7 is isomorphic to ¢, if and only if C(7) is
isometrically isomorphic to a space C(w*n) of continuous functions on the
interval [1, ®“n] of ordinal numbers, where ® denotes the first infinite ordinal.

The aim of the present paper is to extend the result from [9] to the vector-
valued case. Similar results for the spaces co(X) and c(X) were obtained in [10]
and [11].

THEOREM 1. If X is a non-trivial Banach space, then the Banach space
C(w*n; X) of all X-valued functions on the ordinal interval [1, ®*n) contains an
antiproximinal bounded symmetric closed convex body.

Classification: 41A65, 46B20.
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We shall consider only real Banach spaces and we agree to call a bounded
symmetric closed convex body a convex cell. Concerning the properties of ordinal

numbers, we shall follow the treatise [24], with the difference that in the normal
Cantor expansion of a countable ordinal o, o=0"n b0 n,,0>k >...k,,
we admit the possibility #; = 0, meaning that the corresponding term misses, .8,
@20+ 3+00+5= »?3+5. We also adopt the convention w’ =1 and we shall
denote by N= {0,1,2,...} the set of natural numbers and by N ={,2,...}=
=[1, ] the set of positive natural numbers.

For the properties of topological spaces of ordinal numbers and of Banach
spaces of continuous functions defined on intervals of ordinals we refer to [23].
For an ordinal number o, we denote by C(o; X) the Banach space (With the
usual sup-norm) of all Yovalued continuous functions defined on the interval [1,a]
of ordinal numbers, It is well known that, equipped with the interval topology,
[1,0] is a compact Hausdor{f space (see [23, p. 151]). The Banach space C(a;R)
will be denoted simply by C(a). The isomorphic classification of Banach spaces
of type C(a) was given by C. Bessaga and A. Pelczynski [4] for countable
ordinals and by S. P. Gul’ko and A. V. Os’kin [16], in general. The author is
unaware whether some similar results are available in the vector-valued case.

The proof of Theorem 1 will proceed in several steps and it is different and,
to some extent, simpler than that given in [9] for the scalar case. The main
innovation consists in the use of an explicit form of an isomorphism between

¢o(X) and C ((Dk . X),. inspired from the construction of the isomorphism between

coand ¢, given in [28, p. 55].
We show first that it is sufficient to prove Theorem 1 in the case C(o*; X).

LEMMA 1. If the Banach space C(w"; X) contains an antiproximinal con-
vex cell, then the Banach space C(cokn; X) also contains an antiproximinal con-
vex cell, for every ne N". .

Proof. Let A=[l,0n] and A, —[of(-1+1,0" ] i=l..n Put
Y, = {xya, : X €C(A; X)), where ,, denotes the characteristic function of the set
A,. It is obvious that Y; is linearly ‘sometric to C(A,; X) and, since A, is
homeomorphic to [1L,0*], it follows that C(A,; X) is linearly isometric to

C(m" : X) forall i=1,...,n. Since every x € C(A; X) can be uniquely written in
the form x = x, + oA x,, with x; = X)X, el’;,fé s U L follows that C(A; X)
s the direct algebraic sum of the subspaces ¥; .The equalities

M o = mase x(c0) = o max (e

1<i<n o €h;

Antiproximinal Sets 49

show that this sum is topological too, i.e.,

) C(A; X)=Y,®...07,.

. No.w,. since the space Y; is linearly isometric to' C(w*; X), it contains an
fmtlpr(.))umlnal convex cell ¥;. We shall show that the convex cell V =V, +... +V, |
is antiproximinal in C(A;X). Indeed, let x=x =...=x,,x —xxl “b.e h

| ‘ X X =X an
element in C(0*n; X)\V andlet y=y, +...+y,,y, =yx, €V,i=1 P t
T D wo Vi AnS Vs sl =plostiooits B0
N, ¢({01 II;I.S”,llx.i yill=llx=-»|} and N, ={I,...,n}\ N,. It is obvious that
th, . i €N, is such that x, ¢V, then, since V; is antiproximinal in Y,
ere exists y/ €V. such that ||x; —y/ / .
i i i y'“<”xi_ ill If
yi=2""(x; +y,) €V, and ||x, = y}||= ’—I 7] NedR T i
> i TV i X =yi=27x =yl <llx; = y; || Letting y; ey, for
i eN,, it follows that the element y'=y/+...+y, €V verifies |
HE S

