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THE APPROXIMATION BY SPLINE FUNCTIONS
OF THE SOLUTION OF A SINGULARLY
- PERTURBED BILOCAL PROBLEM

C. MUSTATA, A. C. MURESAN AND R. MUSTATA

The singularly perturbed bilocal problems admit exact solutions having both
slowly and rapidly varying parts. There are thin transition layers where the
solution can jump abruptly, having as effect strong oscillations of the approximate
solutions obtained by the method of centered differences, spectral methods, etc.

We define a class of spline functions of degree 5 which are appropriate for
these problems and obtain sufficiently good approximate solutions, with attenuated
oscillations on the subintervals where the exact solution jumps rapidly.

Let n2>3, neN, and let '

(1) Apt=0=t "=yl 1 < ISP L g

a division of the real axis. .
Denote by % (A, ) the set of functions s : R —s R verifying the conditions:
1° seC*(R);
2° S|1k €%, I, =1, _, ) k=12, n;
3° sy, e%,sl/ﬂﬂ €R, Iy=[t \,ty), I,,, Tl stai),

where @2 denotes the set of polynomials of degree m.

As concerns the behavior of functions in this class, one can prove

THEOREM 1. Every function s e S (A,) can be written in the Jorm

3 ) n
s()=) At'+ Doa,(t-1,), teR,
i=0 k=0
where

3) . Z a, =0, Zaktk:()a
] k=0 k=0

' AMS Classification Code: 34B15, 34A50.
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and

0 if
(t—fk)+={ if <t,, k=0,1,...,n.

=t if r21,,

Proof. Let sed%(A,). By definition s (1)=0 for all 1>b so that

) N3 51
s ) = a,(t—t, )= : ’ . &4
kg() e(=0)=0," for all ¢25, showing  that 2.4 =0 and

n k=0
>, =0. 0
k=0

THEOREM 2. Let f:R >R be such that

@ S@)=a, fO)=B, Frt) =2y, k=0,1,2,0.,m,

} = == = . .
vhere t, (1, = Lt,=b), k=0,n, are the knots of the division A and o, 3, A,
n 5
k=0,n are given numbers. , ,
Then there exi an jon [o% ) sz
| ’re exisls a unique function Sy € F(A,) such that

(5) Spl@)=o, s,()=P, si(1,)=h,, k=07

Proof. Using the re
obtains the system:

(6)

presentation (2) and imposing the conditions (5), one
Ay +Aja+ 4,0° + 4,0° =

N n—1
Ay + Ab+ 4,07 + 4,6° + Z a,(b-1,)° =
k=0

2446438, 420- 3 a (1, ~1,) =0, =0
k=0

Ofn 5 equations With n 5 un.knOWnS AO Al AZ A a a a
3 5 ) EERIE] [N
] he SyStem (6) haS a unique SOlutiOH lf

homogeneous system (obtained f, —
Ora:B:OJK'IO, 20
solution, / J=0,n) has only the null

ne

and only if the corresponding
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If s e %(A,) verifies the homogeneous conditions (5) (i.e., with a =3 =0,
A, =0, j=0,n), then
b

b
J s de= 9 () (s (8)) dt =

b
sO@) sl [sm@)-sD(0)-de =

Ly . iy

=-Zn: [ s@@sm@yde==Y ¢ [ s(t)de=

k=14, . k=1 tyo|

==Y L5 -5t 1= 0,

k=1
where ¢, =s(5)(t)|,k ,k=1,n

It follows that s (#) =0 for all ¢ € [a,b]). Since the restrictions of s to the
intervals 7,,1,,, are in 9% and seC*(R), it results that sV (+)=0 for all

t € R. Therefore s" e 9 and, taking into account the equalities s"(z,)=0,

k=0,n, n=3 (verified by hypothesis), one obtains s"(¢) =0 for all # € R. Since
s(a)=s(b)=0, it follows s(f)=0 for all reR, which is equivalent to
dy=A =4,=A4;=0and a, =0, k=0,n. O

COROLLARY 3. a) There exists a system B={s,,s,,8,,5+...,8,} of func-
tions in &5 (A,) verifying the conditions:
(7) so(a): 1’ so(b):(), S(’)’(tk)=0, k=m

5;(a)=0, s,(b)=1, s{(t,)=0, k=0,n
S (@)=0=S8,(b), k=0,n; S;(t,)=8,, k,j=0,n.

b) If /:R—>R verifies the conditions (4) and s, € S(A,) verifies the
conditions (5) then

) sp()=so(8)- f(a)+5,(1)-f(D)+ Zn: Sp()-f"(1), 1eR.

k=0

Remark 1. By Corollary 3, &% (A,) is areal linear space of dimension n + 3,
and the system 28 is a basis in &% (A,).
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Let us introduce now the notations:
) %4(An)::{g:[a,b]—>ﬂ?, abs.cont.on L, k=17
and ¢ e 1,14,p] :
10 4 g’
(10) %,,(An.-{geW;(A,,):g"(m:f"(zk

)5 k=6;’l},
(11) PVZ‘,‘f,D(An)::{gEPV;

THEOREM 4. If 5 e (AN

s (8,):8(t,) = f(a), g(b) =/ (8)}.

