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ON APPROXIMATION PROPERTIES
OF STANCU-KANTOROVICH OPERATORS®

B. DELLA VECCHIA, D. H. MACHE

1. INTRODUCTION
The Stancu polynomials [14], defined by
. vy ok
(1.1) S, (fix)=3 wn,k(X)f(;), x€l:=[0,1],
k=0,

where

) n x(k,~a P (n—k,-a)
O)n.k(x):(k] ( ) }

l(n,-a)

¥ = x(xra) (x4 (k-1)a), a0,

can be used for constructing a class of Stancu-Kantorovich polynomials [13];

k+]

n+l

(1.2) KIS0=m+) Y 080 [ s,
k=0 k

n+l

These types of parameter-dependent approximation methods represent inte-
resting natural generalizations of the classical Bernstein-Kantorovich polynomials.

Further, the Stancu polynomials are related to Pélya polynomials often used
in Computer Aided Geometric Design (CAGD). (See, e.g., [2], [4] and [5]).
Indeed, they have many remarkable properties desirable in graphics, such as affine
invariance, the convex hull property, nondegeneracy, interpolation of first and last
control points, a recursive evaluation algorithm, a simple subdivision technique, an

e
" This work is based on research done during the second author’s visit at the Istituto per
Applicazioni della Matematica-CNR in Naples, in June 1994,
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clementary symmetry property, a compact explicit formula, a two-term degree
clevation formula and the variation diminishing property. For other properties

interesting in approximation theory see, €.g., {31

In the following, C,C; (j € IN) denote positive constants which can assume

different values in different formulas.

By simple computations we can get explicit expressions for the first and

second moments of K. Indeed, putting Q,-'x(t)=(t—x)i, with i €Ny,

and ¢, x €1, we have
LEMMA 1.1. Let K be given by (1.2). Then

K (Q,5x)=1,

-2
(1.3) KE(Q, ,3%) = g
; 2(n+1)
nnoc+11_1 1
1.4 K (Q, 3 %) = x(1-x)—2 et —— .
a4 (g5 %) ) (m+1)?  3(n+1)?
Moreover, if
OSGSE,
. n
with C a positive constunt, it follows
s e )
1.6 K*{Q, ;x)<C + =2y (X))},
( ) n( 2, x ) 11(H-+1)2 n+_llyn( )
where

18=x €k,
W, (x) =
00 mel LEyon

i " B A . ‘- - ; - . IH
with E, .= [i, ey —] and A an arbitrary but fixed positive number.
: n n ’ A

~ LEMMA 1.2. For g fixed point. x, el and 0<o <—, we have
M- Il

(n+1)? (1+a)

K7 (R;xy)=0,
n-o p(no +1) - (o +1)

(1.7)

where
R(t):=Q, () p(t - Xp)s

nz2
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ana p 0
s a lcunaéa.)i“]‘“c” VIiLA lun F(l‘) G’ l'e')

(1.8) V €>0 there exi
xists d=308(¢g):|p(t—
. (e):lp(t-x)|<e, ¥ |t-x,|<5,
(1.9) V|t -x,]26
0120, |p(t—xy,)|<B, B:= 1y
Proof. Let ) i sl

K (R(1);%0) = K (s, () p(t—x); x4) =

k+1

n+l

=(n+1)k§) ®% , (x,) kf Q,, ()p(t—x,)dt=

n+l
k+1
: n+l
D i B0 fodito) [ @, ) () ples ) =
’-ﬂ—-xo <8 If-—xo’zﬁ -—k— y 4
n+l
=181 (xg) + 8, (x,).

Now, if 0< g
a< = from (1.6) and (1.8) we get

S s 3 i
l 1 (x0)|< €| K} (Qz,xosxo)ISEQ[” ]((bz(xo)q},,(xo)+n")]SSCn".

On the other hand, since

(k+1 2 k 2
nel 0 - (;_xo) +n"2],

by (1.9) it follows

A+ .
SIS Bl (n+ 1) 3 0%, (x,) I (HL —xydt<
%‘*o 28 0 n+l ° a
.'E‘i b 2
SBC[.kZ “)n,k(xo)[(‘s—xoj +n—2ﬂ <
'"--xo 28

< BCS™2 k !
< BCS kZ (D:‘k(xo)(;_'xo) +BCn?.