||lx - y'l||= max {m !
I {max|ix, - yill, max|ix, =/l <lx=yli

showing that x has no‘neares.t points in ¥. [)
Let ¢o(X) be the Banach S
. } pace of all sequences x:IN" - X
lim, ()= 0 normed by e
€) llx[1=sup [Ix(@)].
ieNt
o pIri1 ;);;ie_r to ;:v:if’dlell tedious notation (and taking into account Halmos' advice
, . , in what follows we shall give some i = )
general case can be handled similarly. roo R MRy S Sl
LEMMA 2. The Banach spaces C(o*; X) and co(X) are linearly isomorphic.
Proof. Let k= 3. We shall identify the space co(X) with the space ¢, ( IN*; %)~
. s 3 i ,
of all functions x:IN* — X such that the set {A € N’ :[lx(A)[|= €} is finite for
every ¢ > 0. For x eC(w’; X) define Hx:IN* > X by Hx =y, where

(4a) $(0,0,0) = x(w”),
(4b) y(m,0,0)=x(0’m)~x(0), meN*,
(4¢) y(m,n,0)=x(0’m+on)—x(w’ (m+1)), meN, neN",

(4d) y(m,n,k)=x(m2m+con+k)—x(m3m+;1)(n+1)), mnelN, k e[ll\l+
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First prove that y ecO(IN3;X). For (m,n, k)€ IN?\{(0,0,0)} put £, , =
__gmt _gmene2 _gmmoncked o =0 and let T={t,,,,:(mnk) € IN*}.
It follows that the application h:[l,w’]—> T, defined by. Ww?)=0 and
Wo’m+on+k)=t, , . for (m,n, k) e N> \{(0,0,0)}, is a (strictly increas-
ing) homeomorphism between the compact spaces [1, ®°] and T. Consequently,

the topology of [1,® 3] is generated by the metric
5) e, B)=[h(a) —A(B)

for a,p €[l, ® 2.
Let &> 0 be given. By the uniform continuity of the function x there exists a

real mumber & > 0 such that
(6) lx(a)—x(B)ll<e

for all o,p e[l,0’] with |A(a)-h(PB)]|<?. Choose my, 1y, ko € N such that
27 <527 <5,27% <5, Since |W(o’m)~h(@’)|=2", meN', |h(o’m+ com) —
-—h(coz(m+1))|:2""_”*1, for meN and nelN', and |h(o’m+on+k)-
—h(@’m+o(n+ ))|=2""""%2 for mneN and k€ [N the relations (4) and
(6) yield

{(m,n, k) e N :|yp(m,n, k)| 2 e} < {m,n, k) € N° :m< ky,n<ng, k<ky}.
Therefore y ec,(IN*; X).
It is obvious that the above defined operator I1: Clo’; X ) ¢ (lN3 X) is
linear and, because || Hx||<2||x|, it is also continuous. Since the equations (4)

can be uniquely solved with respect to x, the operator H is a bijection and its
inverse G: ¢, (IN*; X)—> C(w’; X) is given by x = Gy, where

(7 x(w>)=(0,0,0),
x(w2m) = p(m,0,0)+ y(0,0,0), meIN",
x(0 m+on) = y(m,n,0)+y(m+1,0,0)+»(0,0,0), meN, ne IN*,
x(@2m+on+ k)= y(mn, k)y+y(m,n+1,0)+(0,0,0), mneN, ke IN*.

