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CO\æUTING RELIABLE ERROR ESTIMATIONS
FOR INTEGRAL EQUATIONS W]TH DISCONTINUITIES

nqNs-frRcsN DoBNER

l.INTRODUCTION

we are concerned with numerical methods providing a software_assisted
error treatment (briefly called enclosure methods) foi Fredhotm integrat equations

(l.l) x(s)=g(s)+ J oçr,,¡x(t)d,t, o.r.B;

I :: fa,p] is a finite real int.*ut,"s ,ear-valued and continuous. Throughout this
paper we assume that the kernel has the following propefies:

(Pl) (s, t) is Lebesgue integrable with respect to r for each s e [a, B] and
p

Æ = sup I ,t(r, t) dt <æ;
os.<0 J

(P2) lim
ls¡ - s2 l-r 0

p

J lfr(s,,r) - k(sz,t)ldt =0 uniformly for s < s,,s2 (B.

This^includes, e,g., discontinuous derivatives in the kerner or weakry singular
Kernels.

^ . Therefore, the operator & (using the same notation for the kerner as well asror tne corresponding operator)

(1.2) ,t(x) (s) = j Oir, t) x(t) dt, cr : s < B,

is a compact operator or, Cto, Bl into C[o, F]. C[c¿, g] equipped with the
maximum norm ll , ll* is a Banach space.

feasible (see Adams and Kulisch [1]): for taking into accountîound-off e*ors, a
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2. A RTEMANN-LIKE ÄPPROACH

This completery new method of sorving Fredhorm integrar equationsnumerically resembles the definition of the integrãl by Riemann suns. In order to
apply this rnethod, it is necessary thatx have no zeros in [cr, B]. Ifan upper boundb for I x I is known, then

Êp(2.1) -y(s)= Sß)-b I kçs,t¡d,t+b+ t t1s,t¡ y(t)dt, cr<s(Þ,

is an equation with u norriutiue solution On = x(s) +bp < r < B.

TTD'REM 2.7' rye assume x(s) * 0, cr ( s <þ, and divide the intervar [u, þ]
into n'subintervals It=fat,þ,1 of length h¡,1=1,...,n. Let K eJ(k),G e J(S,)
and let U = (U t , ...,U n) e 1lR, satisfu the linear system

(2.2) É (ur, -hK(Ij,I,))u,:G(I¡), j=r,...,n.
t=t

Then the solution x of (l.l) exists within X, more precisely

(2.3) x(s)eX(s):=G(s) *fn,Xçr,1,)U,, þr se1.
/= I

Proof. Since x(s) * 0, we have for s e 1
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B þt

J
.x(s) = g(s) + [ ttls,t¡ x(t) dt = S(s) + Ë k(s,t) x(t) dt =

c l-l at

= s(s) * Ë t1", Ð i x(t¡d¡ = s(s) *f *1r,r1,) x(r,) h,
t=t q/ l=1

with intermediate values T¡,r¡.. I¡,r=r,...,n. The xt are independent of s,
therefore we ean set s= r j, j =1,...,fl, to obtainthe system

(2.4) É tur, -h,k(r,,\))x(rt)=g(ri), j=1,...,n.
l=l

Since \¡,r¡eI,,l=1,.,.,n, we substitute in (2.4) the interval quantities
I1 , ' ", I n for the intermediate values, thus yielding the interval system

(2.5) f {ar,, -hrk(Ij,I,))x(l,)=g(I¡), j=1,...,n)
/=t
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precise computer and interval arithmetic, and for estimating approximation errors,
enclosure tools for basic problems in numeric (e.g. integration, evaluation of
expressions, determination of ranges, Taylor and Fourier expansions, linear and

nonlinear equations).

We denote the set of closed real intervals by /[R, and the set of interval

vectors and matrices by 1 R' and 1R."'.
The elementary arithmetic operations @: {+, -, ' , l) for intenral objects are

defined in terms of their endpoints (see Moore [10]). For A=lA,ll e 1R,

diameter and absolute value are defined as

diam(l) := A- A, lll:=max{løl; a eA}.

For intervals A, B, C,D e 1 R we list some important rules:

- inclusion monotonicity

(1.3) AcC, BçD+ A" BcC o D, o e@;

- blowing-up phenomena

(1.4) diam(A+.8)= diam(A)+diam(,8);

- subdistributive property

(1.s) A(B+C):AB+ AC.

