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OF NONLINEAR EQUATIONS CONTAINING A
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x” of a nonlinear equation

(D F(x)+G(x)=0,

where F, G are defined on a closed convex subset D of a Banach space £, with
values in a Banach space E,. The operator F is Fréchet-differentiable on D
whereas G 1s only continuous there.

We use the Newton-like method given by

) X, =X, + A7V (F(x,)+G(x,)) (n20)

to generate a sequence {x, } (n>0) converging tox" . Here 4, is a linear operator
approximating F'(x, ) (n=0). Sufficient conditions for the convergence of (2) to
x" have been given by several authors ({11, [2]. [31, (4], [5], [7], (8], [11] and
[12]). Recently, Citinas in [5] has used (2) for

(3) A, =F'(x)+[x,_,,x,:G] (n21),

where [x, y; G] denotes a divided difference of order one of G on D for x,y € ).
This way Citinas has managed to show that the order of convergence denoted by

l'h@_,z
)

&

A lies in{ . Citinas has also showed that iteration (2) is faster than
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iterations appearing in [1], [2], [4], [5], [7], [8], [11] and [12] for choices of A,
other than the one given by (3).
In [3] we used (2) for

4) 4, =[xn,xn»1;F]+[x,,_2,xn;F]—[x,,_z,x,,_,;F]+[x"_,,xn;G] (n20),

1445
2

,1.839...]. Sufficient conditions were also

Finally we show that our error bounds are smaller than all earlier ones ([1],

(21, [31, (41, 51, (71, 181, [9], [10], [11]and [12]).

2. CONVERGENCE ANALYSIS

We need the following definitions on divided differences [4], [9], [10].

DEFINITION 1. An operator denoted by [x0, 3 H] belonging to the space
L(D,E)),Dc E i (the Banach space of bounded linear Operators from £, to £, is
called the first order divided difference of the operator #7: p—y £, at the points
%0, Vo €D if the following hold:

(5) (@) [x0, yo; H](y, ~Xg) =H(J’o)‘H(xo)a for x, #Yo.
(b)IfHis Fréchet-differentiable at %o €D, then [x,, Xo; H]= H'(x,).

‘DEFINITION 2. An operator denoted by [x9,¥0,20; H] belonging to the

space  L(D, L(D, E,)) is called the second order divided difference of the
Operator H: D¢ E, — E, at the points %05 Y02y €D if the following hold:

(6) (a) [xosyoazo; H] (Zo =~ X;) =[y0azo§ H]—[XOsyO; H].
(b) If H is twice Fréchet-differentiable at x, € D, then
1
[xo,’_anx()QH]=5H"(xo)-

We can prove the following semilocal result concerning the convergence of
iteration 2).
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THEOREM. Assume that there exist points x,,x, €D and nonnegative real

numbers R, € and m such that:

(@) U(x, R) = {x €Elllx-x <R} D;
(b) the operators F, G have divided differences of order one denoted by

[x,y; F] and [x, y; G respectively for all x,y €eU(x,, R);

(¢) the linear operators A, are invertible Jorall n>0 and

”An_]Bn”Spn“xn—l _‘xn—2“_+ qn ”xn _xn—l ”= Sn (HZ 1)’

Jor some nonnegative sequences {p.}:{9,} (n=1) with

Pntq,se (n21),

where

Bn:'[xn—l’xn;F]-I-[xn»l’xn;G]_An—] (”ZZI),

(d) the points x, x, satisfy |2, = xo||< m
(e) the following conditions hold: -

(10) sz—xlﬂﬁllx, =Xl

with x, given by (2) Sor n= 1,

(11) r=me<l1,
m
(12) RZ;EI e
(13) B =r%, (k=0),
where {s,} is the Fibonacci's sequence
(14) So=8 =1 8, =8 +8_,, (k20).
Then:

(1) the sequence {x,} (n>0), generated by (2) is well defined, remains in
U(xy,R) and converges to a solution x" el (xo,R) of the equation

F(x)+G(x)=0;
(1i) the following a priori error estimates hold

mt
== —__ (n21),
(15) [|x xn”Sr(l—t:") (nz1)
where
2 1++/5
(16) t,=r%, (n21) and ¢= >
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(i) moreover, if there exists a nonnegative number g such that

