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A ONE-STEP SPLINE METHOD FOR THE NUMERICAL
SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
3% 7

ADRIAN REVNIC

1. INTRODUCTION

The spline numerical methods are' an accurate instrument for obtaining
global approximations of the solutions of ODESs and their derivatives. Due to their
high order, they often fail to have good stability properties, so they become useless
for an important class of ODEs such as the stiff problems. In [5], it is constructed a
. spline method which has stability properties that make it suitabje for solving stiff
problems (stiff stability). In the following, an A-stable method of a similar type is
obtained.

Consider the initial value problem

(1) Y= £t (1)
. y(O) =Yo

for t€[0, 7], f ec’([o, T]xR™,R™), p>0. Assume that / satisfies the Lips-
chitz conditions ’

) IF @ w) = £9 v < Ll - v

for all £ €[0, T'], u,v €R™ and q=0,...,p.
In (2) we define @ in the following way:

f(q+l) :=fx(ll) +fx(‘l)f, q:O,...,p-

St
Define on [0, 77 the uniform mesh

A:0=¢, <y, <..<t, <t,=T,
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Ny, (D)
n>1 with the step h:=t,,, —t, forall k=0,...,n—1 Denote =y ()

for k=0,...,nand j=0,...,p.

2. THE FIRST APPROXIMATION PROCESS

Let y be the exact solution of the problem. By integrating from f to ¢ we get

3) Yty =y, + [ f O p(x)) dx
and for f:=1,,,
Yot)=y, + _‘ 7 (x, y(x)) dx.

We  consider {3 |k=0,...,n; j=0,...,p+1}, approximations for

{'y('f) (¢t )k=0,...,n; j=0,...,p+1} defined in the following way:

[ £ H () d,

g

4) Vi1 =Wt

where H, ., is the full Hermite-interpolation polynomial for the knots #,,7, .,

and the values {y,&”},:o  SprEin respectively Wk Yilo, . pernHy 182 polyno-

mial of degree 2p +3 and for x €[z, ;] it can be written in the following

form: _
p+l

p+l
T SU ()
(5) Heo (=2 g7 + 2 &y (DT
j=0 j=0
where the full Hermite fundamental polynomials g; are defined by
(6) g (1,)=8; 48y, i=0,1, m=k, k+1 and j1=0,..,r+l
i im-—

Let A f pt2
w(t)y=(t=4,)"" " =1,0)

ORI
W)= T ok AL

\
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The 2p + 3 degree interpolator becomes

k+1

Ar k+1 p+1
H (=2 gy =23 g.(1).
i=k j=0 i=k

Now we can consider the following Taylor expansions for the polynomials g_,(_)

3 u[(‘
+1 J J
. £y eli=r)" 2 (g,-(r)j
® u (1) ,Z:o U (1)
Substituting (8) in (7) and taking into account (6), (7) becomes
K+l prl j [ (-n

©) An0=3 403 = ’“ZU“,“’( 1 J

Wy j=0 = u, (1) .

and, after rearranging the summation order and indices in (9), we obtain

' k+l p+1 prl (7 _ ! 1—j
(10) H,H,(t):_ (“r(f)z (ﬂ (¢ l't,) d _J_( 1 ] ]im,

dt'~ 7\ u (1)
Comparing (7) and (10), we get an expression for the full Hermite fundamental

polynomials
p+l , l_fj
g,(0= um}:[](’ ) d,{ 1 ]
Jj n s

ar' =\ (1)

or, in an equivalent formulation,

+2-§ -1 p+2
» p MO (t-1) D,Hz%,-_,((t—r,-) j
G0 ey @ J! ,Zl (pr2—j-nr " w(t)

with D, ::% i=k, k+1, j=0,..., p+1.

We define the approx1mat10ns ya, for j=0,..

., ¥, in the following way:
(12) j)_(J+l)_f(j)(tk+]9yk+]) _].:0,...,7'.

The equations (4) and (12) form the first approximation process.
Obviously, pi/ =y, for j=0,...,r+l
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THEOREM 1. The implicit non-linear system in y,,, given by (4)12) is
uniguely solvable, provided h is sufficiently small.

