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NUMERICAL EVALUATION OF CAUCHY PRINCIPAL
VALIIE INTEGRALS BY MEANS OF NODAL SPLINE

APPRO)ilMATION

CATTERINA DAGNINO, ELISABETIA SANTI

l.INTRODUCTION

In this paper we investigate the convergence propefies of some quadrature
rules for evaluating Cauchy principal value (CpV) inìegrals ,

(1) J kl
I

x)= 
J
-l
uÐÍ\ax, -l<À<1,

The quadrafure rules considered here are based on optimal nodal interpola-
tory splines (o.n.s), studied by De Villiers and Rohwer [5_gj,

More recently, Rabinowitz[r3l has investigated convergence propefiies of
product integration rules based on o.n,s. These .piin", have *iny of the desirable
properties of quasi-interpolatory splines studied in [9] and ur.d fo. constructing
integration rules in Lll,[2] and [r4]. However, o,n,s have the advantage of being
interpolatory, but they present a certain complexity in their definition.

After the necessary defìnitions and properties of o.n,s have been given, we
consider the following approach for app'ii-ãting (l) by quadrah'.e rures.

.. By subtracting the singularity from (r), and ur.u,ning that J(k;À) exists forall À e(-l,l), we can write the CpV iutegral in the fonir
I

(2) J(tcÍ:?,)= I kQ) Ex@)dx+f (L) J(k;),)= r(ks^)+l(Ì") J(k;L),
-l

where

f(x)-f(t")
x +),"

x-?,"
(3) ÇxG) = g(x; ),') = f'()") x=?v and f'(),) exists

otherwise,0
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' Assuming that the sequence is locally unifonn (l.u), i.e.,

Fç
(8) a!L-!t-< I for all i, n and.a[ 7 = +¡,

\j+t,n:Sjn

where I is some constant ) I , we suppose that the norm

(9) a, =,?,g, (E,*t.n-\,,)-+o as n -+"o.

. Wg introduce now two integers p

integer functions

and ¡-r -(m+ l)-p, and two

0 m-7 j =0,...,ÞL-2

j=tl-1,...,tr-p
j =n- p* 1,. ..,n -I

Pj= t+p
n-m+l j=r-p+1,...,n-l n

Then, for any real-valued function f on J, (f e B(J)), we can define the approxi-
mating function

sj
(10) w^-f (Ð =z "f (1,,)wn@) x e[Et,,,E¡*.t,nl, j =0,1,,.. ,h-1,

P¡

where the functions win ate given by

nt-l

II
k=0
k+i

.x e [-1, €u _,,, J,

' x e [6r,_1,n,4,n_p*t.n)

xe[\, p,r.,,1]

0<i <nt

(1 1) w,,(x) = s, ("),
n-l x -lr-t .nII Þ,

9¡n -\n-k.n
n-m<i<n.

k =0
k+n-i

The functions s* belong to the set of nodal splines studied in [5]. Each s¡
has the compact support l\,_r,n,E,*u.n] and is nodal with respect to f,f , i.e.,

n

s,n(1¡n)=ðu so that lv,f interpolates tof atthe points (r. The flrnctions s¡¡1îre
linear combinations of B-splines of ordu m, qndeach B-spline has its rn + I knots
chosen ftom m+ I consecutive points fromtt[e set of the'points consisting of the
[,, 'plus't.rt-:2 distinct points arbitrarily pláced'in each of the]open intervals
(\¡,,\¡*t,) [5-71 :
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and k is an arbitrary weight frurction subjecl to certain conditions ensgnng

exists for some classes-ài n*"tiont f' fot all l' e (-1' 1)'

If we approx imaÏe l(kg'; in (2) by the rules

that (1)

Au*(/c)g¡'(E'')(4) I(ks)=l(kW"g')= ) 
o

defined in [13], we can write

(5) J(kf;t')= J'(kf;)")+ E'(kf;)')'

where

(6) J,,(kf ;x) = i v,,(k) gx(\,) + 
"f 

(À) J(k;Ì')'
i=0

Weobserve,from(2)and(5)'thequadratureeÍroÍEn&f;t')isthetruncation
effor of the rules (4) are applied' i'e''

E,(kf ;1") = /(kg^) - I(kW'g')'

and onlY if the conesPondingrules

th. o.n,r. using the notation of [13]

product integtation of piecewise-

3, we shall investigate the conver-

5 = [-1, 1]' 0 < Lr 
< 1(r) and their uniform

convergence if / eCì1s¡'