(17) I4.'BlI<g<1, (n21),
where
(18) B, =[y*,xn;F]+[y*,x,,;G]—'A,,, (n>1),

with y' satisfying
Fy)Y+G(" =0 and ¥ €U(x,, R),

then
x =y*.
Proof. We shall show by induction that, forall n>2
(19) x, €U(x,R),
(20) ”xn _xn—l”S”xn—l —xn—2”
and
¥3)) by =, 1< 2, .
¥

Elo; n ; 12 flations (19)21) follow from hypotheses (d) and (¢). Suppose relations
19)21) hold forn=2,3,..., k, where k> 2. Since Yo X, €U(x), R) and 4,

1s invertible, via (2) we can compute x, ;. Using (2), we can obtain the

approximation
(22) F(xk)+G(xk):F(xk)+G(xk)—F(xk_,)—-G(xk_,)—Ak_,(xk—xk_,):
=([xk-1,xk;F]+[xk_1,xk;G]~Ak_.)(xk—xk_,)=
=B, (5 =x, ) (by(9)).
By (2), (7), (8) and (22) we get
(23) me-—xkllSSkak—xk_.llSSka_|—xk_zll-llxk—xk-,ll-

From the induction hypotheses, (23) gives on the one hand, that
e =2 1< S0yl —x, =
k-2 X ll=r L lx, X<l —x L

that is, (20) forn = k + 1, and, on the other hand

X = < m m
% xk”_rk‘Q”xk_xk~l”srk—2rk—'7:_'r/(:
i in

which shows (21) forn =% + 1.
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We must also show that x, ,, €U(x,, R). Indeed, from the induction hypot-
heses and the triangle inequality we get

k
m
o1 =2 ISy =2+ e = )l + o+ lx 4y _xk”s72 re <R
/=1

We must show that sequence {x,} (n>0) is Cauchy. We have that the Fibonacci's

sequence {s, } (k> 0) given by (14) can also be written as

N =% [1+2J§]k*‘_[1__2£]**' 2?/1?[1+2J§jk :% o

Therefore, forany k21, j=1 we get

[ N LY P AR A R AR AR L0 4 _xk+j_'_-1||5

mk+_}—| mk+j—l LAl
<— n<— r¥y
Foick Foizk
Moreover, by Bernoulli’s inequality we get
o pk+1_ph k2 gk €k+j»~l_£
Sl

24) ||xk+j—xk|]S$rT|-l+r Sohr B w4y

ot RS e l1r20e-1-1] FrsG-nee-n-1 7
m ¥ =R SO
<ZpB 14y B 4 /3 +..tr i Jz
r
h o=y
¢
m =1-p V5
=—r‘/§———;— (k=1).
r e
s
1-7

By (11) and (24) it follows that the sequence {x,} (n>0) is Cauchy in a
Banach space [y, and so it converges to some point x" eU(x,,R) (since
U(x,,R) is a closed set). By letting n— co in (2), we obtain F(X))+G(T) =0,

that is, x" eU(x,,R) is a solution of equation (1), Moreover, by letting j — o in

(24) we obtain (15).
Furthermore, to show that x™ is the unique solution of equation (1) in

U(x,,R), let us assume that y" eU(x,,R) is a solution of equation (1) too.
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Using the approximation
(25) Ko =V =0 -y = A7 (F (v, )+ G(x, )) =
=4 [F(x,)~F(y') + G, ) - GO ) =4y (x, -y =

=40 B (x— ).
and hypothesis (17), we get

(26) e =514, B, - y7)1<
<8l -yl < ghx, -y < g R,

Since 0< g<1, by letting £ — o in (26) we get kl;u)rzo X, =y". But we have also
showed that kli_l)r; X, =x". Hence, we deduce x =y

That completes the proof of the Theorem.

Remark 1. Let us consider some special choices for the linear operators 4, . Set
O A =[50, yy3 P12, Fl=Th, 2, 3 Fl+[v, 2,5 G] (n20)
where the sequences Dntslz, 3, (), th,} eU(x,,R) (n> 0) are given by

In =Xy 40, (X, =X,), 2, =2, | 4B, (x,_, ~%) 2y =x, €U(x,, R),
Vn =X Y (X, —x,)  (n20),

for some linear operator sequences {o,}, {B,} and {y } (n20) with Y, #0
(n20). Assume that there exist nonnegative numbers a, b, ¢ and a real sequence
{a,} (n>0) such that for all XV, vaw,zelU(x,, R)