Proof. Using (4)-(12), the system becomes
yk+l :yk it
fnt pl ‘ . pe W _
+ J f{xa Z gkj(x)ylgj) + 810 Vi +Z gk+]j(x)f D(tear> ¥V )| dx
{1y Jj=0 J=1,

Consider the application 4:R™ - R",

A(u) =y, +_

]
-

]

uf pal .
X, g/g(x)J_’lEj)""gkn_o(x)u"’ gk+|j(x)f(1)(tk+|su)J dx.
- =

J=0 g

+.f f(

Then the system becomes « = Au. Consider u,v € R™. Applying the norm proper-
ties and the Lipschitz conditions (2), we obtain

fevl

| Au— Av||< L J. €4 1,0(2) flo~vildx+

53

tk+lp+l

L[ 3 8 NS W, 0= S s vl

iy j=1

p+l

< Lhige 1 ol Nu=vI+ L0 lIgy il lu=VIS

j=t

p+1

S(Lhngk srolle + 2R g, uHW} llu— vil.

j=1

By ||-|l, we intend the uniform functional norm on the interval [f,,¢,, ]

Denote

p+1
LA :(”ng‘O”w +L Z “gk+l|/”oo] Lh’

j=1
s0 we get
|| A= A< Ly flu=vll.
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We only have to prove now that ||g; ., < ¢;» where c¢; are constants inde-
pendent of 4. Using (11), for i=k, k+2, j=0,...,,p+1
2p+4 p+2-J h—f

>

-1 (p+2-j-1)

Iyl < (p+2)...(2p+3— -l B <

KIS @p3-j-i) TIPS @p2-j=D)
S (DN pH2-j-D G S (e DN p+1-j-nE

Using the previous estimate and (13), we see that for 4 small enough L Pl
So A is a contraction and system (4)-(12) is uniquely solvable, following the
Picard-Banach fixed point theorem. [J

LEMMA 2. The inequality

i 14+¢,h - LM
_ S—— " + hr+2
1Vesr = Viiill l—czh“yk Vil 1= c,h

holds for k=0, ..,n—1, where M, ¢, and ¢, are positive constants, independent
of h.
Proof. Denote by H,., the full Hermite-interpolation polynomial for the

knots ¢, ,¢,,, and the values {y,Ej)}FO)_“’pH, respectively {y), j=0,... pe1 FOI

y €C?*'([0, T), using a result from the theory of interpolation,
(14) Iy() = Hy o (DIISMHPY ) xeft,,1,,]

with M a positive constant, independent of 4. So, using (2), (3) and (14), we get the
estimates

ths1

1ia = Fenll €Iy =Fll+ [ 1 Goy@)=f OBy )des

'k

ey

<lye =Fll+ L | Iy —He, () des

Iy

e+

Sy =well+ L | G = He, (0))da+

[ Uy ()= iy GOl <[y, =7y l|+ LMRP* 2

e
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fev1

+ ]

s

pl ptl
Z gD -5 + Z Lo, (D) O -7

5

dx <

<||ye = Fell+ LMRP 2 +

p+1

+{yy _yk”h”gk,ouao'i'”yk _kaLhZ ]lgkj”oo+

J=1
p+1
S D ~ Vel Alige ol +1yii "yanL.hZ g sijlle S
J=1

<y —Fell+ehllye -yt ekl _)—’k+|”+LMhP+~-

or, for h small enough,

et~ roall S nyk Bl e
Remark. The previous result shows that the method has the local order p + 2.
THEOREM 3. The inequality

) =7l esh”
holds for all k=0,...,n— 1,j=0,...,r+1, where c; is a positive constant, inde-
pendent of h.