Some special cases in which distributivity does hold are, e.9.,

(1.6) øe R+ a(B+C)=aB+aC,

(1.7) BC>O= A(B+C)= AB+ AC.

(For a complete discussion see Ratschek t121.) An interval-valued function F is
saidto be aninterval extensionof areal-valued function f :DcR -+ R iff
(1.8) l(t) eF(t) for t e D.

The set of interval extensions of/is abbreviated to JA.It is important to note that

F contains all functions whose graph is lying in F.
Advices for constructing such interval extensions are given in Dobner [5],

Hammer et al, [7] and Klein [8]. If an interval I is substituted for the real variable

/, all operations occurring in / are interpreted as interval operations, hence

f (T) e / R. For a detailed description conceming interval arithmetic or topological
properties of 1R see Moore [10],

In the next sections decomposition techniques are considered. The last
paragraph contains numerical examples and computational notes. It starts by
converting the integral equation into Riemann sums by use of mean value
principles.
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is a computable estimate for ilk,llr; the integral can be evaluated anal¡ically in
many cases. The number n is chosen such that

(3.6) 
llk"llz <t.

We definc :

(3.7) a, (s) : = g¡ (s), A, eJ(a), i = l, , .., h,

(3.8) ó¡(s):= f "u,1,(r), B, eJ(b,), i=t,...,n.

THEoREM 3.r. Let k" in (3.4) be such that (3.6) is true. If) ,furthermore,V eJ(v), I{, eJ(w,), i=I,...,n, where
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(3.e) v(s) = g(s) * I k"g, t) v(t) d,t,

p

0(3.10) w,(s)=a,(s)+ IO"(r,t)w,(t)d,t, i=1,...,n,

and (J = (U t, ..., U,) e J(u), rinrn u = (ur, ..., il,) i.r u solution of.

,( r l p(3.il) I luu - Iu,Q)w,(t)dtlr, =it,t,lv(r)dt, j=t,...,,,
¡=i \ ; ) ;

then there exists u continuou.s .solution of e.D ,suti,s./ying

(3.12) .r(s) e X(s) =tt(sù*f U,W,çr¡, u <sSp.

ProoJ We have
n

x(s)=u(s)+l u,w,(s), o.".Ê,
;-l

and the enclosure propertics of V,U =((jt,
(3.12). r ,Un) and A, ,i=7,...,n, imply

The extensions required^for (:.9) and (3.10) are obtained iterativery by usinga modification of Schauder's fixed poínt theòrem (se" Douner t+i.

4. DECOMPOSITION OF THE DOMAIN

We consider now special kernels

k(s, t) = p(ls - tl) q(s, t),
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the assertion now follows by the properties of K and G together with interval
analytical arguments. !

In [4], methods for computing enclosures of type (2.2) are discussed,

Reinark 2.1. From (2.2)the error estimate

(2.6) lx(s) - x(s)l< I aiu* (X(s)), s e 1,
¿

is derived and the convergence of the encloswe solution X to the true solution x as

h -+ 0, h : = max {ft, }, is demonstrated.
j=t""'n

Remark 2.2. The nonsingularity of the matrix set occurring in (2.2) is
checked during the computational process by an enclosure method for linear
systems (cf. Hammer et al. [7]).

3. DECOMPOSITION OF THE KERNEL

This approach is favoruable when a Fourier expansion for the kernel is
given. if k e L' (la,B) and rp, is a complete orthononnal system, then

(3.i) k(s,t)=Ë Ë cre¡(r) e¡(t),
¡=l J=l

where

(3.2)

4

pp
,, = ! J ,t1s, r¡ e, (s) e; (/) dr d/, i, j = 1,2,

We approximate Æ through a degenerate kemel fr¿

(3.3) ko=f f c¡l.,(r)<p¡(¡)=É q,fr)Ë c¡¡9t(t)

q

j =l

(3.4) k"=k-ka.

we suppose that the Fourier coefficients cr,i, j =1,...,n) ate either given analy-

tically or.can be computed with tight bounds (cf. Storck [13]), so that intervals c7
with cu eJ(cr), ì, i =1,...,ti, are available; thus

(3.s) llk"lll =llkll3 -llkolltr =
ftp

= 
J J 

tkg,t)12 d"d'-É 
þ,0,,'
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where q represents the well-behaved, sufficiently smooth part, and p is known to
satisfy (Pl) and(P2).

