REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Tome XXVII, Nº 2, 1998, pp. 219-225

the note by $RAP(\mathbb{R})$ the set of all premote alreget periodic fractions to all i , m_{i} , (HEDREM 1.1 [4] PAP(TS) is a manufation investorie the subalgebra with the

containing the constant functions. Functionals, A DENSITY PROPERTY OF THE C*-ALGEBRA PAP(R) AND ITS APPLICATIONS ST 382 91 CV 20 501 1

1.59 63

SILVIA-OTILIA CORDUNEANU

THEOREM 1.2 [4], Let ϕ be a function in S(R), Then $\phi \in PLP_0(\mathbb{R})^n, f$. **EXAMPLE 1. INTRODUCTION** 0 < 2 where 0 < 1 is the last of 0 < 10 where 0

Let $\mathscr{C}(\mathbb{R})$ be the C*-algebra of bounded continuous complex-valued functions on \mathbb{R} , with the supremum norm. Denote by *m* the Lebesgue measure on \mathbb{R} . For $f \in C(\mathbb{R})$ and $a \in \mathbb{R}$, the translate of f by a is the function $R_a f(x) = f(x+a)$, $x \in \mathbb{R}$. A subset \mathscr{F} of $\mathscr{C}(\mathbb{R})$ is said to be translation invariant if $R_a \mathscr{F} \subset \mathscr{F}$, for all $a \in \mathbb{R}$. Throughout this paper, $\|\cdot\|$ denotes the supremum norm on $\mathscr{C}(\mathbb{R})$.

DEFINITION 1.1 [4]. A function $g \in \mathscr{F}(\mathbb{R})$ is called an almost periodic function on \mathbb{R} , if for each $\varepsilon > 0$, there exists an $l_{\varepsilon} > 0$ such that every interval of length $l_{\rm F}$ contains a number τ with the property that

 $||R_rg-g||<\varepsilon.$

Denote by $AP(\mathbb{R})$ the set of all such functions.

Remark 1.1. The set $AP(\mathbb{R})$ is a translation invariant C*-subalgebra of $\mathscr{C}(\mathbb{R})$ containing the constant functions. PROPOSITION 2.1, a) A closed subset of

Set

$$PAP_0(\mathbb{R}) = \left\{ \varphi \in \mathscr{C}(\mathbb{R}) : \lim_{t \to \infty} \frac{1}{2t} \int_{-t}^{t} |\varphi(x)| dx = 0 \right\}.$$

c) The indem of this sets of a "mile family of organic and very la an argument Remark 1.2. The set $PAP_0(\mathbb{R})$ is a translation invariant C*-subalgebra of C(R). d) The branstate of on arguele very set is an ergodic zero in

DEFINITION 1.2 [4]. A function $f \in \mathscr{C}(\mathbb{R})$ is called a pseudo almost periodic function on \mathbb{R} if $f = g + \varphi$, where $g \in AP(\mathbb{R})$ and $\varphi \in PAP_0(\mathbb{R})$. Let C be an ergodic zuro, sat

AMS Subject Classification: 41A36. generality, we may assume that the number

A Density Property

3

Denote by $PAP(\mathbb{R})$ the set of all pseudo almost periodic functions on \mathbb{R} .

THEOREM 1.1 [4]. $PAP(\mathbb{R})$ is a translation invariant C*-subalgebra of $\mathscr{C}(\mathbb{R})$ containing the constant functions. Furthermore,

220 Silvia-Otilia Corduneanu 2

 $PAP(\mathbb{R}) = AP(\mathbb{R}) \oplus PAP_0(\mathbb{R}).$

DEFINITION 1.3 [4]. A closed subset C of \mathbb{R} is said to be an ergodic zero set in \mathbb{R} if

$$\lim_{t \to \infty} \frac{m(C \cap [-t, t])}{2t} = 0.$$

THEOREM 1.2 [4]. Let φ be a function in $\mathscr{C}(\mathbb{R})$. Then $\varphi \in PAP_0(\mathbb{R})$ if and only if, for every $\varepsilon > 0$, the set $C_{\varepsilon} = \{x \in \mathbb{R} : |\varphi(x)| \ge \varepsilon\}$ is an ergodic zero subset in \mathbb{R} .

Remark 1.3. If $f \in PAP(\mathbb{R})$, then the limit $\lim_{t \to \infty} \frac{1}{2t} \int_{-t}^{t} f(x) dx$ exists and is finite.

DEFINITION 1.4 [3]. For $f \in PAP(\mathbb{R})$, we shall call the mean value of the function f, and we shall denote it by M(f), the limit

$$M(f) = \lim_{t \to \infty} \frac{1}{2t} \int_{-t}^{t} f(x) \, \mathrm{d}x.$$

Donote by APCR the sut of all such functions.

