REVUE D’ANALYSE NUMERIQUE ET DE, THEORIE DE L’APPROXIMATION
Tome XXVII, N 1, 1998, pp. 81-90

ON BICRITERIAL TRANSPORT PROBLEMS

DOREL I. DUCA, LIANA LUPSA EUGENIA DUCA

1. INTRODUCTION

Many mathematica] programming problems shape themselves as transport
problems. In a recent study, it has been shown that more than a half of the
applications of linear programming in managing economic processes come to the
solving of some transport problems. We shall present a model below.

Tomatoes are cultivated in the farms 4,,..., 4,. The daily average pro-

duction is a,,..., a,, ware units. The tomatoes are sold in the markets B,,..., B

i
The daily average quantities of tomatoes requested by these markets are b,...,b,

ware units. It is known that the price of the transport of a ware unit from the farm
4; (i€{l,...,m}) to the market B (je{l,...,n}) is cj. Because tomatoes are

perishable, they must be transported as quickly as possible. Let p; (i e{l, .., , M},
J€{l,...,n}) be the perishability percentage, per ware unit, of the ware

transported from 4, to B;. 1t is requested to find out how much ware must be
transported from 4; (i €{l,...,m}) to B; (j €{l,...,n}), so that:
— all the ware is sold;
—in each market, all the ware that is needed is brought;
— the total cost of the transport is the smallest;
— the quantity of the deteriorated ware is the smallest.
If x, eR (i e{l,...,m}, j €{l,...,n}) is the quantity of the ware which

~ will be transported from 4;to B;, then the model of this problem is
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i=1
x; 20, (i, )) e{l,...,myx{l,...,n}.
i Its
Because in solving problems of the above type we need notions and resu

\ i aders.
that are related with the classic problem, we shall remind them to the re

2. PRELIMINARIES

A transport problem (of the cbst type) is a linear programming problem of

the following type . _
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Usually, a transport problem is given in a table of the following type:

¢y Cin 4
Canl Chin'{s am
b, b,

A chain is any system of cells of the type

(il’jl)a (il!jQ)’ (£2!12)’ (i2a j3)7
Or . v . I3 » 0
(i1, 1) G 1)y (oo fa)s (B30 2)s o

i i i in the
such that any pair of two adjacent cells are situated either in the same rct)w. t(‘)lr 1nd B
in i ate
d by three cells from the chain is not s1

same column and any system forme hain i
the same row or in the same column. If the last cell of the chain is in the same row

or column with the first cell, the chain is called cycle.

fl
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A transport plane X = (x;) 1s acyclic if the cells that correspond to x; >0

do not contain any cycle.

It is known that, if a transport problem admits a transport plane, then it
admits at least an acyclic transport plane.

If in an acyclic transport plane X = (x;) the number of elements x; >0 is

m+n~1, then the plane is called undegenerated transport plane. If this number is
smaller than m+ n—1, then the transport plane is called degenerated.

If the transport plane X = (x;) is degenerated, we add to the set
{7 ell,...omyx{1,...,n) :x; >0} the elements (k, h) e{l,...,mx{l,...,n
such that the new set has m+n -1 elements and the cells that correspond to it do
not form a cycle; this set is called a selection set generated by X and it will be
denoted by X-sel. Obviously, we can generate more selection Sets. The set of the
selection sets generated by the plane X will be denoted by Se/ ).

The acyclic transport plane X = (x;) is called potential relative to X-se/, if

there exist real numbers Upseos Uy, V5., v, which satisfy the conditions
(1) v~ <c; forall (i,7)e{l,...,m}x {L,...,n}

and

2) vy~ =c; forall (i,))eX-sel,

If the real numbers Up,..ot, and vy,..,v, satisfy (1)~ (2), then the

> %m

m+n—tuple (u,...,u,,v,,..., v, ) is called potential system relative to X-sel.

ERCTE)

THEOREM 1.1 (see, for example, (12]). The transport plane X is an optimal
plane if and only if there is a set X-sel c Sel(X) such that X is a potential plane
relative to X-sel.

