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COMPUTING RELIABLE ERROR ESTIMATIONS
FOR INTEGRAL EQUATIONS WITH DISCONTINUITIES

HANS-JURGEN DOBNER

1. INTRODUCTION

We are concerned with numerical methods providing a software-assisted
error treatment (briefly called enclosure methods) for Fredholm integral equations

B
(1.1) x(s)=g(s)+ [ k(s,0) x(r)dt, a<s<B;

I:=[a, B] is a finite real interval, g real-valued and continuous. Throughout this
paper we assume that the kernel has the following properties:
(P1) k(s, 1) is Lebesgue integrable with respect to ¢ for each s e [o, B] and

B
€= sup [ [k(s,1)|dr <oo;
uss<p -
B
(P2) ' linlq - (s, t)=k(s,,2)|dt =0 uniformly for e <s,,s, <P.
5y =857
[
This includes, e.g., discontinuous derivatives in the kernel or weakly singular
kernels. ) ;
Therefore, the operator & (using the same notation for the kernel as well as
for the corresponding operator)

B
(1.2) k(x) (s) = jk(s,t)x(r) &, a<ssp,

is a compact operator on Clo, B] into C[a, B]. C[a, B] equipped with the
maximum norm || - ||,, is a Banach space.

For deriving close bounds, a calculus with the following features must be -
feasible (see Adams and Kulisch [1]): for taking into account round-off errors, a
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precise computer and interval arithmetic, and for estimating approximation errors,
enclosure tools for basic problems in numeric (e.g. integration, evaluation of
expressions, determination of ranges, Taylor and Fourier expansions, linear and
nonlinear equations).

We denote the set of closed real intervals by /R, and the set of interval

nxm

~ vectors and matrices by / R"and IR" ™",
The elementary arithmetic operations @= {+, —, -, /} for interval objects are

defined in terms of their endpoints (see Moore [10]). For A=[4, A]€ IR,
diameter and absolute value are defined as

diam(4):= 4 -4, |A|:=max{|a|, aeA}.

For intervals 4, B, C, D € I R we list some important rules:
— inclusion monotonicity

(1.3) "AcC, BcD=>A40BcCoD, 0€®;
— blowing-up phenomena
(1.4) diam (A £ B) = diam (A) + diam ( B);
— subdistributive property
(1.5) A(B+C)c AB+ AC.
Some special cases in which distributivity does hold are, e.g.,
(1.6) ae R=a(B+C)=aB+aC,
(1.7) BC>0= A(B+C)= AB+ AC.

(For a complete discussion see Ratschek [12].) An interval-valued function F is
said to be an interval extension of a real-valued function f:Dc R — R iff

(1.8) f()eF(t) for teD.

The set of interval extensions of fis abbreviated to J(f). It is important to note that
F contains all functions whose graph is lying in F.

Advices for constructing such interval extensions are given in Dobner [5],
Hammer et al. [7] and Klein [8]. If an interval T is substituted for the real variable
t, all operations occurring in f are interpreted as interval operations, hence
f(T) e I'R. For a detailed description concerning interval arithmetic or topological
properties of I R see Moore [10].

In the next sections decomposition techniques are considered. The last
paragraph contains numerical examples and computational notes. It starts by
converting the integral equation into Riemann sums by use of mean value
principles.
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2. A RIEMANN-LIKE APPROACH

]."hjs completely new method of solving Fredholm integral equations
numerically resembles the definition of the integral by Riemann sums. In order to

apply this method, it is necessary that x have no zeros in [q If
b for | x | is known, then (e, B]. If an upper bound

] B
2.1) Y()=g(s)=b [ k(s,r)dt+b+ [k, 0y p@yar, a<s<p,

is an equation with a nonnegative solution Y($)=x(s)+b,a <s<p.

' THEOREM 2.1. We assume x(s)#0,0<s< B, and divide the interval [o, B]
into n subintervals I, =[a,,B,] of length h,,1=1,...,n. Let K €J(k), G e I(g)
andlet U=(U,,...,U,)elR" satisfy the linear system

(2.2) ,Z ®y =K, ;) U, =G(,), j=1,..,n.
=1

Then the solution x of (1.1) exists within X, more precisely

(2.3) x(s)e_)_((s):zG(s)+Z": WK(s,I)U,, for sel.

[(=d|

Proof. Since x(s)# 0, we have for s €/

B n b
x(s)=g(s)+ [ k(s,0) x(2) dr = g(s) + > ks tyx(rydi=
o !

=] ay

n By . n
=g<s)+/2] ksny) [ x() de= g(s)+ Y k(s,m,) x(2,) &y
2 hill, =1

with intermediate values m,,t, €/,,/=1,...,n. The 1 ; are independent of s
therefore we can set s=1 ;»J=1,...,n, to obtain the system

3

(2.4) 2 @y =hk(tn ) x(t)=g(x,), j=1,..n
=1
Since m,,t,€l,,I=1,...,n, we substitute in (2.4) the interval quantities
I,..., 1, for the intermediate values, thus yielding the interval system
(2.5) 2, By =hk(, 1) x(I)=g(L), j=1,...m
=1
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the assertion now follows by the properties of K and G together with interval

analytical arguments. [
In [4], methods for computing enclosures of type (2.2) are discussed.