2. A DENSITY PROPERTY OF THE C*-ALGEBRA $PAP(\mathbb{R})$

PROPOSITION 2.1. a) A closed subset of an ergodic zero set in \mathbb{R} is an ergodic zero set.

b) The intersection of the sets of an arbitrary family of ergodic zero sets is an ergodic zero set.

c) The union of the sets of a finite family of ergodic zero sets is an ergodic zero set.

d) The translate of an ergodic zero set is an ergodic zero set.

Proof. The first three assertions immediately follow from the definition of an ergodic zero set. We shall prove d).

Let C be an ergodic zero set in \mathbb{R} and let a be a real number. Without loss of generality, we may assume that the number a is in $(0, \infty)$. Let t be a positive,

sufficiently large number, such that a < 2t. According to the properties of the Lebesgue measure, we obtain

a ar finalist, of the search how and minipain the section of the section of the section of Q.E.D.

Remark 2.1. It follows from Theorem 1.2 that $PAP_0(\mathbb{R})$ is the set of all bounded continuous complex-valued functions f on \mathbb{R} , such that for every $\varepsilon > 0$, there exists an ergodic zero set C in \mathbb{R} (depending on f and ε) such that $|f(x)| < \varepsilon$ for all $x \in \mathbb{R} \setminus C$.

Let $\mathscr{C}_{0-erg}(\mathbb{R})$ be the set of all bounded continuous complex-valued functions f on \mathbb{R} such that there exists an ergodic zero set C in \mathbb{R} (depending on f) such that f(x) = 0 for all $x \in \mathbb{R} \setminus C$. In other words, $\mathscr{C}_{0-erg}(\mathbb{R})$ is the set of all _______ bounded continuous functions on \mathbb{R} with ergodic zero support.

THEOREM 2.1. a) $\mathscr{C}_{0-erg}(\mathbb{R})$ is a subalgebra of the algebra $PAP_0(\mathbb{R})$. b) $\mathscr{C}_{0-erg}(\mathbb{R})$ is uniformly dense in $PAP_0(\mathbb{R})$.

Proof. a) Our claim follows from the properties of the support of a function and from Proposition 2.1. We shall prove b). Let f be a function in $PAP_0(\mathbb{R})$ and let ε be a positive number. Thus, the set $C_{\varepsilon} = \left\{ x \in \mathbb{R} : |f(x)| \ge \frac{\varepsilon}{2} \right\}$ is an ergodic zero set. It follows $\lim_{t \to \infty} \frac{m(C_{\varepsilon} \cap [-t, t])}{2t} = 0$ and, therefore,

 $\lim_{t\to\infty}\frac{m((\mathbb{R}\setminus C_{\varepsilon})\cap [-t,t])}{2t}=1.$

Taking into account that $\mathbb{R} \setminus C_{\epsilon}$ is an open set, hence Lebesgue measurable, we can find a closed subset $F_{\varepsilon} \subset \mathbb{R} \setminus C_{\varepsilon}$ such that

 $m((\mathbb{R} \setminus C_{c}) \setminus F_{c}) < 1.$

Therefore

 $\lim_{t\to\infty}\frac{m(((\mathbb{R}\setminus C_{\varepsilon})\setminus F_{\varepsilon})\cap [-t,t])}{2t}=0.$

Clearly, we have

 $\frac{m((\mathbb{R} \setminus C_{\varepsilon}) \cap [-t,t])}{2t} = \frac{m(((\mathbb{R} \setminus C_{\varepsilon}) \setminus F_{\varepsilon}) \cap [-t,t])}{2t} + \frac{m(F_{\varepsilon} \cap [-t,t])}{2t}.$

Combining the above equality with (1) and (2), we obtain

$$\lim_{t\to\infty}\frac{m(F_{\varepsilon}\cap [-t,t])}{2t}=1.$$

Making use of the fact that F_{ε} and C_{ε} are disjoint closed sets in \mathbb{R} , which is a T_4 space, we find an open set D_{ϵ} such that

 $F_{\varepsilon} \subset D_{\varepsilon} \subset \overline{D}_{\varepsilon} \subset \mathbb{R} \setminus C_{\varepsilon}.$ It follows from the inclusions above and from the equalities $\lim_{t \to \infty} \frac{m(F_{\varepsilon} \cap [-t, t])}{2t} = \lim_{t \to \infty} \frac{m((\mathbb{R} \setminus C_{\varepsilon}) \cap [-t, t])}{2t} = 1$ that $\lim_{t\to\infty}\frac{m(D_{\varepsilon}\cap[-t,t])}{2t}=\lim_{t\to\infty}\frac{m(\overline{D}_{\varepsilon}\cap[-t,t])}{2t}=1.$ Furthermore, $\lim_{t\to\infty}\frac{m((\mathbb{R}\setminus D_{\varepsilon})\cap[-t,t])}{2t}=0,$

hence $\mathbb{R} \setminus D_{\epsilon}$ is an ergodic zero set.

