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ON AN ITERATIVE METHOD WITH MORE STEPS
USING AN ALGEBRAIC CONDITION

BELA FINTA

Let (X,p) be a metric space and Bc X, B#0 a sphere. We consider the
equation f(x)=y(*), where f:B— X is a given function and y € X a fixed

element. We suppose that we can put in correspondence to the equation (*) the
new equation @(x)= x(**), where ¢:B— X is a function, such that the solution

. of the equation (*) is a solution for the equation (**) and conversely. We say that
the solution of the equation (**) is a fixed point for o.
In order to solve the equation (**) we suppose that there exists a function

F:B" — X, where n>1 is a natural number, such that the restriction of F to the
diagonal of the set B" coincides with ¢, ie, F(x,x,...,x)=¢(x) for every

x € B(***). Then we take the following iterative method with n steps:

Xy =F(xg,%,..05%,0) and X, = F(X, X0, 0enis Xpynor)

forevery k=1,2,...and xy,%,,...,x,_, €B. -
For assuring the convergence of the obtained sequence {x,}, .y to the fixed
point of the function ¢ we have the following known result:

THEOREM 1. If (X,p) is a complete metric space and the function F satis-
Jies the following conditions:

i) transforms the set B" into B, -

11) verifies the condition (¥**),

iil) for every yi,¥1,...,¥y» Yn.1 €B the function F satisfies the inequality

p(F(ynJ’Z’---’yn)’ F()’p)’s,---s}’nn))s

Smy - p(Yrs V)t my p(Vy, i)+ m, 0V Vot )s
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where my,my,...,m, 20 are real numbers such that my +my +...+m, < 1, then
the sequence {x,},.n obtained by the iterative method with n steps is convergent

. L . L g
for every xo,%,,...,X,_, €B andif we denote x = khm x,, then x is the unique
>

fixed point for ¢ in B.

‘I'his theorem appears for the real case, when X =R in [1]. It is an easy
exercise to transpose the statement and the proof of the theorem from [1] for
metric spaces. When F is defined on the whole space X, then condition i) from
Theorem 1 is superfluous. In this case theorem 1 appears in [2] with another proof.

The purpose of this paper is to replace the theoretical condition 1) from
Theorem 1 by a sufficient algebraic condition that we can verify concretely.

THEOREM 2. Let (X,p) be a complete space, x, € X a fixed element and
B=B(ry,r)={x eX/p(x,x,)<r} a given sphere, where r > 0. If:

1) the function F:B" — X satisfies condition (*¥*),

ii) fOr €Very Y1, Yas-rvs V> Yas1 €B the function F verifies the inequality

P(EW1s Yasers Yu) F(P2s Y3ses Va1 D S
<y -p(pys Y2 )+ P(Yy, Y3) oty PV, Voit)s

where m,, m,,...,m, 20 are real numbers such that m, +m, +...+m, < 1,

iii) the complex numbers z,,z,,...,z, are the roots (with multiplicity one) of
the equation P(t)=t"—m,t" ' = =my - t—=m =0 and B,,p,,...,B, are the
solution of the Vandermonde-type system of

By +PBy + ... 4B, =p(xy,X0)
Bizi +Byzy +. + Bz, =p (X2, %)

n=1 n-1 n-|
Bizi +PByzy +.. Bz, =P(X,, %)
With X,,Xq,..., X, _1, X, €B, where x, = F(xq,%,...,%,.,) o that

Bl , Bl , 1Bl 7
=l T-lel T Tl 2

then the sequence {x,}, . obtained by the iterative method with n steps is well
defined, i.e., the terms of the sequence are in B, it is convergent and if we denote

x = klim X, , then x" is the unique fixed point for ¢ in B.
>
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Proof. We show, using the mathematical induction method, that all terms of
the sequence {x,},.n are in B. The demonstration is identical for every ke N,

when we want to show that x,,, ., €B if x,,...,x,,, €B. From ii) we obtain
POXh e 1o Xken) =PF(X 15 X o Xpkn )y F(Xpu Xy s Xy NS
Sy - P(Xpy 5 X ) Hmy  P(Xg g X )+ ooy (X s X))
For every k €N we denote a, =p(x,,,,x,)=0. So we obtain the inequa-
lities '
ap.,.Sma, +ma, +...+tma,,, ;.
We generate the new sequence {a; }, . using the equalities
r . t
Upyn =M FMGaL . F A,

where ay =a,,a =a,...,q,

w1 =a,_;. It is easy to verify by mathematical

induction that a, <a, for every k € N. Now we determine the general term ¢;
using the linear recurrence

im0 ] ' 8l
Ay~ tmpay  —..o—ma,, =0

We consider the corresponding characteristic equation

n-1

t"-mt" — . —myt—m =0.