2. OPTIMAL NODAL INTER}OLÀTING SPLINES

we shall now give the necessary definitions and properties of nodal splines

which appear in [13]'
Let m be an integer! 23' the order of the

[l , n -- m)m+l, "'' be a sequence of partitions in 5' where

spline, and let

n

f[ ; Eo, = -1.-\,n < "' 1\nn =1'
(7)

| flF (s) = {g e C(S) : lg(.x¡

constant,and 0<Pl1'

)-g(¡z)ì< Mlxl-x2lv ' Yx1'xz e'S)' where M is a posrtrve
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I(klY,g) =Z ,,,(k) S(E,,),

we prove now that (15) holds for all gefr(s), the set of'Riemann-
integrable functions on 5. For this purpose we need the following clefinition given
in [-aj and the lemma proved in [l l].

,, Le! D designate the union of a finite number of intervals (disjoint or not)
located in 5 and let /(D) be the sum of the lengths of the individual irrteruals of D.

The notation L lu,, I will designate the sum taken over those v,, t'or which
D

E,r.D.
We define the set function Á(D) as

(18) 
^(D) 

= jïX 
'uo I lu,, l.

D

The set functign a(D) is calledsemicontinuous if, for any sequence Dr=D, _>...
with /(D)-)0, for n)cÐ,

,lim 
Á(D, ) = 0, where A(l%)=jgsupl lr,,(k)¡.

LEI/ß44 t. tf ]y_I(kW,g)=I(kg) for all geC(S), then the quadrature

rules converge to the integral, for all g ef,(J) if and onty if^(D) rs semiconti-
nuous.

TIIEoREM 4. Let g en(g and k eZ,(S), If {n,} is asequence of parti_
tions satìsfying (8) and (9), then (15) holds.

Proof. We can write

( 1e)

where

(20) vi,(k) = I Ofr¡ w,,(x) dx.

l=0

(nr-l)¡t-nt

¡=_(m_t)o

_I

We first consider the terms v,,(k) in(l9) for m1i < n _ m_1. Then [7]

(2t) lv,,(k)l<j to,rrfls, (x)ldx <
-l

-11

Z¿o
p

h=1
I v'r*>t I Bet-l)i+ ¡("v) d¡ <

lÐ, 
*l" r* -,r(p + p - t) io, 

l,
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Therefore, the nodal spline approximation W': B(5)--¡' Sn, has the follow-

ing properties:
i. W, islocal in the sense that, for every f eB(S)' for a fixed x e 5 and j

such that x el\ ¡^,\ ¡ * r.n], the value of l\f (x) depends only on the values of f at

most m -r I neighbouring Points of x;

Ir. I(, f (\,,) = .f (\,,);
i\i. W,g= g wheneve t g e P^' where Ç is the class of polynomials of order

m(degreem-l)-
Wercmarkthat,inordertoobtaintheaboveproperlies,wegivethedefining

forrrrula for W,f (x) in a slightly different way from that given in [6]'

If (8) hoids, then [7]

(12) llt,, ll- < B', Vi'n

and, using (8), we have that for all i' kby (1 l)' it follows that

(13) 11,,,ll-<B vi'n'

De Villiers [7] proved the following

THronBv I' Let g e C(5); we define '1 = g-W'g' Then

(14) llr,o ll- < ca(g;m\,),

tvhere c is a constant independent of n and a is the usual modulw of continuity'

F.rom this theorem, Rabinowitl immediately obtained [13] the following

TupoRru 2' Let g eC(S), and k e I, (5). U {t7,\ is a sequence of partí-

tions satisfYing (8) and (9), then

(15) I (kW,g) -> I (kg) as n -) ú'

where

(1 6)

and

(17)

4

I(kg)= I of*> g(x) dx

I (kW, g) = Z r,, (k) S(\,,)'
i=0

The following theorem is a generalizationof the convergence result (15) for

functionsgePC(S),thesetofpiecewisecontinuousfunctionson5[13]'

TIDOREM 3. Let ge PC(S), and k e I, (5)' Il {ß,\ is a sequence of parti-

tions satisfying (8) and (9), then (15) holds'
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L¡m¿e2.Let _l<Ç<1, f eMo(Ç;k) andassumethat

(26) 
]Y-Y's = I(ks)

þr øll g e PC(s), where v,g is any numericar integration rure of the form
(27) t,s=f u,g(E¡,) 6, €5.

i=0

Then a necessqry and sfficient condition for having )r*r,f = I(kÐ is that,

gíven t,> 0, there exist no = no(E),pr €(_1, O,þz e(Ç,1) such that

(28) l/,(þ,,þz;.Ðl<e yn) ns,
where

(29) V,(þ,,Fzis)= I u¡nE(E,).

