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NUMERICAL EVALUATION OF CAUCHY PRINCIPAL
VALUE INTEGRALS BY MEANS OF NODAL SPLINE
APPROXIMATION

CATTERINA DAGNINO, ELISABETTA SANTI

1. INTRODUCTION

In this paper we investigate the convergence properties of some quadrature
rules for evaluating Cauchy principal value (CPV) integrals .

1
(1) J(kF;0) = jk(x)ﬂfi)dx, ~1<A<l,
i x—A

The quadrature rules considered here are based on optimal nodal interpola-
tory splines (o.n.s), studied by De Villiers and Rohwer [5-8].

More recently, Rabinowitz [13] has investigated convergence properties of
product integration rules based on o.n.s. These splines have many of the desirable
properties of quasi-interpolatory splines studied in [9] and used for constructing
integration rules in [1], [2] and [14]. However, o.n.s have the advantage of being
interpolatory, but they present a certain complexity in their definition.

After the necessary definitions and properties of o.n.s have been given, we
consider the following approach for approximating (1) by quadrature rules.

By subtracting the singularity from (1), and assuming that J(k; 1) exists for
all A e(~1,1), we can write the CPV integral in the form

1
@ U= [ (0 g, () det F(M) T M) = L(kg, Y+ £ () J(k; A),

-1

where
Sx)-f(}) e
xX—A
3) & (x)=g(x M) =1 r1(n) x=XA and f'(A) exists
0 otherwise,
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i iti i hat 1
all(l b'ttaty Weight ﬁmctio Subjec o C a [4) d ons ensur g ( )
kiS an arol : n tt ert ’lll .(', ndition ing t
eXiStS fOr some claSSGS Of functlonsf; for all )\4 E(‘l 1)

If we approximate I(kg,) in(2) by the rules
= 1(kW,2,) = . Vin(F) 81 (Gin)
(4) I(kg, ) = 1k, 8:)= Ly

defined in [13], we can write

&) TOkf3A) = J, (30 + E, (K3 2),
h ) . |
\(N6)ere J, (k30 = 2 vin(K) gy (B)+ (W) J(ks 1)
[ o

3 is the truncation
drature error E, (kf3X) 18
2) and (5), the qua
We observe, from (

error of the rules (4) are applied, i.e.,
E, (M) =1(kg) - I(kW, 85)-

: i ding rules
£ and only if the correspon :
les (6) are convergent i, | ion of [13]
Thercforf, ?:c?on; \)Ne shall introduce the 0.n.s. USINg th'e nOt?'tloilzceV\Eise-
(4) convc;ge. nsome con\:ergence results for product integration ot p
and report on

continuous and unbounded in egraud functions.
. 1 t i \ i i the con er-
R ki se of these results, in Section 3, we shall investigate \%

3 <10 and their uniform
gence of rules (6) whenever feH, (3),3= [-1L1],0<p <1V an

convergence if f €C "(3).

2. OPTIMAL NODAL INTERPOLATING SPLINES

hall now give the necessary definitions and properties of nodal splines
We shall no

I inb[wlém integers 23, the order of the spline, and let
let m be an >3,

m \S, ere
’ n ’ et

Y T80 =1 <Bin <o <Bm =k

H = (= S g X1)—8 X X1 —X VXi. X €S 5 Whele M ]‘S a p()SitiVe
TR

constant, and 0<p S 1

3
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* Assuming that the sequence is locally uniform (l.u), i.e., l

- ® ST g in andall j=+l,
§j+l,ni§jn B )

where 4 is some constant > 1 , we suppose that the norm

i A"ergfaﬁ(giﬂ.n“im)%o as n-—» o,

. We introduce now two integers p =..|:m; 1] and p=(m+1)~-p, and two

integer functions
0 F=0,,. . p~2 . m—1 J=0,...,u=-2
pj: j_}'l'—'—l j:“_lsan_p LR .qJ': _]+p _]':H"“].,...,}’l—‘p

n-m+1l j=n-p+1,...,n-1 n j=n-p+l1,...,n-1

Then, for any real-valued function fon S, (f €B(3J)), we can define the approxi-
mating function

9 :
(10) Van(X)ZZ f(E.\in)win(x) xe[éjn’é/#],n]’ j:O,],...,}’l—l,
Py
where the functions w;, are given by -

ni—|

H__E-*_lm_ Wxel=LE s, 0<i<m
k=0 ,‘n"é/m i ln i
k#i

(11) win(x)ZJSin(x)s ilXE[&pJ,n’&n—pHm]
m—1

H F{ili—"—" xe[é” P‘].H’l]

’ n—-m<i<n.
k=0 ""_én—k_n

k#n-i

The functions s;, belong to the set of nodal splines studied in [5]. Each s,
has the compact support (& -, >Ei . »] and is nodal with respect to H, ite.,