Now we use the fact that R is a normal space and applying Uryson's theorem, we find that there exists a continuous function $g, g: \mathbb{R} \to [0, 1]$, such that g(x) = 1 for all $x \in C_{\varepsilon}$ and g(x) = 0 for all $x \in \overline{D}_{\varepsilon}$.

Afterwards, we consider the continuous function $F: \mathbb{R} \to C$ defined by $F(x) = f(x) \cdot g(x)$ for all $x \in \mathbb{R}$. It is obvious that F(x) = f(x) for all $x \in C_{e}$

and F(x) = 0 for all $x \in \overline{D}_{\varepsilon}$. We obtain that F(x) = 0 for all $x \in D_{\varepsilon} = \mathbb{R} \setminus (\mathbb{R} \setminus D_{\varepsilon})$ and $\mathbb{R} \setminus D_{\varepsilon}$ is an ergodic zero set. This means that $F \in \mathscr{C}_{0-erg}(\mathbb{R})$.

On the other hand, we have that for all $x \in \mathbb{R}$, $|F(x)| \le |f(x)|$ and from this inequality it follows that for all $x \in \mathbb{R}$

$$|f(x) - F(x)| < \varepsilon$$
. Q.E.D

Denote by $\hat{\mathbb{R}}$ the group of the characters of the group \mathbb{R} and by $\langle \hat{\mathbb{R}} \rangle$ the subspace generated by the set $\hat{\mathbb{R}}$ in the Banach space $\mathscr{C}(\mathbb{R})$.

COROLLARY 2.1. $PAP(\mathbb{R})$ is the smallest C*-subalgebra of the C*-algebra $\mathscr{C}(\mathbb{R})$ containing the characters of the group \mathbb{R} and the functions of the algebra $\mathscr{C}_{0-erp}(\mathbb{R})$.

Proof. Let A be a C*-subalgebra of the C*-algebra $\mathscr{C}(\mathbb{R})$, containing the characters of the group \mathbb{R} and the functions of the algebra $\mathscr{C}_{0-erg}(\mathbb{R})$. It is known that

 $\langle \overline{\hat{\mathbb{R}}} \rangle = AP(\mathbb{R})$

in the sense of uniform convergence on \mathbb{R} [1]; combining this fact with the hypothesis that A is a Banach algebra, we obtain the inclusion $AP(\mathbb{R}) \subset A$. Now, applying Theorem 2.1, it follows that

$$\overline{\mathscr{C}_{0-erg}(\mathbb{R})} = PAP_0(\mathbb{R})$$

in the sense of uniform convergence on \mathbb{R} and by virtue of the same property of the algebra A we see that $PAP_0(\mathbb{R}) \subset A$. So, $PAP(\mathbb{R}) \subset A$. Q.E.D.

Remark 2.2. Observe that

$$PAP(\mathbb{R}) = \langle \overline{\mathbb{R}} \rangle \oplus \overline{\mathscr{C}_{0-erg}}(\mathbb{R})$$

in the sense of uniform convergence on R.

3. SOME APPLICATIONS OF THE DENSITY PROPERTY OF THE C*-ALGEBRA $PAP(\mathbb{R})$

PROPOSITION 3.1. Let $\mu: PAP(\mathbb{R}) \to C$ be a linear functional such that: a) $\mu(f) \ge 0$ for all $f \in PAP(\mathbb{R}), f \ge 0$; T. OR IS BUT TO SX DEalw b) $\mu(f) = 1$ for $f \equiv 1$; and a strong g = 1 (Sinter f = 0) where f = 1

c) $\mu(\gamma) = \mu(R_a \gamma)$ for all $a \in \mathbb{R}$ and for all $\gamma \in \hat{\mathbb{R}}$; d) $\mu(\phi) = 0$ for all $\phi \in \mathscr{C}_{0 - erg}(\mathbb{R})$.

6

Then $\mu \equiv M$ (*M* is the mean value defined on $PAP(\mathbb{R})$). *Proof.* For every $f \in PAP(\mathbb{R})$ we obtain that and most have $|(f)| \leq |(f)| \leq |\mu(f)| \leq ||f||$.

It follows that μ is a continuous functional on $PAP(\mathbb{R})$. Set

 $A = \{ f \in PAP(\mathbb{R}) : \mu(f) = \mu(R_a f) \text{ for all } a \in \mathbb{R} \}.$

We can easily see that A is a closed subspace of the Banach space $PAP(\mathbb{R})$. From the hypothesis we have $\hat{\mathbb{R}} \subset A$ and, therefore, $\langle \hat{\mathbb{R}} \rangle = AP(\mathbb{R}) \subset A$. (The closure $\langle \hat{\mathbb{R}} \rangle$ of $\langle \hat{\mathbb{R}} \rangle$ is considered in the sense of uniform convergence on \mathbb{R}). Applying Theorem 18.9 in [2], we obtain the equality $\mu \equiv M$ on $AP(\mathbb{R})$.