All the roots of this equation have modulus less than one. Indeed, if a € € is a
root and we suppose that jo|> 1, then

n h—
a" -ma" —...—-moa-m =0, so

a” =m,a" " +... +myo+my.

Dividing the equation by o”, we obtain

1:7_n1+ +_ﬂ’l2_ ml

a o ! +:17’ i
N R e W P ™ ™ <
o o o] ol " af"

Smy+my+...+m, <1,

which is a contradiction.
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Without losing the generality of our problem, we can suppose that the roots
of the characteristic equation are different pairwise.

Indeed, if the root ¢ has the multiplicity at least two, then it verifies the
equations

* *n—|

£ —m it~ ~myt"—m, =0 and
nt" 7 —(n=Dm, £~ —m, =0,

if ¢,,2,,...,¢, , € C are the roots of the derived equation, it is sufficient to

change the value m, in order to make sure that they will not be roots of the
characteristic equation. Consequently, we choose a,=m,,...,0, =m, and

20 such that the inequality o, +o, +...+a, <1 remains true and o, > m,
and o, ¢{t ~m,t/ "' —...~m,-t;Ji=1,n—1}. Such a choice of o is possible
and does not modify the essence of our problem.

So we consider the recurrence

" . " 144 "
Ay =00 +0Ha,  +.. +a,a), g,

where aff =aj,al'=al, .. @,y =a,_,. By mathematical induction it is easy to
verify that a;, <a}’ forevery k € N and from a, <a) we obtain that a, <a; for
every k € [N. Without losing the generality of our problem, if z,,z,,...,z, are

n
the pairwise different roots of the new characteristic equation

2" -a,z" - —a,z—a, =0,
then we can determine the values a; in the following form
4 K k Nk
ap =Bz +Byz; +... 48,2,

where B,,8,,...,B, are the solution of the following linear Vandermonde-type

system:
B, +B, +... 4B, =ay=ay=p(x;,xy)
Bz, +Byz; +...+B,z, =ai'=a, =o(x,, x,)
4
n—1 n- ]
ﬁl +BZZ +Bn n n = p(xnﬂ‘n I)’

where x, = F(xy,%,...,x,_,).
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Because the Vandermonde determinant of the linear system is different from
zero, there exist the values B,,i=1,n. Consequently, a, <B,z{ +p,z% +..._+an,’1‘

for every k € N. Now we show that x,,,,, €B:

P(Xy i1 X0 ) SP(Xpypeis Xpgn) Toe P03y, %) <

kg k k i
<B G e+ DB (Tt D 4B, (2 2, 1) =
k+1 n k|
e g 3 1-z3* 1-z
=BI' +BZ' +"'+Bﬂ' 4 =
: 1-2z, =75 1=z,

The previous expression is a real number, so

1__Zln+k+l 1—Z;+k+] l__z:-l-k-il
=B, - +B, - +o.4B, —2—|=
|B] I 24 BZ 1-z, P -z,
n k+1 ntk+1
11—z +"“I |1 2357 | [bzn 7
<IBt +(B, |- Ry =t
i [ 17 " =z,
2
S —_— —__<r
<IBl- _|]| HBab Bl

Thus, it is possible to define the sequence {x, }, . by using the function F.

In the sequel, we show that {x, } k'E n is a Cauchy sequence. Indeed:
Py s X ) SP(Xy s Xy 1) FP(Xp s Xy poa )+ #P(X 5 X, ) S

By (2P 4B, (2 ]+...+z§)+._..+[3"-(z,’,””"+...+z,’f)=

This last expression is less than every small € >0 if ke N is sufficiently
large, for every peN. But X is a complete metric space, so there exists

lim x, =x" €B because B is a closed sphere. After ii) F is a Lipschitzian

koam

function, so it is continuous in every argument. Taking the limit in the recurrence
relation and using i), we obtain x" = F(x",...,x ) =¢(x"). This fixed point is
unique in B. Indeed, if y” €B is another fixed point for ¢, then p(x",y")=
=p(o(x ), @V N =p(F(x",...,x" ), F( s,y ) Smy p(x", p" ) +myp(x”, p7) +



I
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+..+m, o(x7, ¥y < p(x",y"), which means a contradiction because m, +m, +
+...+m, <l QUED.
For n=1 from Theorem 2 we obtain the following

THEOREM 3. Let (X, p) be a complete metric space, x, € X a fixed element,
and B=B(xy,r)={xeX|p(x,x,)Sr} a given sphere, where r>0. If the
function @:B—> X verifies the following conditions

i) p(0(¥)), 0(y,) Sm-p(y,,,) forevery y,,y, €B and 0<m<],

. ¥
if) P(P(Xo ) %o) = P15 %) S (1= m)-=,
then the sequence {x,},.n 0btained by the iterative method x, ., =¢(x;) is

well defined, i.e., the terms of the sequence are in B, it is convergent and if we
denote x* = klim Xy, then x" is the unique fixed point for ¢ in B.
S

Proof. The condition ii) assures that x, € B because
¥
Pxyy3) S (1=m)-Z <.