5, (€,,) =8 ; So that W, f interpolates to fat the points & - The functions s,, are
linear combinations of B-splines of order my.and each B-spline has its m + 1 knots
chosen from m +'1 consecutive points from the set of the points consisting of the

€, plus-m ~2 distinct points arbitrarily ‘placed ‘in each of the “open el 2
(Sn>8,11.0) [5-71 2 i |
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Therefore, the nodal spline approximation W, B(J)— Sy, has the follow-

ing properties: _
i. W, is local in the sense that, for every f € B(3), for a fixed x €3 andj

such that x €[§ ,,& ;114 ) the value of W, f(x) depends only on the values of fat

most m + 1 neighbouring points of x;
ii' an(&in) - f(ain );

iii. W, g=gwhenever g€ P where P, is the class of polynomials of order

m?

m (degree m—1).
We remark that, in order to obtain the above properties, we give the defining

formula for W, f(x) in a slightly different way from that given in [6].
If (8) holds, then [7]

(12) 5 lleo < Bys Visn

and, using (8), we have that for all i, k by (11), it follows that

(13) lw,, o <B Vi,n
De Villiers [7] proved the following

THEOREM 1. Let g e C(3J); we define rno =g—W,g. Then

(14) 7 ||, < Cor(g;mA ),

where C is a constant independent of n and @ is the usual modulus of continuity.
From this theorem, Rabinowitz immediately obtained [13] the following

THEOREM 2. Let g € C(T), and k € L (J). If {I1,} is a sequence of parti-
tions satisfying (8) and (9), then

(15) [(kW g)— I(kg) as n—e,
where

(16) k)= [ k) g0 &
and ;

a7 1(67,8) = Z 0, () (B0

The following theorem is a generalization of the convergence result (15) for

functions g € PC(J), the set of piecewise continuous functions on I [13].
THEOREM 3. Let g € PC(3), and k € L, (). If {1} is asequence of parti-

tions satisfying (8) and (9), then (15) holds.
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. We prove now that (15) holds for all g €N(3J), the set of Riemann
integrable functions on J. For this , -
i . purpose we i
in [4] and the lemma proved in [11]. i
: locateﬁét 13 demgnat_e the union of a finite number of intervals (disjoint or hot)
n 3 and let /(D) be the sum of the lengths of the individual intervals of D

: l, ' H’l' in

g definition given

gin eD.
We define the set function A(D) as

(18) A(D) = li
(D) lim sup% v, |-

( ) C Dl o D2 Oy

lim A(D,)=0, where A(D,)=lim sup ¥ |v, (k)
h—>oo D,, A

LEMMA 1. i =
L If "lgl;lo I(kW,g)=1(kg) for all geC(3), then the quadrature

rules converge to the integral / 3) i '
i gral, for all g e R(3J) if and only if A(D) is semiconti-

THEOREM 4. Let g e R(3) and k ~
! ) €L (3). If {11} isas -
tions satisfying (8) and (9), then (15) holds. equence of parti-
Proof. We can write

(19) | 107,8)= > v, (K) g(E,,),
where o

1
(20) v, (k)= f k(x)w, (x) dx.

-1
We first consider the terms v, (k) in (19) for m<i<n-m-1. Then [7]

1
&y, Vi ()1 [ k()5 ()] dx <
-1
< P h iea! (m-Dp-m .
SIZA TR 3 By (9 drs
= - J==(m=1)p

2 m-—1
SLZI A”} (m-1) (u+p-1lo,|,
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1
where ®; = I |k(x)| B, (x)dx are the weights of quadrature rules based on appro-

-1
ximating splines considered by Rabinowitz [11]. Since these rules converge for
Riemann-integrable functions, it follows that the set function

A (D)= lim Z |, |
n—» oo D

is semicontinuous. Hence, the set function

A(D) = lim sup Z
) D

m<igsn—m-1

m-1
p
|vm(k)|3|:z A”} (m=1)(p+p-1A,(D)
h=1 \

is semicontinuous.
Consider now the sums

m-1

) 5, =T v (g and S= 3 v () g

d=0 i=n-m
For 1<i<m—1, from (8), (11), (13) and by the finite support of s;,, we have

Ein
(23) I C [ )] dx.

-1
By (9) and the hypothesis on k(x),|v,,(k)|—> 0 as n—> oo, for 1<i<m-—-1 It
follows that S, — 0 as n— co. Similarly, S, -0 as n—>o.

Therefore, the sequence of rules
(24) I(kW,g) = 1(kW, ) =S, =5,
converges to I(kg) for all continuous functions since the sequence I(kW,g)
does, and S,,S, >0 as n—> . By Lemma 1 {f (kW,g)} and, consequently,
{I(kW,g)} convergeto [(kg) for all g e R(J) [11].