It follows ||Gy||<4]y|l, for all y ec,(IN’; X), implying the continuity
of G. 11
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Now we shall construct a special isomorphism A of C(w?*; X) onto itself in

the following way: For an element x € C(®; X) deﬁne Ax {1, o o X by the
formulae

(82) Ax(m )—x(a) )+27 Y () x(02);
I<i<o

(8b) Ax(@’m)=x(@*m)+27 > (2)7 x(0k)+
<i<m—1

#2723 () m(@ (m-1)+ i), meN';

I<i<wo

(8¢) Ax(0*m+on)=x(0’m+on)+27 Y (-2) " x(0%)+

I<i<m

+27"7 3 (2) " x(0’'m+ i) +

1€igsn-1

4 Qimn=2 Z (=2)"' x(u) m+o(n-— 1)+21—1), melN, neN";

l<i<o

@d)  Ax(@’mton+k)=x(@ mron+k)+27 Y (<2) " x(0)+

I1<is<m

-m=3 ~i . —m-n- =i
+2 > (-2) x(w’m+oi)+2 Y (-2 x(0 mton+2i-1)+

1<i<n I<i<k

+27R N () T x(@Pmton+2%(2i - 1)), mnelN, ke,

I<i<wm

(We adopt the convention Z a; =0.)
| ied
LEMMA 3. The application A defined by the formulae (8) is an isomorphism

of C(0*; X) onto itself.

Proof. A careful examination of the formulae (8) shows that Ax e C(@°; X)

for xeC(O)J;X). This follows from the relations lim (0’m+on+k)=o’
m->w g

lim (03 m+on+k)=wn’(m+l), Iim (m2m+wn+k)=m2m+o)(n+1), the con-

n—>o

tinuity of the function x and the def1n1t10n of Ax given by (8). Th
AR g y (8). The linearity of A is

[ Ax(all< el +4-271x][= (3/2)| %],
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for all o €[1,®’ ], implying
) || Ax]|< (3/2)l1x]l;

ich i i inuity of A.
for all x eC(m3 ; X), which is cquivalent to the continuity 0O

3
Now, for x eC(co3;X) choose o €[1,®”] such that

()| =max {|lx(B):P ell,o’]}. -

Taking into account all the possibilities appearing in formulac (8), we
conclude that (8
(| Ax |12 | Ax(orl| 2 || x ()| -2 il = (L 2) ]l
Therefore U
(10) | 4x)j = (1/ 2)l1x -

. a : 3.
The inequalities (9) and (10) show that A is an isomorphism of C(®~; X)

i 5 f of Lemma 3. U
o C(@°; X), which ends the proo . | .
e Tglc key tools used in the proof of Theorem 1 will be _the follovtvlmsg ;:(/:2
results concerning the support functionals of convex sets in Banach Sp

mmas 5 and 6 below). |
B Let X be a Banach space, X * its conjugate and M a nonvoid closed convex

ubset of X. A functional feX * is said to support M (at x) if there exists X € M
$ : . : t
such that f(x)=inf f(M) or f(x)=sup f(M). A functional f € X suppo}:st
the closed umit ball By of X it and only if there exists X €By such tha

(x)=\f1l. If f #0, then every x € B, satisfying this equality must beiof nom;
4 i.e., ||lxll=1 We shall denote by &7( M) the sct of all support functionals o
one, i.€., = .

B SC}IQ"I(; following characterization of antiproximinal sets appears in [11]. Other

characterizations were given by A.-M. Precupany and T. Precupanu [22]. |
LEMMA 4. A nonvoid closed convex subset M of Banach space' X s
antipr()ximinal if and only if
(11) F(M)NS (By) =40}
: WhereIfBA),( ‘;e”;;eséziiﬁ‘wsi::;; b:rllldq'fj X >Y is an isomorphiSI;n thcn‘ its
conjugate ’A*: v — X" is an isomorphism, (o0, and (A*)_f = ('A":') (s¢j([]\l/j2),
Lemma V1.3.71). The support functionals of a set M ¢ X and of its image

are related as follows:
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LEMMA 5. [13, Lemma 1]. Let X, Y be two Banach spaces and A: X =Y an
isomorphism. If M is a nonvoid closed convex subser of X then

(12) F (M) = 4" (S (A(M))).
More exactly,

(13) geF(AM)) = A g eF(M).

The proof of the existence of an antiproximinal convex cell in C(o>; X)
will be based on Lemma 4, so that we need some information about the behaviour
of the support functionals of the unit ball of C(w?; X).