We apply Theorem 2. In this case we have z—m=0,z, =m,B, =p(x,x,), so the
1B,

-1z

condition <L gives us that p(x,,x,) <(1-m) %

Remark 1. Theorem 3 is true if instead of ii) we consider the condition
p(x,, %) < (1=m)-r(see [1])

Example 1. Further on we consider a numerical example.

Let X=R,x,=0,r=1,8=B0,1)=[-11], /:[-1,1]>R, f(x)= —%e‘x —x,

Because f(—1)>0, f(1)<0 and fis continuous there exists root of the equation
7(x)=0 in B. To solve this equation we take the function ¢:[~1,1]—> R,

o(x) =%e"‘ and we apﬁly.:Theorem 3. Indeed, from Lagrange theorem we get
Lo L1l 1 4 5 )
the value m:|o(y,)-¢(»,)|= geligah Spe |y -yzlsg-lyl—yzl, where

' e 1 e} 1 ¥
e[-1,1], so m=— and |@(x,) - x,|=|x; — x =—£(1——j-—= 1-m):-—.
g €l ] 5 lo(xg) = xo] =1x, ol 5 5) 5 ( ) 5

Forn= 2 from Theorem 2 we obtain the following

7 On an Interative Method 249

THEOREM 4. Let (X, p) be a complete metric space, x, € X a fixed element
and B=B(xy,r)={xeX|p(x,x,)<r} a given sphere, where r>0. If the
function F:B* — X verifies the following conditions:

i} F(x,x)=0(x) for every x €B,

ii) there exist the constants my,m, 20, m, +n, <1 so that

PE(YV13 Y1) F(yy, ¥3)) <my-p(yy, yy) 0ty -p(yy, ¥3)

Jor every y,,¥,,y, €B,

iii) the real numbers z,, z) are the roots of the equation z° —m,z—m, =0
. -
with z, <z, so that layz, —a,|-(1-2,)+|agz, —a,|-(1-2,)<(z, —2z,) (1-m —mz)-a,

where x, € B(x,,r), x, =F(xq,x,) €B, ay =p(xy,%;), a, =p(x,,x,), then the
sequence {x,}, . obtained by the iterative method with two steps is well defined,

i.e., the terms of the sequence are in B, it is convergent and lim x, = x", where x’
k—>o»
is the unique fixed point for ¢ in B: F(x", x*) =p(x" )=x".
Proof. In this case the characteristic equation has the form

2
z" —myz—m =0,

m, —1[m22 +4m, . m, +1}m22 +4m,

with real roots: z, = > ol >

calculus gives us that z, €[-1,0] and z, €(0,1) if m; +m, <1. We determine the

. An elementary

values 3, and 3, from the system:

{B1 +B, =ap =|x; = x|
Biz, +Byzy =a; =[x, ~ x|

The searched algebraic condition has the following form

AyZ, _“_al‘. 2 al_aOZl‘_ 2

<r, lLe.,

23— 7 ‘ |1z, Zy —z ‘ 11—z,

»
ayzy —ay|-(1-2,) +|a; —aez |- (1-2,) S (2, “Zl)(l—z|)(1‘zz)‘§:

=(éz—zl)(1—m1—n5)-g. QED.
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Example 2. Further on we consider an another numerical example. Let X =R,
s 1oy !
x, =0, r=1, B=B(0,)=[-11], f:[-1,1] >R, f(x) =T6e -x,¢0:[-L1]>R,

. I [
" Let us consider F:B* > R,F(x,y)=—e*+—e”, so
20 20

F(x,x)=(x). From the Lagrange’s mean value theorem we obtain the values m,
and n1,:

1
(P(x)—ﬁe

[F(y, )= F(yy,y3)|=
- (ie”}’l _ie‘m)-_l_(ie*}’z __l_e‘}"]) <
20 20 20 20

1 1 e
<—e? |y —yp,|+—e™ — Y. |€—
20 |y, =¥l 20 b2 » sl 20

e
5 +___ —_— 3
1y, = .l "0 |y = ¥l

where q,,q, €[-1,1], so m =m, =%. The equation z°> —m,z—m, =0 has the

e—w;'ez +80“e- o e+\/e2 +80e We

form 20z° —ez—e=0 with roots z, = .
40 40

1
choose x, =0e[-1,1] and we calculate x, =F(x0,x,)=5, a; =|x; = x|=0,

a, =|x; —x,|= % So we verify the inequglity iit) from Theorem 4:

_l_[l_e+\}e2+80eJ+ | [1_3—\/32+80e]<\/e2+80e(1_f_) 1

e~ -—, ie.,
20 40 20 40 20 10/ 2

2(40 - e) <+e? +80e - (10—e),

which is true,
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