We now discuss the convergence of I(kW,g) to I(kg) when g is unboun-
ded in 3 but kg e L,(3). For this purpose, we start by defining, for —~1<{ <1, the
family of functions

g €C(3\&), 3G:G  is continuous nondecreasing in[—1,8),
(25) M, (G, k)= ) : Ful) ~ i
continuous nonincreasing in (G, 1}; kG € L (3),1g|< G in 3

For such functions we state the following lemma [10}:
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LE -
MMA 2. Let -1<(<1, fe M, (& k) and assume that
(26) lim 7V, g = I(kg)

Jorall g e PC(S), where V.& is any numerical integration rule of the form
(27) V.g= >
ng_z uing(éin) éin €.
i=0

gwen €>0, there exist ny = n, (€),B) e(=1,E),B, €(&, 1) such that

28
(28) V. (B1,B2s f)I<e Vn>n,,
where '
29
( ) Vn(Bl’BZQg): Z uing(éin)‘
B|5§m<C
C<&in By

We shall apply this lemma for the case

28 = [
(28) Vig = I(kW,8) ~v,, (k) g(&,, )=V (k) g€ ,,) = I(kW, g),
where £ is the greatest integer such that &, <¢ and p is the smallest integer such
that £, >& so that in I *kW,g) we avoid the singularity. |
We have the following convergence result:

THEOREM = :
o 5. Let -1 <-C <l and geM, (& k). Suppose that k e Li(3)N
5 (8)), where N (&) is the neighbourhood of the point ¢, thus defined

31) ' N3(8) = {xlg-8<x <45, 850,
and & is such that N 3T } ]
B o s(8) = 3 Then, if {T1,} is a sequence of partitions satisfying
(32) * [(W,8) > I(kg) as n— o
Let & be the node closest to € defined by
(33) E‘,*z{éhn Zf' Q—éhnsapn —'C
épn !f C;_E,\hn><t:pn _C.H

wh ;
¢7¢ Sin (&) 15 the node closest 10§ from the left (vight), and suppose that

(34) &7 =Cl> Cmax{(E,, ~&, ), (5, DY
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for some positive constant C; then
3% I(kW, g)—> 1(kg) as .n—> .
number of

i [ by dropping a finite
" Since. J(kW, g) results from [ (kW,g) by
i . s the same for g € R(J). Hence,

(AW, 8)-

terms, the convergence behaviour of both rules i

in order to prove (32), we need only to show that (28) holds when V, is |
For this purpose, it is sufficient to prove that

S v (k) gEa)|<es B2 e(§,6+38),

(36)
C<£pu <&y shy

since we can prove, in a similar way, that for B, €[£-8,8), the sum over the &,,,

such that B, <&, <&, <G, isless than €.
We have
+

Z vin(k) g(E.Am)

C<§pu Séiusép+p—l,u
>, (k) &)

=Z t Z o8
Epspn <Ein B2

Suppose that 7 is such that p 2 m, and &, is the greatest node <f,.

37) Z Vi (k) g(E_,,-,,)\S

‘;<§1)ll <€ <P2

Then

i+ pn
r bl

(38) Y.< Y g [ k@)s, ()

i=p+p Ei—pn

Since k e C(N4(&), |k(x)|<L in Na_(Q), so that ]k(x)g(x)iSLG in
[£—-8,8)U(L,5+0] with G defined in (25). Since G is nonincreasing in (&,5+0],

Ei—p+ti,n Ba
<% kx)G(x)dx<C" [ LG(x)dx <e
(39) Pty Fuitn] CI

LSRN0 gi -ph
by choosing B, sufficiently close to C.
If éin E(&pn 9 E"P+p—l,n]’ then

§p+l,u
v, () gE)ISC [ TR G(x) dx.
épn
Since there are at most p values, we ha;/e that:
2
(40) 3 <pC [ LG(x)dx<e
¢

and the thesis (32) is verified.
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In order to demonstrate (35), it remains to prove that on (k) g(§ ) >0 as

n—o. However, this follows from the fact that, by (34), the above term is
ép"

bounded by c, J.LG(x)dx for some positive constant ¢,. Since this quantity
a

'conv:erges to 0 as n— oo, the theorem is therefore completely proved. O

Remark. Theorem 5 holds with a weaker hypothesis on &, but we have
specified that k must be at least continuous in a neighbourhood of ¢ in order that
CPV integrals exist.

3. ON THE CONVERGENCE OF RULES (6)
BASED ON QUADRATURE (4)

In this section we investigate the convergence of sequences of rules (6) based
on quadrature (4). We know that rules (6) converge to J(kf;4) or diverge as rules

(4) do, when they are applied to the integral

b
(41) I(kg,)= [ k(x) g, (x) dx,

-1

where the function g, has been defined in (3).

