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ON THE TRANSFORMATION OF THE SECOND ORDER
MODULUS BY BERNSTEIN OPERATORS

RADU PALTANEA

Denote by B, : C[0,1]— C[0,1] the well-known Bernstein operators given
by '

i . ! !
! B X):= i >
n(f) (X) [zzo: pnl(x) f(}’l)

n
where p,,,(x)::[lj x’(l—x)”",f €C[0,1],n e, x €]0,1]. Let e, €C[0, 1},

g (x):=x", (x €[0,1]),i=0,1,2. For any f €C[0,1] and any 4 e(O, %] consi-

der the second order modulus of continuity:

Oy (fsh):=sup{|A% £ (x)], x &[0, 1~ 2]},

where A} £ (x):= f(f(x+2h) = 2.f (x + B)+ f(x). Let

(B h
Ci=sup sup sup 0, (B, (/). 2
nex feCl0,]] he((),l] 0)2(fah)
3

S # lincar

C. Cottin and H. Gonska obtained in [2] that C is finite and, moreover,
C<4.5. This upper bound has been recently improved by J. Adell and A. Pérez-
Palomares [1], in the form C < 4. On the other hand, D.-X. Zhou [5] obtained that
C>1. In fact in [5] it was proved the stronger result that Bernstein operators do
not preserve the Lipschitz classes Lip, (o, M), o €(0,1]. The aim of our paper is

to give new improved estimates for the constant C.

THEOREM. We have 2 < (C <3,

AMS Subject classification: 41A36.
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Proof. Fix neN, h 6(0,%] and x €(0,1—2h). We have forany f €C{0,1]

Z l
(D) 313 £,8,(N M= ¢ A4,

where
¢ = Azhpnl(x)’ (OSlSn).

Since B, (e;)=¢;, (i=0,1), it follows
) > ¢=0 and D 1¢=0.
1=0 1=0

For p,qe(0,1) consider the function W(¢):= (1+p) (1-¢)" "+
+(1=p)' (1+¢)" " =2, €[0,n]. The following properties are immediate:
W(0)>0, W(n)>0 and the derivative of ¥ is increasing on [0, n]. If we take

pi= h andq:: ,WehaVe

x+h 1-x—-
n
¢ =(J (x+h) (1-x-h)"" "W).

Then ¢o> 0 and ¢,> 0. From (2) it follows that there is 7, 0 </ <7 such that ¢,;<0.
Hence there exist ¢ e(0,n) such that W'(z)<0, (t €[0,7,]) and Y'(t)=0,
(¢ €[0,t,1). From these it follows that there is the decomposition {0,1,...,n}=
=JUJUK suchthati<j<kforalliel, jeJ, k €K and

¢, 20, (iel), ¢, <0, (jeJ) ¢ 20, (kek).

Now denote

Azzz c,.-z kck-z ic,.-z [

iel keK iel kek

We have that Z ic, / Z c; belongs to the convex hull of the set /. Then it

iel iel

is smaller than Y kc, / > ¢, which belongs to the convex hull of the set K.

kekK kek

Consequently, we have A > 0.
For any j €.J denote

Z(k j)e,, and v, =——Z (J=D¢

LI
Akel( Al
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and consider the linear positive functional G ;1 Cl0, 1> R, given by

G,(f)=uY ¢ f[ ) S ck-f(fj, ( eCI0,1)).

iel keK

One immediately obtains that G, (e,)=1 and G, (e )= J In {4] we obtained the

followmg estimate: If G:C[I]—> R is a linear positive functlonal if 7 is a closed
interval, if xel and if G(ep)=1 and G(e,)=x, then we have |G(f) f(x))<

[14— h™ G((el —Xxey) )] 0, (f,h), for any feC(I) and any h>0. Conse-

quently, we have

3)

6,1 -£(2) |s

<l1+1nc ( J )2 :
5|l i (e o) o, (f,h), (feC[0,1]).

On the other hand, from (1) and (2
= lu iy ) (2) one can derive the following repre-

(4) AyB(f)(0)=3 (-~ )[G (f)- f( ﬂ;(f e C10, 1.

JjeJ

Also, we have

2 ()<Y 2p, (x+h)<2,
jeJ jeJ
Therefore we obtain

a2 B, (f)(x)|<[2+ WA (20;) G [( L0 ]anz(f,h),
= :

jed

- (f €C[0,1)]).
. N
J
We have G, (ez)—ez(;) =Gj((e| —ieo) J Then, by using the well-

! 1-
known relation B, (e, )(x) = x? +¥, we deduce from (4)

2
Y (=¢c})G, [(el——eo) J ALB (ey)(x)=2n? 22 <2h2

jeJ
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Consequently, we have

|ALB, (f) (03 @, (f, 1)
1
— ,1—2h).
(f eC[0,1], he(O, 2),xe(O | )

This last inequality can be extended by passing to limit, for all A 6(0, 2}

and x e[0,1-2h]. Therefore we have proved the inequality
0,B,(f) By <30,(f,h), feCl0,1] hell, 1.

Conversely, for any integer n>1 consider the function f, €C[0,1], defined
as follows: f,(0)=0, f,(1)=0, fn(k-2'j)=1—2_j, if 1<j<n and k is odd
such that 1<k <2/ -1 and f, is linear on each of the intervals of the form
(i-n27",i2™"L

We have

(5) 0)2(f,,,%)=1, (nz1).

1
i — 1-2h)]. We have
Indeed, let the function g(x,h):= 1A7;,f,,(x)[, h E\:O, 21, x €[0, ]

g(O l) =1. Let (xy,h,) bea point in which g reaches its maximum. Since g is a
’ 2 - 3

i i we
piecewise linear function with regard to each of his arguments, 1t f(illowts t?}?; .
can consider that at least two of the points X, Xo +hy, xy +2h, belong to

1 =L ) have
n ; = 27",1=-27"], we
M:={k-27"|0<k<2"}. Since f,(f) 6{2,1} when ¢ €[ ]

g(xg,hp) $1 when xq, %o +2Hh e[2™,1-27"]. Then it remains to consider thz
case wherex, =0 or x,+2h =1 Let, for example, xo=0. If we suppOS~
xo +hy, € M, we have x, +2hy=k-27" with k odd. Consequently, g(xq> ho—);
={0-2f, (xo +hy)+ 1-27"|<1, which is impossible. Then it fo-llows Xq —hi;
X, +hy =k-27 and x,+2h =k-2'"/, where 1<j<n and k is odd. In t
case g(x,,Hh,) =1 Then(5) is true.
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Let n>1 and denote g:=22". We have B, (f2,)(0)=B,(f,,)(1)=0 and

v 1) .9 E N q &
sl (Y (For 3 (7 (1)e
22k

- q o g o
227 3, (](1—2‘”“):2“'(1—2‘"")[2"—Z[ ] :
0<k <q k

2 Jj=0 .]2n
2% [k

q G+D2"-1( g » (g
We have | | <27 Z for 0<;j<2""' and hence Z =
]2 k j=0 j

k=j.2"

g2-1( ¢ q/2-1
SBu ), ( )+(qj52""z(qj+(q)sz"""+(qj.
j=0 JZ" Q/z k=0 k q/2 Q/Z

Therefore

|02 B, (f2,) (0)]22(1 —2"'"])[1—2"’ _(qq j -2“’J :

h2

Since lim ( 7 ] 277 =0, it follows
ql2

qg—>x©

Sup |A2]/2B22u (on) (O)l = 2

ney
and, therefore, the left-side inequality in the theorem is also proved.
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