The idea is to transform the weakly singular equation into a system of
equations. Such a decomposition has some numerical advantages concerning
accuracy and computation time (see Klein I8l). we subdivide the domain

in such a way that

(4.s) llr"ll:= r#x 2 t,t';u = max
i=l kf, (s, t) d¡ 1

c[r:=ct**
N

and define with l, j = 1,..., N

(þ-cx,), 9¡ =d¡* t, i=1,.,.,N, k" =(ki),,¡=,,....r e(Ki)t,i=t.. ,u = K".
Bounds fo¡ the solution of (4.4) are obtained with the method derived in Section 3,

iffiï:ii::ffiff:r1îe ío be..fru",a uy "or,".fo,a[ u."tor quantiries.

THBoR¡tvt 4.2. Let Y=(yt,..,,yN) e J(y) =J(yt,.,.,!¡¡). Then tlte s¿¡lu_tion x of'the weakly .singular equation i,s piecewise enclo,ted in

x(s)e{(s), se[a¡,Þ,J, i=1,...,N,
Proqf' It fotows from Theorem 4.1 together with the properties of r. !

5.NUMERICAL EXAMPLES AND COMPUTATIONAL NOTES

In
equation for Redholm infegrai
_ the ver algoritlln is reliability

In contrast to classical numcricâl s

x(s)= ,-,-!*!r-a*,,.; j (s+t) e-"tx(t)dt, 0<s<1,

and compare their computed results:

(4.1) 8¡ (s): = !sß), se [cr,,F,l,

lo, else

(s, /) e [cr¡,Þi1 x [a7,FiJ,(4.2) É¡(s):=
k(s, t),

0,

(4.3)
.Y, (s): =

else

x(s),

0,

s e [a,, p, ],

else

thus leading to the system

(4.4) /, (s) = g (s) +
uþ¡IJ kr(s,t)t¡(t)dt, i=1, ¡/

J - | a j

THsoR¡N4 4.1. Equation (r.l) is equivalent to the ,system (4.4) in the ,çense
that any solution o.l'(1.1) i,s t)lso a solutir,¡n of $.$ and vice versa'.

Proo.f'. Cf. Michlin I9l.!
Each kernel ft¡ is written as a sum of a degenerate part kl anda contractive

one k] (cf. g3):

(4.5) ; lçu=kf+kf,, i,j=1,...,1[.
This splitting is performed

(4.6)
kí =0 if li - jl<2, i, j = I, ¡{
k; kü

(4.1)

nr
kl =Zof'){r) b[ùe)

v= I if li- j122, i, j =1, 1/ . we shall apply the encrosure schemes to probrems whìch cover the mostimportant types of kern:ls (C--kernels, unbound O L".n"ir, discontinuouskernels). ì

ki¡=k¡-kl

0)
(here kernel decomposition with ¿ = I

Enclo.sure method

e 0.606530661 + [-1, tj . 1.505485 e-8"(;)

Quadrature formula
n= 16

"(r= o.6o7zo*6se
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Kernels with discontinuities in higher derivatives are typical of Green's
function kernels.

k¡vc's equutir.tn
I

{(s)=s2+Àl .-+ -xe)dt.õ c'+(s-t)' :

This problem, known as Love's equation (cf. Baker [3]), has been treated for
different values of c and 1".

Riemann approach

Accuracy

5.270'rc)

1.381 . 10 1

1.235.rc-l

s.478.rc-z

n

40

80

40

80

¡"

-1,0

1.0

-10

-10

c

0.1

0.1

I

1

For small values of c this equation becomes n"uily singular, so that the
decomposition scheme requires an unrealistic computational effort; thus, we
display only the values for the Riemann algorithm,

Discontinuous kernel

x(s) = ," * J k$,t) x(t) dt, 0ls<l
0

k(s, t) =
€"-', o(¡<s
0, else.

This is a Fredholm approach for a volterra equatiou and, therefore, a ker¡el
with a discontinuity,along the line s = /.

