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. DEGREE OF APPROXIMATION OF CONTINUOUS
. FUNCTIONS BY SOME SINGULAR INTEGRALS

SORIN G. GAL

1, INTRODUCTION

Let us denote
Cy, ={f :R—>R; fis 2n-periodic and continuous on R}
and for o €(0,1]
Lipo = {f €Cyp; 3M> 0 with | (x) f(»)|S MIx -y, ¥x,y € R}.

For f €C,, and £ >0 let us consider

+

P(x,8)=(28)" [ f(x+1)eM dr,

o

0(x,8)=(E/m) [ [f(x+0)/(* +E7)]dr,

W(x,8)=(nt) ™ [ f(x+t)e " dr,

called the Picard, Poisson-Cauqhy and Gauss-Weierstrass singular inlegrals,
respectively (see, e.g., [8]).
For f eC,, and p e N, the p-th modulus of smoothness of f'is defined by

(see,e.g., [5,p. 47))
w,(f38)=sup {|A} f(x)}; x,x+pheR, 0<hsi},

where
ALf(x)= f (—D”"(p) Sf(x+kh).
k=0 k

fhe modulus o,(f;t) is denoted by o(f;1).
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Regarding the approximation by the previous singular integrals, the
following estimates are obtained in ({81, [41):

THEOREM 1.1. If f €C,, thenas &—> 0+ we have
1/ ()= P(x, &)= O(o(f;8)), £ (x) - (%, §)]1=O(a(f;§)In(1/ E)),
1f (2) =W (5. B)|=O((f:8) &),

where the uniform ||-{| is applied 10 X.
The main purpose of this paper is to obtain error bounds in terms of higher
order moduli of smoothness, o, (f; &), for approximation by singular integrals of

the previous type. Thus, if f () e Lip o, then better approximation orders can be
obtained. Also, in comparison with [8] and [4], the most estimates are obtained
with explicit constants.

2. APPROXIMATION BY SINGULAR INTEGRALS OF PICARD-TYPE

Firstly, we shall improve the estimate in Theorem 1.1.

THEOREM 2.1. If f €C,, then we have
1/ ()= P(x,8)$(5/2) 0, (f3€), VE>0.
(ii) If there exists f' € Lipa then

If ()= P(x,E)I<(5/2) €%, VE>O.
Proof. (i) By the proof of Theorem 1in [8] we have

+

P(x,E)- f(x)=(28)" [ ¢, ()™ dr,

0

where
b, (0= fx+D=2f (D) +f(x-1).
Hence
P(,E) - F)I2E)™ [ I (nle™® drs28)" [ oy (f3ne™ dr=
0 0
=8 [ @y (f5(/8)8 et dr<(e)” [ [ler/E) e dr=
0 0

+

=8)" 0,(f;8)E | (+2u+u?)e™ du=Co,y(f38),

| M R L Y
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where by a simple calculus we have

+®

C= [ (+2u+u?)e™ du/2=5/2.
0
Passing to supremum with x € R, we get the desired estimate.
(i) If f' € Lip o then we get

IS (%)= P(x, IS (5/2) 0, (f38) S(5/2) Eo(f38)<(5/2) 1"

Remark. Obviously, the order of approximation in Theorem 2.1 (ii) cannot be
obtained by Theorem 1.1.

_ Nov'v, following the ideas in [5, p. 57, relation (7)], we shall generalize the
Picard's singular integral in the following way.
For p € N let us consider

pri 1 **®
P, (x,8)=-(28)" 2. (—1)k(p;) [ FOc+kyeodr, E>0.
k=1 oo

We shall prove

THEOREM 2.2. () If f €C,, thenwe have

- p+l 1
Hf(x)—P,,(x,é)Hé[Z (p; )k!}wpﬂ(f;&), vE>0.

k=0

(ii) If there exist £ €C,, then we get

rrl (p+1
||f(X)—P,,(x,§)IIS{Z [ 4 ]k!]ﬁ”w(f(”);ﬁ), VE >0,
s k=0

Proof. We have

f)-P,(x,8)=f(x)@E)" [ e dr+

-0

ool p+l
+28)" | {Z <—1>k[p ;lﬂ Flx+ k) e MWeds =

k=1

=20)" [ (-D7Ar fy e R,
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wherefrom

f() =P (5 BISRE)" [ 0, (fil)e =

+ o

26 [0, (e Bar=g" [0, (f:(t/8)8) e i<

0

(see [5, p. 48])

<t70,,,(f;8) [ (+1/8)P*" e de =
0

Z(Dp+l(f;g) J. (1+u)P+le—“ du:Cp+]CDp+|(f;E_.,),
where

+.0 p+l p+1
Cpur = I(1+u)"+]e""du=2[ k )k!.
0

k=0
Passing to supremum with x € R, we get the desired estimate,

By ®,,,(f;§)< EPw(f 7€), (i) is an immediate consequence of (i).