Proof For j= 0 from Lemma 2.1, mul‘uplymg by a suitable factor, we get
forall i €0,...,k, k=1,. —1, that

k—i k—i+] ' k~i
1+¢ch _ LM(1+C h) +2
[Hc'h) Ny — y,+.|l-( ‘) Ily,-—y,-||+—fh%ﬁhp
1-c,h —ch (1-c,h)

And, by summing the previous inequalities from i=1toi= k, we get

Ul L0

(b7 ‘kaHSLM; (1-c,h)

(1+c,h]k” N
= 1+¢,h .
T AL h  pper LM(clicZ)[E = ) th’ i

1-c,h l+c1h_ =ch
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kel k+ 1
[l+c]hj :(l+(cl+c:2)hJ y
l—-c,h l1-c,h

n-cyTl ﬁuf
Hml_%f) } LTI
. —C;

and taking ¢, 1= LM(c, +¢,) (e" "7 ~1) we have

We estimate

Ve —)—’k+|||503hp+]-

Using (12) and the Lipschitz conditions (2), we obtain

||)’/(cj+)| ylgji)1||<”f(j)(xk+1syk+l)—f(j)(xkﬂaykﬂ)ns

<Ly, _)7“1”504}1”“,

where ¢, = Ley. U

Remark. According to this result, the method has the global error p + 1.

3. THE SECOND APPROXIMATION PROCESS

The first approximation process gives us in each meshpoint # a set of
approximations {7, j=0,.. St 1} for the values {7, j=0,..., p+1} of the
exact solution in #,.

We define the spline approximation s € C”*'([0, T],R™) in the following
way:

(15) s():=Hy (1), telty ti,], k=0, ,N-1

Clearly, s is a deficient spline, of degree 2p + 3 and constant defect p +2. The
effective construction may be performed in different ways. One of them is by
using (11).

Estimates for the global error are given by the following result:

THEOREM 4. Let y be the exact solution of (1) and s the spline constructed
in (15). Then there is a positive constant cs zndependent of h for which the
inequalities

Iy -sP ek, j=0,...,p+1
hold for any t €0, T1.
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Proof. For x €[t,,t,,,]

“y([)_s(t)ns“y(t)_Hkn(t)||+HHk+l(t)_ﬁk+l(t)||5

p+1 p+l

<MnPt' 4 Zg,q(x)(ym ~FV+ Y gy D O -9,
j=0

p+1

< M0 41, = el bl gl v = Tl LAY gy ot

J=1

p+1

Ve — yk+l”h”gk+l0||oo+”yk+l J’k+1“LhZ 18kl S

J=1-

p+1
< MR veg g ollo BT e L Y ||gk,nw +hP 7+

j=1

p+1
2 2 1
+¢4 18k 41.0lle BT +ey L E, ||gk+]j“uo+hp+ <ch. O
J=1

4. STABILITY

For studying the stability of the method, we apply the first approximation
process to the following 1D test problem:

(16) y'=k, AreC
y(0)=y,.

The exact solution of (16) is in C* ([0, T']). So, for the Hermite-interpolator H,,

with two knots and the data up to the (p + 1)-th derivative, the following identity
holds

(2p+4)
y(x)—HkH(x):gi-——ﬁi)—(x

o _p+2 o= p+2
(2p+d)! IR I = £ 0 R wele e L),

where C is a constant independent of 4. If we follow the argumentation from
Lemma 2.1 and Theorem 2.2, we obtain the following global-error estimate for the
approximate solution of (16)

() = Hy (0[S CRY M xelty 1,40,

-
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with ¢ a positive constant independent of h. So, for the test problem (16) the
method has the order 2p + 4.
Applying the method (4)(12) to (16), we get

lyk+l_yk+]|sc6h2p+49
The stability function is
p+1 fh+ )
1+ [ gy(x) &
(17) R(OM) =00t sk
pti k+1 )
1~Z I g,“r,j()c)dxkf+l
j:0 ty

a rational function for which both the numerator and the denominator are
polynomials of degree p + 2.

THEOREM 5. The spline method is A-stable for all p>0.

Proof. The method applied to the test problem (16) has the global order
2p+4,ie.,

2p+4

RGz)=1+2+ +@(h2P*5),

pelindif: Movter =M,
1t (2p+4)!
SO

e* = R(z)+ O(h***°).

This means that R(z) is the (p + 2, p + 2) Padé-approximation of the exponential.
Following [1, Theorem 4.12 p. 60], R(z) is A-acceptable and thus the method is
A-stable. (] | _

Remark. As the stability function is a Padé-approximation, we have for R(z) _
the following formula (see [1, p. 50])

%1 (p+2)! (l2p+4-~jl)!zj
o 2p+d)l jli(p+2-))!
1+’i’ -1 (p+2)! ('2p+4—j-)!zj
j0 Qp+M! jUp+2-)!