E,il:,il
We shall apply this lemma for the case

(28) V,g = I(hW/^B) -vn,&) s(Etu) _v p+(k) sG 
^¡ 

= içktr,g¡,
where h is the greatest integer such that E n < C and p is the smallest integer such

that \0, > ( so that in i&W,Ð we avoid the singularity.
We have the following convergence result:

THEORIM 5. Let -l < ( <l and I e M¿(Ç; k). Supp:ose that k e 1,, (S) 0
n c( 1/ð (Ç)), where tro (o is the neighbourhood of the point Ç thus definect

(31) N¡(O ={xlÇ-ô<x<(+ô, ô>0},
and õ is such that Nu (O c J. Then, tf {n,} is a sequence ofpartitions satisfuing
(8) and (e),

(32) içttw,g¡ -+ I(kg) as n ) ú.
Let\. be the node closest to (defined by

(33) ,, = 
1* 'Í 

('-En<Eo'-Ç
t -'[ao,, tf (,-\nn>Er,-Ç,

where \¡,(E o; x the node closest to ( from the teft (rishÐ, and suppose that

(34) l€.-Ç>cmax{((r, -En ,.,), (E,,*,.,_Er)}
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ximating splines considered by Rabinowitz

Riemarur-inte grable functions, it follows that

a, (D) = J1g

is semicontinuous. Hence, the set function

I l]. Since these rules converge for

the set function

I lro, I

D

6

I

where r, = J lk(x) I 4 (x) dx are the weights of quadrature rules based on appro-

-t

A(D) = lim sup I lv,,(k)l< Zto (m-r)(p+p-1)^r(D)
l

_I

n-+û D
n<i3n m-1

h=l

is semicontinuous.
Consider now the sums

n-l ,t

(Zz) S, = I vr(k) g(\r) and Sz = I v,,(k) 8(\,,)'
i=0 l=n-m

For 1< i < m-1, from (8), (11), (13) and by the finite support of s,, ' we have

(23) jlv,,(k)l<c l/c(x)ld-x

By (9) and the hypothesis on k(x),lur(/t)l->0 as n)@, for 1<i<m-I' IT

follows that S, -+ 0 as n-) @' Similarly, S, -+ 0 as t? -) co'

Therefore, the sequence ofrules

(24) ÏUcw,Ð= I(kW,s)-S, -S,

converges fo l(kg) for all contìnuous functions since the sequence l(kw,g)

does, and S¡,S2 -)0 as n+oc. By Lcmma t iI(ltW,Ð) and' consequently'

U(kW,Ðl converge to l(kg) for all g e m($ [11]'

We now discuss the convergence of l(klV,g) to l(kg) when g is unboun-

ded in 5 but frg e I,(5)' For this pulpose' we start by defîning, for _1 < ( < l, the

family of functions

[g e C(5\O , 3G:G is continuous nondeueasìnginl-l'Ç)'\
(25) M d (Ç' k) = 

\ronrrnro^ nonincreas ing in (Ç, l); kG e r' ( 3)' I 
g I < c i n s J'

For such functions we state the following lemma [10]:
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In orde¡ to demonstrate (35), it remains to prove that vrnT)s(80,,)-+0 as

r-+oo. However, this follows from the fact that, by (34), the above term is
9Pil

bounded by c, I Lcç¡d¡ for some positive constant c2. since this quantity
e

converges to 0 as n) *, the theorem is therefore completely proved. ¡
Remark. Theorem 5 holds with a weaker hypothesis on fr, but we have

specified that k must be at least continuous in a neighbourhood of ( in order that
CPV integrals exist.

3, ON THE CONVERGENCE OF RULES (6)

BASED ON QUADRÄTURE (4)

In this section we investigate the convêrgence ofsequences ofrules (6) based
on quadrature (4), we knowthat rules (6) converge to J(kf ;î,) or diverge as rules
(4) do, when they are applied to the integral

(41)

where the function g^ has been <lefined in (3).

We can state the follöwing theorems.