Reinark 2.:1. From (2.2) the error estimate
(2.6) |x(s)—X(s)|S~;~diam(X(S)), sel,

is derived and the convergence of the enclosure solution X to the true solution x as
h— 0, h:= max {hj},is demonstrated.
J=1...,n )

Remark 2.2. The nonsingularity of the matrix set occurring in (2.2) is
checked during the computational process by an enclosure method for linear
systems (cf. Hammey et al. [7]). )

3. DECOMPOSITION OF THE KERNEL

This approach is favourable when a Fourier expansion for the kernel is
given. If £ € L*([o, B]) and ¢ ; is a complete orthonormal system, then

(3.1) k(s,[)=z Z CU(PI'(S)(pj(t)’
i=1 j=1

where
B B

(32) 6= | [ks00, ()0, (0 dsdr, ij=1,2,...
o o

We approximate & through a degenerate kernel &,

(3.3) ki =20 20 0i(8)9, (=27 0,() X ¢, (1)
i=l j=1 i=| j=1

(3.4) k,=k—k,.

We suppose that the Fourier coefficients ¢y.isj=1,...,n, are either given analy-
tically or can be computed with tight bounds (cf. Storck [13]), so that intervals cy

with ¢, €J{¢c;), i,j=1,...,n, are available; thus

(3.5) e llz =111 = Ik, 15 =

n

pp H
= [ [lkts,0f dsde=3] 3 Ie,
¢« o ol

i=1 j
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is a computable estimate for Ikl ; the integral can be evaluated analytically in
many cases. The number n is chosen such that

(3.6) _ el <1

We define

(3.7 a;(5):=0,(s), 4, €J(a;), i=1,...,n,
(3.8) b,.(s)::z c;0;(s), B eJb), i=1,. . n

J=1

THEOREM 3.1. Let k, in (3.4) be such that (3.6) is true. If, furthermore,
Vedw), W,eJ(w,), i=1,...,n, where

B
(39) v(s)=g(s)+ [ k. (s, 0) (1) dr,

B
(3.10) wi($)=a,()+ [k (s,)w (e)dt, i=1,...n,

and U=(U\,...,U,) €I(u), where u=(uy,...,u,) is a solution of

i=1

n p p
(3.11) Z [6,.!. - fbj.(t)wi(t)dtj u = fbj(t)v(t)dt, j=1...,n,

then there exists a continuous solution of (1.1) satisfying

(3.12) X($) €X(8)=V()+ Y UW,(s), o<s<p.

i=1

Proof. We have
X($)=v()+ ) uw,(s), a<s<p,
i=1
and the enclosure propertics of 2 i 4i,i=1,...,n, imply

(3.12). O
The extensions required for (3.9) and (3.10) are obtained iteratively by using

a modification of Schauder’s fixed point theorem (see Dobner [4]).
4. DECOMPOSITION OF THE DOMAIN

We consider now special kernels

k(s,0)= p(ls=t]) q(s, ),
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where g represents the well-behaved, sufficiently smooth part, and p is known to
satisfy (P1) and (P2). ol sy

The idea is to transform the weakly singular equation into a system'of
equations. Such a decomposition has some numericalladvantagcs ‘concerning
accuracy and computation time (see Klein [8]). We subdivide the domain

Q,f:=a+£]:/—l(ﬁ—a)a Bi =0, i=1""’N’

and define with i, j=1,..., N

; g(s), selo;,Bl,
(4.1) gi(s):= , Nl
k(S,t), (S,t)E[(X’-,B,-]X[(Xj,Bj],
G s 0, else
x(s), sela;,B;]
i Y (s? . 0, else

thus leading to the system

v o B
(4.4) Y=g )+ [ky(s,Dp;(t)de, i=1,..,N.

i=1 q

THEOREM 4.1. Equation (1.1) is equivalent to the system (4.4) in the sense
that any solution of (1.1) is dlso a solution of (4.4) and vice versa. -

Proof. Cf. Michlin [9]. J _
Each kernel k; is written as a sum of a degenerate part k; and a contractive

one k; (cf. §3):

(4.5) " kU=k;+kijC" i,j=l,...,N.
This splitting is performed
ki =0 sl
(4.6) , if |i—j|<2,4,j=1,...,N,
ky =k,

ki=3 a ()b ()
v=]

4.7) if |i-j|22,4,j=1,...,N,

>

c d
ky =k ~ky
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In such a way that '

n H By
(4.8) [{K”ll::rpfa]x{. I”k;”}=1}1§1]x Z max I]k,j(s,t)[dt <1,
J=

. €
J'=I ¥ [GJ-DJ] '1_;'

k© :(ki/c'.)i,jsl,‘..,N e([{l;)i,jzl,..,,N =K°.