Let φ be a function in $PAP_{\varphi}(\mathbb{R})$. By Theorem 2.1, we find a sequence $(\varphi_n)_{n \in \mathbb{N}}$ of functions of the algebra $\mathscr{C}_{0-erg}(\mathbb{R})$ such that $\lim_{n \to \infty} \|\varphi_n - \varphi\| = 0$. Clearly, we have

 $\mu(\varphi) = \mu(\lim_{n \to \infty} \varphi_n) = \lim_{n \to \infty} \mu(\varphi_n) = 0.$ Thus $\mu \equiv 0$ on $PAP_0(\mathbb{R})$, and, furthermore, $\mu \equiv M$ on $PAP(\mathbb{R})$. Q.E.D.

PROPOSITION 3.2. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of positive linear operators, $T_n: PAP(\mathbb{R}) \to PAP(\mathbb{R})$ for all $n \in \mathbb{N}$, such that:

a) $\lim_{n\to\infty} T_n f = f$ uniformly for each $f \in \hat{\mathbb{R}}$ and for each $f \in \mathscr{C}_{0-erg}(\mathbb{R})$; b) $T_n f = f$ for $f \equiv 1$, for all $n \in \mathbb{N}$. Then $\lim_{n \to \infty} T_n f = f$ uniformly for each $f \in PAP(\mathbb{R})$.

Proof. Set

 $A = \{ f \in PAP(\mathbb{R}) : \lim_{n \to \infty} ||T_n f - f|| = 0 \}.$

We shall prove that A is a closed subspace of the Banach space $PAP(\mathbb{R})$. Consider a sequence $(f_k)_{k \in \mathbb{N}}$ of functions of A such that

 $\lim_{n\to\infty} \|f_k - f_0\| = 0,$

where $f_0 \in PAP(\mathbb{R})$.

If $T: PAP(\mathbb{R}) \to PAP(\mathbb{R})$ is a positive linear operator, then the following inequality holds for each $f \in PAP(\mathbb{R})$ $||Tf|| \le ||f|| \cdot ||T1||$.

It follows for all $n, k \in \mathbb{N}$ and for all $f \in PAP(\mathbb{R})$

$$||T_n f - f|| \le ||T_n f - T_n f_k|| + ||T_n f_k - f_k|| + + ||f_k - f|| \le ||T_n f_k - f_k|| + 2 ||f_k - f||.$$

Let ε be a positive number.

By $\lim_{k \to \infty} ||f_k - f_0|| = 0$ we have that there exists a $k_0 \in \mathbb{N}$ such that for all

$$k \ge k_0, ||f_k - f_0|| < \frac{\varepsilon}{3}$$
. Now, using the fact that $\lim_{n \to \infty} ||T_n f_{k_0} - f_{k_0}|| = 0$, we find a

number $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, $||T_n f_{k_0} - f_{k_0}|| < \frac{\varepsilon}{2}$.

It follows from (3) that for all $n \ge n_0$

$$||T_nf_0-f_0||<\varepsilon.$$

Hence, $\lim_{n \to \infty} ||T_n f_0 - f_0|| = 0$. This means that $f_0 \in A$, so A is a closed subspace of the Banach space $PAP(\mathbb{R})$.

On the other hand we have that

$$PAP(\mathbb{R}) = \langle \hat{\mathbb{R}} \rangle \oplus \overline{\mathscr{C}_{0-erg}(\mathbb{R})}$$

and, taking into account that $\hat{\mathbb{R}} \subset A$ and $\mathscr{C}_{0-erg}(\mathbb{R}) \subset A$, we obtain $A = PAP(\mathbb{R})$, Q.E.D.

BIBLIOGRAPHY

- 1. C. Corduneanu, Almost Periodic Functions, Second Edition, Chelsea, New York, 1989.
- 2. E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I: Structure of Topological Groups: Integration Theory, Group Representations, Die Grundlehren der math. Wissenschaften, Band 115, Springer Verlag, Berlin, Göttingen, Heidelberg, 1963.
- 3. C. Zhang, Pseudo Almost Periodic Functions and Their Applications, (Thesis), The University of Western Ontario, 1992.
- 4. C. Zhang, Pseudo Almost Periodic Solutions of Some Differential Equations, J. of Math. Analysis and Applications, 192 (1995), 543-561.

Received August 15, 1997.

Department of Mathematics, "Gh. Asachi" Technical University, Iasi Romania