—-x,[28
n 0
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Now, since [15, p. 56] for x €1,
lm

(1

with C; a positive constant independent of n and xo , we get

S0 M,x) C, )(1+na)

1
—+0L

(1

|S2(x0)lsBC|: 4@ )(l+noc)+n_2};

therefore, for € >0, 4 aao
8 (%) 8, (%) S Cslen™ #1787,

i ion
with C3 a positive constant independent of 7 and xo, from which the assert

lows. [ ' . .
" 0WI\SIOW we can prove the following asymptotic relation of Voronovskaja type

for K. |
THEOREM 1.3. Let f € C(I) be a bounded and twice differentiable function

C
at a fixed point x, €1. Then for OLS—;,

j ) ] )
(1.10)  limc,, {K“(f xo) = f(xg)—f'(x 0)( x°)}=5¢2(xo)f (x0),

(n+1? (1+0)
n(no+1)—(1+a)

with ¢, , =

Proof. By expanding the function f by Taylor formula at a fixed point xo,
we get _
. fO)=P()+RQ), tel,
with

(i) [ ]
rn=% Lo 0. 0, 0=0-x),
i=0 '

and
R(H=0Q, . (1) p(t =),
where p is a function defined in (1.8) — (1.9). Then, from Lenzma 1.1,

. 2 () )
Koy L
=0

K:(Qi_'\.o;xo)=f(x0)+ (1-2xy) f'(xp) +

( )

I, nro+ ) ) 61Gx) }K:(R;x)‘
+5f(%)ﬁ l+a )(n+D 3(n+1)? °
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! C
Hence, if 0<a <=, we have
n

lim ¢, {K:(f;

n— oo

1
2(n+1)

}:

" I+ ;
_—¢ (%) f (x0)+ ""°°71(110L+l) (1+a)+nlinzoc"“ K (R;x,).

Then, by (1.7) in Lemma 1.2 and since £ ~(n-1)", the
n(no+1)-(1+a)
assertion follows. [

Remark. In the case o=0 from (1.10) we find the classical result for
Kantorovich operator

(111) lim 2{K2(f3%) ~ £ (x)} =~ (67 () /(o))"
n— o0 2

The following theorem shows that the order of approximation by K
increases near the endpoints +1 of the interval I. To thls aim, we recall the
Lipschitz type maximal function fﬁ of order 3 introduced in [6] and defined as

ﬂ(x): sup lf(x)—f(t)'

thx, tel lx‘—tlﬁ

, xel, Be(0,1].

For further applications see also [7-9] and [11].
Denoting by o(f;8) the usual modulus of continuity of £, we have

THEOREM 1.4, Let K (f) be defined by (1.2). Then for f eC(/) and

OSal,
n

(1.12) Lf ()= K (f 5 0)|<

Proof. From the estimates

1760- 7011+ 211 02
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and ]

1F () = F(DIS fy (0) (K (Qy,33)?,
working similarly as in [7-9] and [11], we get the assertion. Du e
Now we want to give direct approximation results for K, operator.

aim, putting ||-||=||-|l., the usual supremum norm on I, we need the following
LEMMA 1.5. Let K*(f) be defined by (1.2) and ¢(x) = \Jx(1=x). Then for

f eC*(I) we have

(n(x 1)

(L13)  |f ) - K (fsx)]s— (llf llo +=——7 11" f”llw), 1

with C a positive constant independent of f, x and n. Aoy
Proof. From the second moment of K} (formula (1.6), for

<(M) , we get
o+l : :

|f(x)- K (f3 %)=

— 1l
< K2 (@ 51 S C

On the other hand, since

O =FE) 100 O+ [, () f" @) do,

K;‘( f f’(v)dv:x)} %

and for v €[x, ] or v €[t,x] [1,p. 141]
lt-vl It—xl

02 (v) ¢2(x)’

from (1.3) and (1.4) we have for ¢°(x) 5[

2x’ )S

1%/ " o
0" (x)

{ 1ot ”‘“1) It f“nw},

l|f o +

Lf (x)- K, (f; x)|<

that is (1.13). O
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Now we can prove direct results for X . operator. Indeed, letting

@¢(f1 ). =S85, fly» $(x)=x(1-x),

the second modulus of smoothness of Ditzian-Totik [1], we have

THEOREM 1.6. Let K*(f) be defined by (1.2). Then we obtain for f eC(I)

FCHOOR

(1.14) If XDl sClif ) [ 2D de]
n na+| { !
n(a+ 1)

with C a positive constant independent of n and f.

Remark. From (1.14), when o = 0, we find the analogous result for the
classical Kantorovich polynomial.