(18) R(z)=

If we want to apply the method for stiff linear problems, we may be
interested in a better existence result than the one provided by Theorem 1. The
following theorem gives an existence condition for linear systems of differential
equations.
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Consider the system
(19) y'(2) = Ay(1) +b(t)
¥(0) =y,
with £ €[0,T], 4em,,,,(R), beC”([0,T],R). Denote by o(4) the set of the
m eigenvalues of the matrix 4.

THEOREM 6. The discrete implicit method (3)Y~(5) applied to the system (7)
has a unique solution for the step h if and only if
S
= ¢c(4A),
A

where £, k=1,...,p+2 are theroots of the polynomial

pt2 3
I (p+2)! QCp+4-j) ;
(20) P(z2) 1+,§ B j!(p+2_j)!z ;

Proof. If we compare (17) and (18), we observe that

e+
+2)1 Q2p+4-)! .
21) _[ gy i (x)dx= tgr2)! (2p /) —f=1inp+2
Tk

S Qp+A) i p+2- )

and

L 41

(22) | g0 (@) dr=(-

s

By (p+2)! Qp+4-)

; i=1,..., p+2,
e a5t p 2 )3 (2 7

Applying the method (4)—(12) to the problem (19), we get after some calculations

; p+1 1 A :
Ve =AY, | geij@dpd) =
j=0 ¢
p+l fen . P
=7+ Ay, | gy &P+ [ b(x)dx
=0 t
and using (21)~+22) '
p+2 \ ' Y . .
Fegyod Ype BN ot ATy o0z |
= Qo DLillp 12N
p+2 Tl

! I. =T .
22 CPAAm Dy g [ ax

s

=Y+ 4 ; ;
. ;:, Q2p+4)! jip+2-j)!
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From (12) and the last equality, we get the m(p + 2) x m(p + 2) linear system

2 3 e Pl L= -
’—I,,,—EA h_A i WMy ER2 2 (p+2)! All Y+ [ 4
7) 10 120 2p+4)
—A Im Om Om yliﬂ dz
-4 Om Im H Om )_}ILIJr o d3
_qpe Mg i 1, 7 R
where

p+2 . Tk 41
_ (p+2)! 2p+4-))H =
“ [I"'+§ (2p+4)! j!(p+2—j)!h 4 Jyk ) f <

Lk

diyy= 0 AT, 1), Ci=0,., pr1,
j=0

By substitutions, we get the mxn linear system

p+2 .
: v (P22 p 4 oAbl LA (e
(23) [l+; (-1 270 j!(p+2~'j)!h % jym =d,

where d € R" is a free term, independent of p{),, j=0,..., p+1.
Consider {§, ,k=1,..., p+2}, the roots of the polynomial P given by (20).
The matrix of the system (23) can be written as

p+2

H (hA—ékIm ):
k=1

so the existence and uniqueness condition for the solution of (23)is

+2
det[li_[ (hA~§,(Im)}é 0
k=1

or, equivalently,
[ p+2

] det(ra-¢,1,)=0,

k=1

which proves the conclusion of the theorem. [J
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Remark. The previous theorem proves that, except for. m(p + 2) values of the
step &, the method applied to the linear system (19) has a unique solution for every
step. This property and the A-stability lead us to the conclusion that the spline
method proposed may be suited for numerically solving stiff systems of linear
differential equations.

5. FINAL REMARKS AND CONCLUSIONS

In the following we give an interesting interpretation of this spline method.
Considering (4), (12) and (15), we can rewrite them in the following way:

(24) st )=s)+ | f(xs(x) dx
(25) UV )= P58, J=0,,p
(26) SO0 ()= fP o8t ) =0

Relations (25) and (26) describe the two-point multiderivative collocation
method whereas relation (24) is the collocation on the meshpoints for the
equivalent integral equation (3). ‘

In conclusion, the spline method described in this paper is a two-point
multiderivative collocation for (1), completed with collocation on the meshpoints
for the equivalent integral formulation of (1). '
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