THEoREM 6. For any À e(-1,l), let -f eHt(trô (À)) n ff (Ð and
È e I,(3). If {lI,} 4 a sequence of partitions saîisfying (B) and (9), then

E,(kf ; À) -+ 0 as n -> @.

Proof. If f .H,(tr¡(À))nn(5), rhen g^ epC(S). Therefore we can

apply Theorem 3 to prove the thesis. tl

THEoREM 7. Let f erlu(5), 0<¡r < I and suppose that k€r, (g n c(ffô (À))

and {[I,] is a sequence of partitions satisfuing (S), (9) and (34) with Ç=¡.
Then

(42) E,(kf ; À) -+ 0 qs n-) @.

Proof.If f eär,(5),0<p<1, the function g^ in (41) is not greater than

Mlx-Àlu-' fot some constant M independent of n. Therefore, by Theorem 4,

where we consider Ç= )u, it follows that I(kI\g^) -+ I(kg^) as n + .o. !

9

I

) = I *ç*¡ st @) dx,
I

kgxr(

l

lSince ,teC(Nu(O), lfr(x)l<¿ in N¡(O' so that lk(x)s@)l<LG in

[q - ô, Ç) U G,Ç+ ô] with G defined in (25)' Since G is nonincreasing in ((' ( + öl'

, 4i p+ t,,, þz

(3e) L.öi J k\x)G(x)dx<c*lLcç'
i=p+p 1,-p,, C

by choosing B, sufficiently close to ('
lf t,,, e(Ern,\o*r-,,,], then

P + 1,il

lr,,(k)g(€,)l<C,,J l/c(x)lG(x)d;r'
\Pil

Since there are at most p values, we have that:
Þz

(40) I r< Pcr I rc1*¡dx < s

ç

and the thesis (32) is verified'

8
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for some Positive constant C; then

(35) I (kW^g) -+ I (kg) as 'n -+ @'

Proof. Since Ìçkw,g) results ftom I(kW'g) by dropping a finite number of

terms, the convergence behaviour of both rules is the same for g e B(5)' Hence'

in order to prove (32), we need only to show that (28) holds when V' is içkw'g¡'

For this purpose' it is sufficicnt to prove that

I =. ,- /t-\ -tY(36) I t v,,(k)s(B')lcc' Êz €(('(+ôl'
| ÇtE p,, '\¡, <þz I

since we can prove, in a similar way, that fol p, €[q - ô'O' the sum over the- \¡n '

such that Þ 
' 
I €, <\¡n <(, is lcss than e'

We have

ßi\ltv^(k)s(8,,)l<l tv,,(k)s(8")l+
lç.q,,,,-.q,,,<g, I lçt10"3Ê¡'3\P+P-t'' I

I t v,,(k)s(å,,)l =I,*Ir'
I qo*ruf,u.=P, I

Suppose that n is such that p)- m' and t''is the greatest node < p'' Then

(3 8) t t 8(\,,) f oC"l s,, (x) d't
5r + li,

)d;r<o
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* , 
iii:rid 

L. L, Schum aker, Local sptitre opproximation methods,J. Appr. Theory 15 (1975),

lion in the presence of a singularífy, SIAM J.

interpolatory integration rule based on zeros of
^'lr)ljll,,i,?;!tluu,:",, 
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integrands usíng optínal nodal spline, Rend.
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Tmon¡u 8. Let k e I'(5) and f e Cr15¡, then En(kf ;)")-+0 uniformly

in las n-+@. Hence, rf Í.Ct(3) and keLt(9nDTGl,l),2 thenrutes (6)

converge unformly to the CPY integral J(kf ;ì').

proof. If f ec'(s), the' gx is uniformly continuous for all pairs

(x, À) e 5 x 5. For any À e(-1, 1), by Theorem l, we have

(43) lg^ (t) - Wn7x(x) l< Cco(g t ; mL n).

By the uniform continuity of g^ in 1., ol (g 
^ 

; mL ,,) is independent of l'' Hence

1

(44) l\,(kÍ;}.)l<CrD(gÀ;mL,) Jltt"llù=o(l)
-l

nnifonnlf in l', If keDT(-1,1), then l(kf ;),) exists for all I e (-1,1), which

yields the unifonn convergence of J,(kf;)"). I
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/(s)

J .,r, l) r-r dr <.o' lrls; = g eC(5')

0

on any interval of length /(S).