3. BICRITERIAL TRANSPORT PROBLEMS

In the following, we call a bicriterial transport problem of the cost type,
denoted by (BTP), a bicriterial programming problem in which the objective

function is a vectorial function f = (f1,/3):R™ > R?, givenb
1,2 Y

fi0=Y

i=

c.].x,.j , forall X= (x;) e R™,

n
i

.

fz(X):

i

Z c;x,.j-, forall X' =(x;)yeR™,

m n

~.
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and the constraints are

x;=a, i€{l,...,m}

Lx; 20, ie{ly..,m), jell,...,n}

The figures of the bicriterial transport problem (BTP) are given in a table of
the following type: '

0 2 : 1 2 a
[STER4T SEm Cin Cn ;
. 2 1 2 a
le cm] | Com cﬂm it

by - ba

The elements x;((i, j) €{l,...,m} x{1,...,n}) will be written in the corres-

ponding cells, under the numbers c,;- : C,f

The set of the feasible solutions will be denoted by S. Any element X €S
will be. called a transport plane.

A transport plane X €S is called Pareto (or min-efficient) if there is no
Y €S such that :

LD f (X)), kell2),

at least one of the inequalities being strict.

Because any Pareto transport plane is a Pareto solution of a multicriterial
linear programming problem, the properties of the Pareto transport planes set are
the same with the properties which we presented in {5] and [6].

Considering the multicriterial transport problem as a multicriterial linear
programming problem, for the determination of a Pareto transport plane,
we can use any algorithm given in [1]—[3] and [8]-[11]. If, in addition,
x; (i, j) €f{l,...,m} x{1,...,n}) must be an integer, the algorithm given in [7]

allows the determination of all the equivalence classes of Pareto transport plane.:

We can also solve a multicriterial transport problem by using the r-balance points
(see [4] and [6]).

The particular form of the multicriterial linear programming problem which
corresponds to the multicriterial transport problem allows us to elaborate specific
algorithms, as we can see below.

On Bicriterial Transport Problems

N - :
he following, we shall denote by (7,) (k e {1,2}) the transport problem

nm n
. k
min 3" 3" cts,

' i=1 j=1
subject to

H
) I A ie{l,...,m
j=1

D Xyw Bt el s )

i=|
x; 20, (i,j)e{l,...,m}x{l,...,n}.

Let X = (x;). be an acyclic transport plane and X - se/ €Sel(X). For each

k k k L
€{1,2}, let (1 ,...,um,v,",...,v,f) be a solution of the system

k
v, —u,.k =c;, (i,]))eX -sel.
We denote by

a:j‘. =vf —u,." ~c,;f,
for each (i, ) e{l,...,m}x{l,...,n} and £ €{1,2}.

THEOREM 3.1. Let & e{l1,2}.

If X €S is apotenti
o T if potential plane of problem (7,),

3
(3) af;:vj'f'—u,.lfhc,;f<0 '
Jor each (i, j) e{l,...,m}x{l,...,n}\X-

. sel, then X is a Payet
bicriterial transport problem (BTP). A i

Proof. If X is a potential plane for
for problem ( ;). From (3),

for (7,). Hence X is a Par
(BTP). m

. problem (7,), then it is an optimum plane
it follows that X is the unique optimal transport plane
eto transport plane for bicriterial transport problem

THE =
OREM 3.2, Let X =(x;) be a potentigl undegenerated plane Jor

problem (1)) and let X - sel e€Sel(X). Let

A, ={(, ) e{l,...,m} x s\ X -sel 10} =0},
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If there exists (r,s) € 4 such that o, >0, then there is a transport plane
Y having the property that

fH(0)=fi(X)
and

f,(0) < f,(X).

Proof. We introduce the cell (r, s) in the transport plane X. This will have a

cyele C. We travel through this cycle, starting from the cell .(r, 5) anthfr d?notf?r 1&2
chl by + and —, alternatively, starting with th(? cel.l (r, f) which getsﬁ e : :hin.cy(ﬂe
cells of the cycle denoted by + form a semichain L', and the cells o /

denoted by — form a semichain L7. We analyse the elements x; of the transport

plane X situated in the semichain L~ and let
0 = min {x; (i, j))el §,

' i in the
which is contained, for example, in cell (u, £). From the elements x;; situated

. e
semichain L~ we subtract the number 0, and to the elements x; situated in

i ot in the cycle
semichain L' we add the nurr.lber 8. The other elements, which are n '

C remain the same. We obtain a new transport plane Y to which we attach the set
Yisel = X -sel U{(r, s \{(u, 1)}

Let us denote by M the set of the cells which are not in the cycle. Then we
have

L= Y eyt > Gyt >, ey =

G,j)eM G, nel* (i, ))el”
1 : l _‘-9 =.
=Yy vahxy Yy +8)+ Z_c’f(x‘f )
G j)eM Goyelt G.pnel

:fl(x)—e'alrs = fi(X).
Computing f,(Y) we obtain

L= X gyt Xoerit X Gr -

(,jyeM (i,jyel* (i,)yel”

T Z C;X,-j-i— z C;(x,jﬁ-e)-}- Z C;(x,.j—e):

G, )eM (i, el (i, )yel”

= f,(x)=0-0l < f,(X)

2 2 .2
and let (u;,...,u, ,v;,..