The characterization of the support functionals of the unit ball of
C(T)=C(T;R), T - a compact Hausdorff space, was given by S. 1. Zukhovickij

[27] in the metric case and by R. R. Phelps [21], in general. The vector-valued
case was considered by V. L. Chakalov [5] and L. P. Vlasov [26].

Let v be a countable ordinal and let A =[1, v]. The dual space of C(A; X)

can be identified with the Banach space A (A;X*) of functions f:A— X*,
S =(f,:a eA), such that -

(14) I ll= 2 1l <o
oeA
The duality between C(A; X) and I' (A; X"} is given by the formula
(15) f)= 2] £, (x(a)),
i o eh

for f=(f,:aeA) in I'(A; X") and x = (x(a): c €A) in C(A; X).

Denoting by B the closed unit ball of C(A; X), we have

LEMMA 6. a) If the functional f=(f,:aeA)el' (A, X)), f#0, supports
the unit ball B of C(A; X) al x € Be, then f (x(w))=|If, || for all o €A and
lx(a)||=1, forall o€ A such that f, #0.

b) Let y €A be a limit ordinal and suppose that (o,:k € N") and

Bk e N") are two strictly increasing sequences in A such that li;no. M
=li{n By =v and o, #B,, forall k,l1 e IN*, Suppose further that two sequences

(a,) and (b,) of strictly positive real numbers and a functional he X", h# 0,
are given. If fel'(A;X") is such that S, =ach and f, =-b.h, for all
ke IN*, then f ¢ (B.).
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Proof. a) Since f, (x(a) <1 fo |- || x (o], forall o €A, it follows

S f =l ll=f )= ZAfa(xm))s

o €A

SN TANEICHE ZA el

o€l
for all o €A, and ||x(a)||=1 whenever fu ®0.

YA, X7 fulfill
b) Suppose that he X, o, BesY eA,a,,b, >0 and f el (A X ) fulh

’ ]

assertion of the lemma, we obtain

a \lhll=11q, ||=a,h(x(a, )

implying f,, (x(a)) =|lf, H,_

and

b kll= Ay, M= —bk_h(x(Bk ),

=|\k|| and A(x(B,)) = —||A||, for all k eIN*. Since both (o)

e ey 1d. for k — o0, the contra-

and (B,) tend toy for k — oo, these two equalities yie

' =-||k||<0. O
diction A(x(y)) =|kl|>0 and h(x(y)) =1l .
Now Jet A be an infinite countable set and let ¢, (A; X) denote the Banac

space of all functions x:A—> X such that the set {A eA:|lx(V)||z e} is finite,

for every € > 0. The normon ¢, (A; X) is given by
(16) ||| = max {[|x(M)|[: A €A}.

3 - 1 i *
The conjugate space of ¢y (A; X) is the Banach space / (A,X ) of all

functions f: A —> X", f=(f,: A €A), such that

(7 1= 2 Mall<e

rel
The duality between ¢, (A; X) and /' (A; X)) is given by

(x): fk (x)\,))s

(18) f®= 2

for f=(f,:he€A), in I'(A;X") and x=(x(A):A€A) in ¢y (A5 X). |
A characterization of support functionals of the unit ball of ¢,(A; X) 18

given in the following.
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LEMMA 7. 4 functional ' f=(f,:h€A) el'(A;X*),'f‘;&O, “supports the
closed unit ball B, of ¢y(A; X) if and only if there exists a nonvoid finite subset
[ of A such that f, =0 for L e A\T" and Ji € (By)\{0} for A el, where
By denotes the closed unit ball of X. 2 (8

Proof. Let f €S7(B,), f#0, and let x €B, be such that ¥ (x)=]f].
Reasoning as in the proof of Lemma 6a), we obtain £, (x(A))=
=[AMNNx) =M, for all A eA, implying 'f, =0 for all A eA such.
that |lx(A)||<1. Since, by the definition of the space c¢;(A; X) the set
I'={X eA:||x(A)]|=1} is finite, the necessity part of the lemmia is proved.