Remark. A natural question which arises refers to the construction of
singular integrals of Picard type which approximate the continuous functions
defined on compact intervals. Thus, for example, if fis continuous on [0, 1] (we
write f €C[0,1]), then we can define

LIf10x,8) =67 [ flxe*)e ™™ dt, xe[0,1], &>0.
0

In this case, the [ollowing poiniwise estimale holds:

THEOREM 2.3. If f €(C[0,1] then
ILLf1(x,€) - f(x)|sd0(f;&x), Vxe[0,1], VE>O.
o(f;t)=sup{lf(x)-f O Ix-yI<t, x,pe[0,1]}.

Proof. Denoting e, (t)=+t',i=0,1,2, we get

Lley](x,8)=1,
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+ 0

Lie)(x,8) =2 [ 01 gr=

0

=L /(U4 1/ EN[-e 0| " )= x/ (5 4 1),

+ o

Lle,)(x,8)=x"" [ 7O+ dr=x2 /(284 1),
Q0

For fixed x €[0, 1] we get
Li(e, ~x)"1(x, &)= x> /(& +1)-2x7 / (E + 1) +x* =

=2x B I[(E+1) (25 +1)] < 2x2E2,

Now, taking into account that 7 is a positive linear operator, by [3, Theorem
2.3] we immediately obtain :

ILLA1(x, €)= F(x)|S 20 (f342-Ex) < 4o (f; Ex);

which proves the theorem.

At the end of this section we shall extend the Picard’s singular integral to
functions of two variables, in the following way.
Let us consider

Copon ={f:RxR—>R; fiscontinnouson R xR

and 2n-periodic in each variable},
£ 1= sup{lf(x, )|; x,y R}, Vf eCy, s,

o(f;8 M) =sup{|f(x+h,y+k)-f(x,)]; 0Sh<E, 0<k<n, x,ye R},

£,m>0,
and for f €C,, ,,
P(x,y,&m)=en)™ [ [ fG+t,y+5)e e 67 grds, £ n>0.

We shall prove

THEOREM 2.4. If f €C,, ,,. then we have

I (%, ») = PCx, y, €, m)lI< 30(f58,m), Y E1>0,

where the uniform norm ||-|| is applied to x and y.
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Proof. We have
|P(X,y,§,n)—f(xs)’) |:

+o00 400

—(e) [ [ LGty s - Gyl eI dr ds <

)

+w +w

=(4&m) ™ J’ Im(f;lt|,|s|)e""’§-e"'s‘/" dt ds =

+0 o

=& | o(f5/8)E (s/mymye S e M dr ds <

+00 + 00

<EDofEN | H+e/E+s/mle e drds=30(/38 M),

~0 -

wherefrom passing to supremum with x, y € R, we get our estimate.

3, POISSON-CAUCHY AND GAUSS-WEIERSTRASS-TYPE INTEGRALS

Some ideas in the previous section will be considered in the case of the
Poisson-Cauchy and Gauss-Weierstrass singular integrals, too.
Firstly, we shall prove

THEOREM 3.1. (1) If f €C,, then we have

(D) 1f )= ElS1+(1/mIn(x’ + D1 E 0, (f38)+(2/ ") EIIS N,
£ €(0,1]

and

@) If)-FEEI<A/Vr) (r /2 + 1+ n 1 8)E 0, (f38) +
&L Ee0,1]

If, moreover, f #C (constant) then as & — 0+ we get
1f (%) - 9(x,8)[|= O 0, (f3£)
1/ (x) =W (x,E)[|=OE 0, (f38)).
(i) If f #C (constant) and f' € Lipa thenas & — 0+ we have

IS ()= Q(x, E) =0 (&™)
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and

Lf(x) =W (x,)||=0(E").