Put
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Hence, transport plane X is not Pareto.

Using Theorems 3.1 and 3.2, we can present the following algorithm for the
determination of a Pareto transport plane for bicriterial transport problems.

ALGORITHM

1. Using the potential method, we determine an optimal transport plane
X =(x;) for problem (7}) and we attach to it the set X-sel e,Sel (X).

SR v!) of the potential system

2. We determine a solution (u,,...,u,
| .
vy~ =c;, (i,]) €X -sel

3. We compare to zero éach of the numbers oc:j =v} —u,.] = ,;., (G, )) efl,...,mx
x{1,...,n}\ X -sel. K

a)lf a,;. <0, for any (i, /) €{l,..., m} x {1,...,n}\ X-sel, then X is a Pareto
transport plane and the algorithm stops.

b) If there exists (r,s) e{l,..., m} x {1,...,n}\ X-sel such that o' =0, then
we go to step 4.
4, Put ]
Ay ={G, )y e{l,...,mx{l,...,n) ray; =0}
5. We solve the system

2 .o
v~ =c¢y, (i, ]) €X-sel

.,v;) be a solution of it.

2 .2 2 Dy T 1
6. We compare to zero each of the numbers Oy =vi—u —c;,(i,j)ed,.

Ay ={(i, ) e 4} rog >0,
7. We compare 4% to the empty set @,

a) If 43 #0, then the transport plane X is a Pareto transport plane and the

algorithm stops.

b)If A4} =@, then we go to step 8.

8. We choose a pair (7,5) € 4 )2( such that

al, =max {a] (i, j)eAL}.
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h
9. Put B={(r,s)} U X-sel. The set B will have a cycle C. We travel throug

i by + and —,
this cycle, starting from the cell Er, s§ al}llcil }ngetie?}?;e+1tssigrclel¥he ); Al
o i ith the cell (, s) whic ) ¢
altelm th:?e/él Ztﬁugfn\r)lv 1a semichain L™ and the cells of the cycle denoted by — form
cycle den

a semichain L . We analyse the elements x;; of the transport plane X situated in tl'xe
semichain L~ and let 8 =min {x; : (i, /)L } which is contained, for example,t :l
cell (u, £). From the elements x; situated in the sel.nickfam+L w:dstl:;t?:; beere
number 0, and to the elements x; situated in the semichain L= we a

i i . We obtain a
0. The other elements, which are not in the cycle C, remain thf s:tr:e4
.ew transport plane X to which we attach the set X-sel. We go to step 4.
n

Example. Let us consider the following numerical example:

ol 3 6 65 8 6 8 102
oy 1 2 8 4 4 5 136
il 3 4 5 6 9 8 172
151 | 122 83 2

48 0 0 54
X=103 33 0 0.
0 89 83 0

We have Xsel = {(1,1), (1,4), (2. 1),(2,2), (3,2), (3,3)},
(ul,ub,ub, v}, vy, vy, v4) = (0,2,0,4,3,5,6),
\ 71 ~N\ ra N ”~ Y Vs AY /f\’4\, /3,1), (3’2)’(3,3)}’
Ay ={(1,1),k1,{),t1,4), (2,1),(2,2), (2,4, (
(ufaugﬁugyvlz’vg‘avjzavtf):(oa—l’*Sa 3’ 1933 8);

AL ={(2,4),(3,1,(3,9)}.

We choose (r,s)=(2,4). We obtain 6 =54, (u,7)=(1,4), and

102 0 0 0
X=| 49 33 0 54|
089 83 0
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We have
Xsel={(1,1),(2,1), 2,2), (2,4),(3,2),(3,3)},

(ufsuzzsH3Z,V|2,V22,V32,V42):(0,‘1,—3, 35 13 354)9

Ay ={(3,1)}.
We choose (7, 5) = (3,1). We obtain 6 = 50, (u,1)=(2,1) and

102 0 0 o
X=| 082 0 54|
49 40 83 o

We have (u,z,uj,uf,vf,vf,vf,vj):(o, 3,1,3,5,7,8) and 42 = 0. Hence

102 0 0 o
X=[ 08 0 54
49 40 83 ¢

is a Pareto transport plane. We have J(X)=(1437, 1496).
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