Conversely, let I" be a nonvoid finite subset of A and let f = (fL theA) be
an element in /' (A; X") such that Jfi =0 for A e A\T and f, ed”(B,)\{0},
it Ael. If x, eX,|x,]|=1, is such that Lx)=l1f0, for Aell;, and
x:A—> X is given by x(A)=x,, for A el’, and x(A)=0, for A eA\I then
Sx)=|fll, showing that fes(8,) O

Now we are ready to proceed to: '

Proof of Theorem 1. Take again k=3 and denote by B and B, the closed

unit balls of C(w?; X) and ¢, (IN’; x) respectively. Let H:C(o®; X)— c,(IN’; X)
be the isomorphism from Lemma 2 (defined by the formulae (4)) and let 4 be the

isomorphism of C(w?; X ) onto itself given by the formulae (8) (see Lemma 4). It
follows that the set

(19) V = (HA)—I (BL-O)

is a convex cell (i.e., a bounded symmetric closed convex body) in C(oa ’; X) and

let us show that ¥ is an antiproximinal subset of C((D3 ; ). By Lemma 4, this is
equivalent to

(20) F(V)NS(B.) = {0}
But, by (19), B, = HA(V),implying
1) (B, )= (HA(V)),
which, by Lemma 5, gets
(22) S (V)= {(HA) [ : f €SF(B, )}.
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5
It follows that relation (20) will be a consequence of the following implication
(23) f €57 (B, )\{0} = (HA)' f ¢7(Bc).

suppose that f:(fx:kelNS)el'(ﬂ\la;X*), f#0, isa

In order to prove (23), o
e unit ball B, of ¢,(IN*; X). By Lemma 7, there

support functional of th

n 2 {}\']> > p} f 5 s Ch f}\ 2

Ify e”(B,)\{0}for & eT. It follows
p
* i’ ?\' i
24) (HA)" f(x)= f(HAx)= g Ja, (HAX) (A )

ing | fi lae (4) defining the
for all x eC(o’; X). Now, taking into account the formulae (4)

isomorphism H, we obtain:

(25a) (HAx) (0,0,0) = Ax(0”);

(25b) (HAx) (m,0,0) = Ax(o’m) - Ax(e), meN; +
(25¢) (HAx) (m,n,0)= Ax(@*m+an) - Ax(o® (m+ 1), me N, neN",
(25d) (HAx) (m,n, k) = Ax(@’m+on+k)—

— Ax(@’m+o(n+1), mne N, keN".

" 6b).
In order to show that (HA) f g’ (BC ), we shall resort to Lemma )d
Let A, =(m;,! k; )elN3 and ¢(A;)=0 m +on; +k; if Kji(0,0,0) an
d i J’ 1y

$(0,0,0)= o, for j=1,...,p. Let also A, —{(i)(?» ) k, 213, Ay ={0(A )k =

>1y, and A, ={0(R;):n, =k, =0,m, 21}, IfA # 0 plck]e{l L P}
:O,I’lj_ }, 3=

such that ¢(1;) = maxA,.
we get n R

(HA) f)g, =127 oy
mnj+2k’(2i—1)—>0)2mf+

2
. ; h o, =0"'m;t+
for sufficiently large i€[l, ], where j ,p} is such that

+o(n; +1), for imoo. If A,j=0, A,=0 and jel{l,..
O(h ;) =maxA,, then, by (25¢), (24) and (8c¢), one obtains

CHAY f)e, = (D 2T

Taking into account the formulae (25d), (24) and (8d),
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for all / €1, ] sufficiently large, where o, =0’m; +o(n, D +2i-150’m; +on,

for i>w. If A=A,=0,A,#0 and ¢(A;)=maxA;, then, by (25b), (24) and
(8b),

((HAY ), = (=)' 2772

for all i €[1, @] sufficiently large, where o= (m; — 1) +wi —)(ozmj, for i > .

Finally, if A=A, =A,=0, then I'= {(0,0,0)} and, by (25a), (24) and
(8a), we obtain

((HA)*f)a,- o (_1)'.2_"_3 'f(o, 0,0) >

for all i €fl, @], where o, =00, for i-> .

It follows that in all these cases we can apply Lemma 6b) to conclude that
(HA)'f is notin &#(B,).

Theorem 1 is completely proved.
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