_ W{ff)D(A,,) and f €W, (A ), then
(12)

VIS <l foratt gewy (a )
(13) b llsi” - F D s = p o o s o F(A,).
Proof. a) We have
b
0<llg D=5 = [ 160 1) -5 (172 g -
b 9 b b i

= [Le“ WP [ (s ypar iy [sD 009 ()= 59 (1)) 4y
But I a

b

s @)= (y1ar -

a

b
=g (t) [g"’(t) —s’”(t)]L’; i IS(S) (t) [g,u(t)___sm(t)] dr =

H

k

I SO [ (1)~ s"(1)]- ds =

-y

L f [g"'(r)—s'"an-dr_:(-é c,J-0=o,

)
where ¢, = s [,k v k=12, n
Therefore

. 0<llg |13 = s 2
showing that (12) holds, ' b
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b) Taking into account the;identity

b b
(14 IsW = fOE = [ @O-sO@OP de+ [ 1590 = £ () de +
b
+2 [ 1520~ OF [ (0= O 0P e,
the inequality (13) will be a consequence of the equality

b
T= [ @ 0-sP Ol (0 -/ 01de =0,

Integrating by parts, we get

T={s“) - Oy - @I -
b

=[O0 =P (- [s0) - f ()] de =

=~5: Co () (L7 ) = SN = sy (G- )= " (8, )D = 0.
k=1

Therefore
(15) s = Ol =l = s+l - O
implying
Is§? ~ £y <ls® - 9L, O

COROLLARY 5. If f W, (A,) and s; €F5(A,) is given by (8), then the

Jollowing relations hold:

(16) A1 = s 15+, =PI
(17) s < 1A @1
(18) (TARE AP FAS
Proof. Since (15) holds for every sed%(A,), one obtains (16) by taxing
s=0 in (15).

The inequalities (17) and (18) are immediate consequénces of the equality
(16). »

Remark 2. 1° The property expressed by the inequality (12) is called the
minimum norm property.
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2° The property exprimed by the inequality (13) is called the best
approximation property.

APPLICATION

Consider the singularly perturbed bilocal problem
(D) e"=f(t,y,y"), tela,b], €>0
y(a)=a, y(b)=8.

One supposes that the problem (D) has a unique solution.

THEOREM 6. If the exact solution y of the problem (D) belongs to W, (A )
and s, €F(A,) is the function given by (8), then

(19) 1y =P, V2 (B=a)* * - ||a, P2y, k=0,1,2,
where

NAl=max{t,,, ~#,:i=0,n-1}.

Proof. Since y'(t)-s)(t)=0, i=0,n, by Rolle’s theorem there exist
A €(t;,1,,), i=0,n—1 such that

y”'(t,“’)—s;'(z,.“)): 0, i=0,n—1.

Applying again Rolle’s theorem, it follows the existence of the points
¢f3 et t12), i=0,7-2 such that Gk

YOy =5 (1Py=0, i=0,n-2;
obviously that '
60 ~ 1P )< 2)|A,
and

162 =t <3)A, 11

Since for every- t €[a,b] there exists iy €{0,1,...,n—1} ‘such that
lt—t,.(ol)IS2HAnH, one obtains:

@) =st 0= [ D)~ 9 (u)) du

)
io

<
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! 1 |t 112
< I il Ve -j[y“)(u)—s;‘”(u)f du| <
(D (b
1o 1o
t 1/2
<2180 | [ @@ -s ldu| =

K0!
i

0
4)
= 2B,y =P <72 18,172 1y 01,

(the last inequality follows from Corollary 5, (18)).
It follows that

1y =5 <5214, 12 1P

Similarly, for every t €[a,b], there exists j, €{0, 1,...,n—2} such that
|t—t, 1<11A,]l, implying

¢

[ by () ~sy(w)) du

Jo

Iy (1) =)= F

t

Therefore o n
1y =551 <V2 1A, 1M1,

showing that (19) holds for k=2. i

Taking into account the equalities y(a)—s,(a)=0 and y(b)-s,(b)=0, it
follows (by Rolle’s theorem) the existence of a point ce(a,b) such that
y'(c)=s,(c)=0. Then, for every ¢ €[a,b] one has

i

| Dy ()= s ()] du

4

<(b-a)lly” —s!ll. V2 (b-a)[A P 1y,

y'(O-5,0l= B

showing that
1y' =5} lle S V2 (b= a)- 1A,y

i.e., (19) holds for £ = 1, too. ‘
Finally, for every ¢ €[a,b] one can write

[ '@ - s, Gl du+ (@) = 5, (@)

a

Iy(t) s S_v(t)‘=
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<(b-a)lly' - sl <

[ 1y () -5}, () du

<21 b-a) 18, Pyl
implying
17 =5y o <2 (=a) 1A, Iy, O

COROLLARY 7. Under the hypotheses of Theorem 6 we have

im ||y* "Sﬁk) l.=0, £=0,1,2.