Kemel decomposition

accuracy

1,100. l0-'

5.241'lO2

n

40

80

Riemann approach

accuracy

1.825. 10-'

9.177 ' rc 2

n

40

80

As in the above example, the method of kernel decomposition is uneffective.
obviously, the most accurate procedure is the kernel decomposition, its

results being superior to all the othel numerical methods. But, in contrast to the
Riemann scheme, a series expansion of the kernel or a sufficiently smooth kernel
function (in order to determine a Taylor expansion with the help of automatic
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'I'he computations were done on a personal computer with an MC 68000

ptocessor. The programs \ryere written in PASCAL-XSC with an optimal decimal

arithmetic of 13 digits.
For the Riemann method a division into equidistant subintervals was chosen.

In the column "aecutacy" of the following tables we display the accuracy of the

computecl solution which has been achieved in the mean.

C'-kernel
0.9090909 T 1- o2

x(s)= l-"'-":"-"- I 
- 

#x(t)dr, 0<s<2n.
2n d l+p'-2pcos(s+/)

Kernel decomposition

accuracy

7.096' 10_5

7.207 . 70-t4

n

9

27

Riemann approach

accufacy

2.876' rc2
1.431 'rc2

n

40

80

We begin with a C--kernel to demonstrate ths great advantage of the kernel
dccomposition concerning accuracy and execution time for kernel functions with
series expansions. Here the Fourier series of fr was decomposed as described in
Section 3. Of course, these excellent results cannot be obtained by the Riemann
method, where we observe a linear behaviour of the error.

Utúounded kernel

x(s)=r-J,, -zs+1;1-r* t i7s r50 r00 
d

dt, 0Ss<1.

Domain decomposition

accufacy

9J32.rc-z
7.649 . rc 2

N

4l
8l

This is an equation with a weakly singular kernel. The Riemann scheme is
not applicable to such problcms and the kcrncl dccomposition approach fails, for
thc diamctcr of the computcd Fourier coefficients becomcs too large.

G recn' s .function ke rnel

x(s)= s,o -2s'.,-t j{ )f, *,- ls-rl) - stl xçt¡ dt, o<s < l.

Kemel decomposition

accuracy

8.713' 10.3

3.343 . t0 3

n

I
27

Riemann approach

accuracy

1.8596. 10 |

8.597 .n-2

n

40

80
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TESTS OF EFFICIENCY FOR A DISCRETE
MULTICRITERIA OPTIMIZATION PROBLEM-

V. A. EMELICIIEV, O. A. YANUSHKEVICH

For the multicriteria optimization problem, various necessary ancl sufficient
conditions for a solution to be effrcient are well-known (results by T, c.
Koopmans, A. Wald, S. Karlin, L. Hurwicz, A. M, Geoffrion, yu. B. Germeyir,
P. L. Yu, V. V. Podinovskey, V. D. Nogin, A. Chames, W. W, Cooper,
R. E. Burkard, and others, see, for example, tl-13]). These conditions are the
bases of the elaboration of numerical algorithms for finding efficient solutions.

In this paper we give some new simultaneously necessary anci sufficient
conditions for a vector valuation to be efÏcient in a multicriteria optiniiz-ation
problem with a finite criterion-valued set.

Let the multiobjective function

| = (lt, /2,.,., Y,) i X I R', n) 2,

with the particular criteria

y ¡(x) -+ Tl" Vt e N n = {1,2,...,n},

be defined on the arbitrary set Xof admissible solutions.
Further, we assume that the criterion-valued set

Y=y(X) ={.y c [R''.y =y(x), xeX]
is finite.

We consider the n-criterion discrete problem of search of the Pareto set

P(Y)= {y eY:n(y)=Ø},
where

n(y) = {y' eY: l)- !' , y + y').

' This work was partially supported by Belarussian Republican Foundation of Fundamental

Researches Investigations and lntemational Soros Science Education Program (for the first author).
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differentiation) is necessary. The (validating) Riemann scheme is comparable with

classical methods concerning accurâcy, whereas, of course, the computation is as

twice as much.

Accuracy

Low-mid high

Mid-hish hish

Low

Main area of application

Continuous kemels

Kemels with series expansion

Weakly continuous kemels

Method

Riemann approach

Decomposition of the kemel

Decomposition of the domain

Low, mid-high and high mean that the number of correct digits in the

verified solution is about l-2,3-5 and from 6 upward.
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