(28) s ([x, y; F1=[v, w; FDIIsollx=v[+]ly-w|),
(29) 4, 4li<a, <a (n>0),

and

(30) 14, [x, y,2; G| <,

where [x, y, z; G] is the divided difference of order two of G on U(x,, R). Then
from the approximation

G(x,,)—G(xn;,)_[vn_,,xn_];G](x,, X, )=
=([xn—]=xn;G]_[vn—lsxn—];G]) (xn _xn~l)=

:[vn—l’xn—-l’xn;G](xn _vn—l)(‘xn ‘xn—l)ﬂ
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7

hypotheses (28), (29) and (30) we get

31) 45 (G(x,)—G(x,_ )=V, _1, X,.13 Gl (x, —x,_ DI
Sellx, = v 11X, =X, |1
SC(”)C" _vn—l|'+||YMl| ”xn—l —xn—ZH)”xn —xnf]” (7121)

The sequence {a,} (n=1) can be computed as follows. Let us assume that
there exist ¢ 20 such that
(32) 145" ([x, ¥; G1= Vo, x5 GDIISE(llx = v || +11y = X, 1),
for allx, y, vy, x, €U(x,, R). Then from the approximation
45" (A, = 49) = 45" {{x,, ¥, F1+[By, 2,3 Gl =B, 2,- 13 G1+
[V, s %5 Gl=x0, o3 F1=[hy, 293 F1+ho, 215 F1=[vo, %3 G}

we can get as before N Tl
where i i

a, =b(l1x, = xoll+ 11y, = yoll+ 21, = Boll+ iz, =20 |+ 12, =241

+C (v, = Xoll+ 1, =x%0lD)  (m21),

and @ <1 if the function a(r)=(116+2¢) ¥ +(b+2¢) m satisfies

33) a(R)<1,

since g <a(R) (n>1)

i i -1 exists (n>1
It follows from the Banach lemma on invertible operators that A, exists ( )

and — \
14, 4o i<(1-a,) "

=(1- =(1- E T th
cannowset @, =(1—a,) " (n=1) and a=(1-a(R)) ', Moreover, from the
We " i

approximation
(34) Fx,)=F(x, 1)~

—([x _]5yn—I;F]+[hn—lazn—l;F]—[hn—lszn—l;F])(xn —xn‘])

_([X X 'F]_[-x Iay —I;F‘]_[xn—l,Zn—];F])+[xnflﬁzn—2;F])(xn_xfl*])’
e n-1""n> n- -
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hypotheses (28), (29), (30) and (32) we also get
(35) 45" (Fx, )~ P, ) -
_([xn—l’yn—l;F]+[hn—l’Zn—l;F]—[hn-hzn-Z;F])(xn —xn—])}”S
Sb(”xn —yn~]”+”Zn—] —Zn—2”) ”xn _xn—lnS
<b(ll, =x, il +llo, _y+B, | 1 22 =, 4 1) 1, =, | (n21).
Define the sequences {dn},{S"}(nzl) by .
(36)  d,=(b+c)a, and 8, =a, Cellyall+a i, fi+B, 1] (n20).
Then from (2), (35) and (36) we get for n>1 '

(37) Hxn+1—anS(d,,Hx,,—xn_]]|+8n”xn_]_xn_zu) e, <%l (),

Hence we can set
(38) P, =8, and d, =q, (n20).

We can impose additional ' conditions on the sequences {a } {B,} and {v,}

20 i ¢
(nz0) .that will guarantee that btz ). v} eU (%, R). Let us assume that
there exist nonnegative numbers o, B, and y such that

lell< e, |IB,l[<B  and vall<y (n20).
Then, from the approximations

Y =% =(x, =X+, (x,_ , —x,)

Vi =X =(x, T YL -x,)

Zn—' = T T — X .
we can have it X1)+Bn(xn“l <
(39) B mn—l
1%, = x, 1+ flet, Hx,,_l—anS?i:E' l;+?rn_l,
(40) v, =x01+ly | I,y —x, <2 HE-_I r+
and T

7

R LT ) 3 g xS

=
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Hence y,,v,,z, €U(x;,R) (n>0) if the right hand sides of the last three ine-
qualities are respectively bounded above by R.