1Aul—0

In the following, we shall approximate the exact solution y of the problem
(D) by the function s, given by

(20) 5, (1) =5, (8)- (@) +5,(1)- y(B) + D S, (1)-y" (1), t €[a, b].
k=0
This choice is motivated by the fact that the parameter €> 0 is multiplied by
y" and s, is determined by the interpolation conditions on the second derivative of
y on the knots of A, which give gy"(#,) =es,(¢,),i= 0,n.

We shall use the following notations:

y(t) =y, v =y, i=0n
s,(8)=u, s,(t)=ul, i=0,n

e(t) = y(t) - sy(1), e’(t)=}’(t)—s;(t), t €la, b]
e,.=y,.—u,:; e, =y —u, i=0,n

Using the representation (20), one obtains

x|

Q)=o) ot s (DB Y S, (0) St vy} 120,
k=0

w =55 (4) 0+ si (1) B+ D0 S(t) S (1, yes vk ) i=0,n.

k=0
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2
PROPOSITION 8. If the real-valued function F(t, u, v) defined on Dcla, bIxR

of o ’ S
has continuous partial derivatives éi,—i, then the unknowns u,,ul,i=0,n, can
u

be obtained from the system

@) =) ks (B Y S )l yeo i) 120
k=0

u = sy () o+ s (1) B+ Y Sp(t) [ty yid 1=0m
k=0

Proof. By the hypotheses of the proposition we have
f(tk,ykayl'c)zf(tkuk +ekau}'c +el’¢)=f(tk>ukaul'c)+
+af(tk> 'kaéj()e +af(tk’§kﬁE.\;()e;{, k:@,
ou £ Ou

where e
min (4 , %y +€; ) <&y < max (U, , U, +e; ), k=0,n

min (u) s uy +e,) <& < max (u} ,u; +€;), k=0,n
Replacing these in (21), we obtain the system:

u; =s0(t,-)0t+s1(ti)B+Z Sk(ti)'f(tk>ukaullc)+Eis i=0,n
k=0

ul = sy (1) or s (1) B+ D Si()- S (et 1)+ B, 1=0.m,
k=0

having 2n + 2 equations and 2n + 2 unknowns u;, % ,i=0,n.

By Theorem 6, the quantities

: i & of (t,, &, 8%)
Ei:ZSk(ti)'af(tk,aik,&k)ek+; S’f(t")'”jl(kaévk 2
k=0 =0

o BB, g T eBetD
Ei=kZ=0Sk(ti)' ou ek+kz::0 K\ oy

have the order O([|A,II"?).

Eliminating E,, E{,i = 0, n, one obtains the system 22). O
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10
A NUMERICAL EXAMPLE

We consider the following singularly perturbed problem:

{—sy"(x) ty'(x)=0, x e[-1,1]
y=H=1, y)=o,

g

x+1 2

This problem has a unique solution y(x)= d el which display
4 TR S one

I-e¢ :

boundary layer at the point x = 1, of the length O(g)

Considering the solution Y, (x) of the reduced problem

{y; (x)-0, x e[-1,1]
Yy (—1) T 13
the following estimations holds (see [6]):

X

-1
ly(x)—yr(x)]SC(8+e 5 )9 XE[—I,I],

where C denotes an arbitrary constant independent of x and ¢
The exact solution s of the form |

V(X)) =y, (%) +u(x),
where u(x) will be approximated by

u(x)m{o’ x €[~1,1- pe]
V(x), X E[I_PE: l]:

and the function W(x) is the solution of the following problem:

{—sv”(x)+v'(x) =0, xell-pe,1]
v(1-pe) =0, v(l)=—1,

Thus, 1 i
We approximate the solution Y(x) by the solution Y, (x) on the domain

1,1~
[ PE], so that the error would be O(¢). In this way we obtain p = In~1 We
approximate the solution y(x)u i i
pon the domain [1 - pg
We use clements from the s e iy (I

. pace of spli g '
approximate v(x). plme functions &%(4,) in order to
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In Table 1 we present the error of approximation of solution y(x) by
y.(x)+s,(x) upon the domain [l pe,1] for different values of € and n. The

linear system for determining the spline s, is solved by using a direct method.

Table 1
" lq—l 102 107 | 10™
3 1310 48107 Ll -
- N 6710 46- 107 -
- N N 1210 17-10°°
— = = ¥ 14107
= - - = 12-10°

In Fig. 1 there are displayed the exact solution y(x) for ¢ = 10~ denoted by a
continuous curve, and the approximated solution for » =3 denoted by a dotted
curve.

Fig. 1

—

00993 0984 099 0.99% 7 0957 0998 099
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