Proof. It is similar to the proof of Theorem 3.2 in [10]. First we recall that, if

9, is the best uniform approximation polynomial of degree less than or equal to #
to the function £, i.e.,

B, i=lf -2l 500} (1]
then [1, Theorem 7.3.1, p. 84]

(1.15) 19°%" o <Cr’ol (f;n™),,.
By the choice of
(1.16) 20 < (O o
no+ 1

from Lemma 1.5 and (1.15) we obtain

1Ky ) =Sl SNES (f =B+ || f -2 o o + 11K(22,) = 92

2o, )<

(2")? o2 (fzi) + 22 oz, <

> <
II o =

<217 - 1o+ 2 o224

Cy(na+1)
n(o+1)

otoilrig) msperai(sd) Js

o0
Gy
+7’{Z 192;
j=1

S2E, (f), +

< '/ 4 C2
—gzjfl“ llo + 1924+ 93 ”m}::C4LI +7L‘>
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2i-1
Now, from Markov-Bernstem inequality, by (1. 16) we get for j=

no+1
=

20 r.970 %

and : |
n . 1

L, SCS{Eo(fi)wJ”Z 2! mi(f;f"] }S
i=3 ) =

2-i 2
n G P 0y (fhe dr <

| %
SCS EO(f)oo _[

e
nfo1):

1K ()= flloS

I m¢(f t)w de
t

Finally, we obtain
(1.17)
1
2 f) dr
I 1 ¢(f
”_O‘f_,] =Mt | ,
n(a+1) > (L na +1

n(a+h)

<C wi[f;

with C a constant independent of fand ».
The first term in (1.17) on the right-hand s1de can be dropped since

of | no+1 ’na+l) 2 L
(D‘b(f, n(a+1)} [f’ (0'+1 nuj+l t

nla+l)
i
2 [ '

n 1
no + 1
ﬂ nla+1)
from which the assertion follows. (]

Remark. By the counterexample
xlogx —x = f(x)eC(J),

we remark that the integral term in (1.17) cannot be dropped.

L
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APPENDIX ON STANCU OPERATORS

Let S," be the Stancu 0pe_rat0r definted by (1.1). We recall that [14]
S'::t (ei;x) = e,-(x), i= 0; 1;

x(1-x) 1+no
n 1+a

(L.18) S5 (ey3x)= e (x)+

and

> x(1-x) I+ na
A (QZJ, )—*( ) .

n I+a
Then we have

THEOREM A. Let S be defined by (1.1) and ¢(x)—\/x(1 x) Then Jor
S eC(l)

(1.19)

1+ no
1f =S8 ()l <2Co; (f ] ;

n(l+a) .
with C a positive constant independent of f and n and a)i( f). the second
modulus of smoothness of Ditzian and Totik.

Proof. Following [1, p. 141], we get, for 7 eC*(I), by (1.18)

1Sy (f5%) = f(x)]=

<

s [[ (¢t —u) f"(u) du; x)

Ry

977"
8 % (x) Sgrgy oS )“n(1+a) .

Hence, if we denote by K (f;1)=inf {|| f - g||,, +¢*||¢>g"||., } the second
( g
K-functional [1], then for all f € C(I) we have

S5 = Sl SIS = Do+ 1S5 (F) = Fllo+11f = Fll <

1+ no ! 2 . 1+na
n(1+a, )“¢f o < 2K¢(f’n(1+a))w

and from the equivalence between the K-functional and the modulus of smoothness
[1], we get (1.19). O

21

<2~ Fllo+

Remark. If a=0 in (1.19), then we find a classical result for Bernstein
polynomials (see, e.g., [1, p. 3]).
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ON BICRITERIAL TRANSPORT PROBLEMS

DOREL I. DUCA, LIANA LUPSA EUGENIA DUCA

1. INTRODUCTION

Many mathematical pro

ammin
broblomsn Study,gr g problems shape themselves ag transport

it has been shown that more th
lem 1 has an a half of the
:glpl}can(;ns of linear programming in managing economic processes come to the
ving ol some transport problems. We shall present a model below
Tomatoes are cultivated in the farms 4, .

...4,. Th i -
duction is a,, m e daily average pro-

+++s @y Ware units. The tomatoes are sold in the markets B, B
DELLD

The daily average quantities of tomatoes requested by these markets are 4 bn |
[ERRRE

I\Zare. umts. It is known that the price of the transport of a ware unit from the farm
; .(z €{l,...,m}) to the market B (je{l,...,n}) is ¢y Because tomatoes are
p.enshable, they must be transported as quickly as possible. [et Py (iefl }
; efl,..., :}f?r be the perishability percentage, per ware um’tj, of ﬂ;f‘:. .;VIZre’:
ansported from 4; to B, It i
transported from 4; l(i e{lj,_ i, rf})re?ouzjs-t((:j' etczl,ﬁn(f no}l;f Is]c()) ‘&’1&1:“0}1 ik
—all the ware is soId; |
—in each market, all the ware that is needed is brought; -
—the total cost of the transport is the smallest: ,
— the quantity of the deteriorated ware is the s’mallest.

If x, eR (i e{l,...,m}, j €{l,...,n}) is the quantity of the ware which

n

- Will be transported from 4, to B;, then the model of this problem is

v;min(Z 2. Gy, Zm: i pijx"f}

s i=t j=| i=1 j=1
subject to

Yy =a;, i€{l,...,m}
[

n
j=

—_—
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