Bounds for the solution of (4.4) are obtained with the method derived in Section 3,
where scalar quantities have to be replaced by corresponding veclor quantities,
The result is summarized in

THEOREM 4.2, Ler ¥ = QAR oy €eJ(y)=3(y, soos Yy ) Then the solu-
tion x of the weakly singular equation is piecewise enclosed in

x(s)e¥ (s), se [o;,B)1,10%=1,..., N,

Proof. It follows from Theorem 4.1 together with the properties of ¥, []

5. NUMERICAL EXAMPLES AND COMPUTATIONAL NOTES

In this paper we have constructed enclosure methods for Fredholm integral
equations of the second kind, The overriding concern of this algorithm is reliability
— the verification of the result is established automatically,

In contrast to classical numerical schemes, where the errors arising during
computation remain unknown, enclosure methods provide an approximation
together with mathematical guaranteed estimations for all kinds of numerical
errors (including round-off and approximation errors). In order to illustrate the
fundamental difference between these two principles, we consider the equation

1
1
x(s)ze‘f—5+51e"(s+])+%6|‘ (s+D) e "x(rydr, 0<s<l,

and compare their computed results:

Quadrature formula Enclosure method.
n=16 (here kernel decomposition with 5 = 10)

x [51) = 0607208659 | x (%) €0.606530661+[-1, 1] 1505485 ¢~ '

We shall apply the enclosure schemes to problems which cover the most

important types of kernels (C"’-kcr_n@ﬂs, unbounded kernels, ~discontinuous
kernels). e
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The computations were done on a personal computer with an MC 68000
processor. The programs were written in PASCAL-XSC with an optimal decimal
arithmetic of 13 digits.

For the Riemann method a division into equidistant subintervals was chosen.
In the column “accuracy” of the following tables we display the accuracy of the
computed solution which has been achieved in the mean.

C” -kernel

2n

0.9090909 ,[
2n

2 .
1-p x(¢£)dr, 0<s<2m.

£ :1—
x(s) s 1+ p’ —2pcos(s +1)

Riemann approach | Kernel decomposition

n accuracy n accuracy
40 | 2.876-107 9 7.096 - 107°
80 | 1.431-107 27 7.207 - 107

We begin with a C”-kernel to demonstrate the great advantage of the kernel
decomposition concerning accuracy and execution time for kernel functions with
series expansions. Here the Fourier series of k was decomposed as described in
Section 3. Of course, these excellent results cannot be obtained by the Riemann
method, where we observe a linear behaviour of the error.

Unbounded kernel
: 1k t
x(s):s—J:— 2S+1«]1—s +— J. 2 dr, 0<s<l.
75 150 1000 |s—1]

Domain decomposition
N accuracy

41 9.132- 107
81 7.649- 107

This is an equation with a weakly singular kernel. The Riemann scheme is

not applicable to such problems and the kerncl decomposition approach fails, for

the diameter of the computed Fourier coefficients becomes too large.
Green’s function kernel

|
x(s)=s*-2s" +s+7r'.|. {%(s+t~|s—t|)—st}x(t)dt, 0<s<.

0

Riemann approach | Kernel decomposition

h accuracy n accyracy
40 | 1.8596- 10" 9 8.713 - 107
80 | 8.597-107? 27 3.343 - 107
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“Kernels: with discontinuities in higher derivatives are typical of Green’s
function kernels. . ;

Love’s equation
1

3(D=5" +A x(t) dr.

0 ¢+ (s—1)?

This problem, known as Love’s equation (cf. Baker [3]), has been treated for
different values of ¢ and A.

Riemann approach
K A n Accuracy
01 | -1.0 40 5270 - 107!
0.1 -1.0 80 1.381 - 107
1 -10 40 1.235- 107
1 -10 80 5478 - 1072

For small values of ¢ this equation becomes nearly singular, so that the
decomposition scheme requires an unrealistic computational effort; thus, we
display only the values for the Riemann algorithm,

Discontinuous kernel

1
x(s):ewjk(s,r)x(z)dt, 0<s<l
Q

e’ 7', 0<t<s
k(s,t)=
0, else.

This is a Fredholm approach for a Volterra equation and, therefore, a kernel
with a discontinuity-along the line s = ¢.

Riemann approach | Kernel decomposition

n accuracy n accuracy
40 | 1825-107 | 40 [ 1.100-107
80 | 9.177-10? 80 5.241:102

As in the above example, the method of kernel decomposition is uneffective.
Obviously, the most accurate procedure is the kernel decomposition, its
results being superior to all the other numerical methods. But, in contrast to the
Riemann scheme, a series expansion of the kernel or a sufficiently smooth kernel
function (in order to determine a Taylor expansion with the help of automatic
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differentiation) is necessary. The (validating) Riemann scheme is comparable with
classical methods concerning accuracy, whereas, of course, the computation 1s as
twice as much.

Method Main area of application Accuracy

Riemann approach Continuous kernels Low-mid high
Decomposition of the kernel Kernels with series expansion Mid-high high

Decomposition of the domain | Weakly continuous kemels Low

Low, mid-high and high mean that the number of correct digits in the
verified solution is about 1-2, 3-5 and from 6 upward.
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