Finally, the uniqueness of the solution x" can be extended in the ball
U(x,, R,) for R, > R provided that the following inequality holds

(42) g=(0+C)R+(b+c) R +2mc) (1-a(R)™ <1.
Indeed, as in (25) we get
By = (I %3 F1= %02 303 FD+ (1Y, %,5 Gl =[x, v, G]) +
+([x0,v0; G1=1v,,x,;GN) +([h, ,z,_,; F1-[h,,2,; F]).
Composing both sides of the above approximation by 4;', we easily deduce that

A;'B; (in norm) is bounded above by the expression in the bracket of inequality

(42). Hence, as in the proof of the Theorem, we deduce x” = v

Concluding, we note that we have showed: if hypotheses (c) of the Theorem
are replaced by (27), (28), (29), (30), (32) and (42), then the conclusions of the
Theorem hold in the ball U(x,, R,).

Remark 2. Iteration (2) reduces to (4) considered in [5] if the linear operators
{4,} (n20) are given by (27) for o, = 0, ¥.=1,B,=0,z, =0(n20).
Using the notation introduced in [5], we can set

) e =Ml x ol MKy -5, (r22)
Hence our error bounds (15) will be smaller than those in [5], say if (see also (38))
(44) <MK and g, < M(§+ K) (n=2)

and our initial error bounds ||x, ~ x,]| are not greater than those in {5]. The choice
of p,,q, given by (38) shows ihat conditions (44) will be true if a,,a,,B, and
Y, (n20) are “small” enough.

Remark 3. Moreover, iteration (2) reduces to (1) considered in [11] if the
linear operators {4, } (n>0) are given by 27) for G=0,a, =1,B, =1,z, =x,
and h, = x,_, (n>0). Using the notation introduced in [11] we can set

{ AN 2 i o
(43) En *‘?OHX k! _xn—I” ”'xn~j ZA,,,.]H'FAD{}‘,]X" _"’LH~I” (I’ZZI)

(RN
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Hence our error bounds (15) will be smaller in this case, say if
(46) pn < ”xn—3 —xn—]” and qn SPO (’12 1)

Observations similar to those made at the end of Remark 2 can now follow

Remark 4. Furthermore, iteration (2) reduces to (5) considered in [3] if the

linear operators {4,}(n>0) are given by (27) for
a,=1,B,=0,v, =7, 2y =Xy, b, =x, , (n20).
Using the notation introduced in (3], we can set
4D 2 =(etarllz,_~x, i, - |+ (e +e)llx, ~x, || (n21),
Hence our bounds will be smaller in this case say if
(48) nSc4+02Hxn_3—x,,_]H and g, <¢ +c, (n21).

‘Remark 5. O . 1
Bl o ur results extend to include perturbed Newton-like methods of

(49) Yui1 =X, ~ A7 (F(x, )+G(x, ) -w, (n>0).

(n20) overestimates the derivative x, — A F(x,), is always larger than the cor
responding Newton iterate, In such cases, a positive w, (n20) correction term jg
appropriate. Let us assume that there exists a rea] sequence {u,} (n>0) such that

(50) 4, )= 4, (w,_ i<, (n>1).
Moreover, there exist rea] Sequences {/, }, {m } (n> 0) such that

(51) Uy (4, ||, _, ~Xa-alltm, %, ~x,_ )1, X0l (n21).
Set

Py =p,+¢, and 9n=q,+m, (n>1).

i1 Rate of Convergence

Furthermore, assume that sequence {w,} (n>0) is null. Finally, assume that the
rest of the hypotheses of the Theorem are true with Dus G, i‘eplacing p :q

' - ‘noYy
(n21), respectively. Then it can easily be seen that the conclusions of the

Theorem will hold for the perturbed Newton-like method generated by (49).
Indeed, for example, approximation (22) will read Sl ‘

Fx, )+ G(x )+ 4 (w,) =[B, (A (W )= A (W )] (%, “Xey) (n21)

and by using the proof of the theorem, (50) and (51) we can arrive at (23). The rest
is left to the motivated reader.

Remark 6. The selection of the points {y,},{z,},{v,} (n=0) can be
generalized to include a wider range of problems. Let 7,,7,, T;:DcC E, - E, be
given operators. Define for all n>0y, = 7;(x,), Z2,~2,_,=h(x,), z_,=x, €
€U(x,R)c D and v, =T;(x,). For this choice of 1, T, and T, iteration (2)
becomes a Steffensen-like method ([8), [9] and [10]). Moreover, operators 1.7,
and 7, must be chosen so that estimate (7) be true. See how this is done, for

example, in Remark 1.
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