We can state the following theorems.

THEOREM - 6. For' any Le(-11), let feH (N;(A))NR(I) and

keL(3). If {I1,} is a sequence of partitions satisfying (8) and (9), then

E,(kf;X)>0 as n—> oo,

Proof. If f eIH,(NB(X))ﬂER(S), then g, € PC(3). Therefore we can
apply Theorem 3 to prove the thesis. [J

THEOREM 7. Let f e H (J), 0<p<l dndsuppose that k e L (3)NC(Ng (L))

and {I1,} 'is a sequence of partitions satisfying (8), (9) and (34) with & =A.
Then

(42) E(K;M)—>0 as n— o,

Proof 1t f e H, (3),0<p<1, the function g, in (41) is not greater than

M|x -\~ for some constant M independent of ». Therefore, by Theorem 4,
where we consider { = A, it follows that /(kW, g, ) — I(kg,)as n—>c. [J
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THEOREM 8. Let k € L, () and f €C'(3), then E,(kf;1)—> 0 uniformly
in A as n— . Hence, if £ €C'(3) and k e L,(3)NDI(-1,1),> then rules (6)
converge uniformly to the CPV integral J(kf ; L).

Proof. If feC'(3), then g, is uniformly continuous for all pairs
(x,A) €3Ix S, Forany A e(-1,1), by Theorem 1, we have
(43) |2, (x) =W, g, (x)|< Co(g, s mA,).
By the uniform continuity of g, in A, a(g, ;mA,) is independent of A. Hence
1
(44) |E, (k3 M)|< Co(g, smA,) [ [k(x)|dx=0(1)
4

uniformly in A. If ke DT(-1,1), then I(kf;X) exists for all A e(-1,1), which
yields the uniform convergence of J, (&3 A). U

REFERENCES

1. C. Dagnino, V. Demichelis and E. Santi, Numerical integration based on quasi-interpolating
splines, Computing 50 (1993), 146-163.

2. C. Dagnino, V. Demichelis and E. Santi, Local spline approximation methods for singular product
integration, J. Appr. Theory and its Appl. 12 (1996), 37-51.

3. W. Dahmen, T. N. T. Goodman and C. A. Micchelli, Compactly supported fundamental functions .

for spline interpolation, Numer. Math. 52 (1988), 641-644.

4.P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York,
1984.

5. 3. M. De Villiers and C. H. Rohwer, Optimal local spline interpolants, J. Comp. Appl. Math. 18
(1987), 107-119.

6.J. M. De Villiers and C. H. Rohwer, 4 nodal spline generalization of the Lagrange interpolant,
In: Progress in Appr. Theory, P. Nevai, A. Pinkus (Eds), Academic Press, San Diego (1991),
201-211.

7. 1. M. De Villiers, A4 convergence result in nodal spline interpolation, 3.Appr. Theory 74 (1993),
266-279.

8. J. M. De Villiers and C. H. Rohwer, Sharp bounds for the Lebesgue constant in quadratic nodal
spline interpolation, Intem. Series of Num. Math. 115 (1994), 1-13.

9, A. Erdeléyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of integral transforms, Vol. Il
Mc Graw Hill, New York, 1954.

i(s)
[ o@ni dr<w} on any interval of length /(S).

*DT(S) = { geC(8):
0

11
Numerical Evaluation

69

10. T. Lyche and L. L., Schumaker, Local
294-325,

11. P, i i
P. Rabinowitz and I, H. Sloan, Product integration in the
Numer, Anal. 21 ( 1984), 144166,

12. P. Rabinowi
tz, On the convergence of closed interpolatory integration rule

Gege”bﬂﬂt?!'pofynwm'afs 1.C
» 4. Comp. Appl.
13, P. Rabinowitz, Nume p- Appl. Math. 17 (1987), 4346,

(1990), 73-83.
14. P. Rabinowitz, Product integration of si)

singular int 7 ]
e e i Loy egrands using optimal nodal spline, Rend.

15.E. Santi, On the evaluati
Santi, ation of Cauchy principal vaiue ; '
. interpolating splines, T, Comp. Appl. Math. 7lp(19‘92)uel—1fflegrah el e
+ L. L. Schumaker, Spline Functions, John Wiley and Sons’ 1981 .

spline mati
piine approximation methods, J, Appr. Theory 15 (1975),
presence of a singularity, STAM 7T,

based on zeros of

vical integration based on approximating spline, J. Comp. Appl. Math. 33

Received September 15,1997

Catterina Dagnino
Dipartimento di Matematica,
Universita di Torino, Italy

Elisabetta Santi
Universita di Decce, Italy