Proof. (i) By the proof of Theorem 1 in [8] (relations (4.3), (4.4), (4.8) and
(4.9)) we get

O(x,8) = f(x)=(&/m) [ [o,(6)/ (> +EP)]dr = £ (x) E(E),
0

W(x,E)~f(x)=(n) ™" [ ¢, (1)e™ " dr— R(x,8),
0

where for all & >0 we have

|E(E_,){=E(§)=1—(2§/n)J'dt/(tz +E2)=1-(2/m)arctg (n/E)<(2/ )&
0

and
IR, E)[<Wm) ™ 1/ 1le™ & <(m) ™t /) |11

Hence, for x € R and £ > 0 we obtain

B 10xE)-fW)I=E/m) [[0,(f30/(* +E)de +I|f |- |EE))
Jealfs .

and

i

@) W(x,8) - fFIS(E) " [ @, (fi0)e™ % dr +[R(x, 8.
1]
But

&/ m) [ Lo, (f30) /(7 +ENde=E/m) [ [0,(f5(t/E)EY/ (¢* +E)]de <
0 0
SE/Im) 0, (f38) [ [(1+278)7 1(1° +E)]dt =
0

=&/ )0, (f38) [ (17 &7 + 20 /[E(e +&€7)]y de =
0

= (&/myo, (f;8) [ /& +(1/ &) In((x? +a?5/a2)]%c62<f;a)/a+
+(1/ 1)@, (f3E) In((r? +£2)/E2) <[1+(1/m) In(n? + D] E " 0, (f3E),
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for all £ €(0,1], since it is easy to prove that
In[(n® +&%)/E*1<(1/E) In(n? +1), VE e(0,1].

Then by (3) we immediately get (1). L
Analogously, in the case of W(x,£) we have

()™ [o,(f5ne™ " dr<(n8) 0, (f38) [ (1+/8)? ™ 2dr <
0 0

sm&r‘”mz(f;a){(né)“ 12+14E77 o e‘“zdu}=

0
(by [7, p. 17, Problem 1.40, c,)l)
=(nE) 20, (f3E) {(nE)? 1241+ £ (Jn /) <
<(UARY R 241441 14)E 7w, (f3E), forall & e(0,1],

which, together with (4), immediately proves (2). T

The condition #C (constant) implies ®,(f;n)#0. Indeed, if
®,(f;n)=0, then by [5, p. 52, Problem 4] we easily get that fis linear on each
interval, which combined with f eC, , implies the contradiction f=C

(constant) on R.
Then by [2, p. 488, Property 7] we get

E=E78" =£7'0(0,(f;8) =@ (E 0, (f;8)),
which, together with (1) and (2), immediately gives
1/.(x) - Q(x, )| =D& 0, (f38)),

If ()= (x, E)lI=P(E " 0, (f;8).

(ii) By (i) we get
1/ () =00, &)= O 0, (f;£) =BE En(f;£) = OE®).
The proof in the case of #{x,&) is entirely analogous.

Remark. Obviously, the estimates in Theorem 3.1 cannot be obtained by
Theorem 1.1. On the other hand, note that the same condition f #C (constant) is
necessary for the validity of the estimates in Theorem 1.1, too, concerning the
approximation by Q(x,&) and W(x,&).
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The method in [5, p. 57, relation (7)] can be used in the Poisson-Cauchy and
Gauss-Weierstrass integrals, too. As, for example, the Gauss-Weierstrass singular
integrals can be generalized by

p+1

W, (x,8)=-{1/QCEN 2, (—I)k(pl:rl] [fvhy e a,
k=1 a%

n
where peINU {0},£>0,r>p/2+2 and C(§) = I e*'2’§2dt, then an analogue
0
with Theorem 2.2 (in Section 2) can be proved in this case, too.
Firstly, we need the following.

LEMMA 3.2, We have
gfedusCE)<tnr2, 0<Es<l
0

Proof. We can write (see, e.g., [7, p. 17, Problem 1.40, ¢)])

n /&

Jotdr=t [eause [ e du=tyn/2, VE>O,
0 0 0

On the other hand, for £ <1 we get

n/E n
£ J.e‘“z du>¢& _[ e du,
0 0

since e™ >0 and = /& 2 m, which proves the lemma.
Similar with Theorem 2.2

THEOREM 3.3, We have
(5) ' IF () =W, (x,E)|=0(w,, ,(f;&), VO<ELL

Pro cf. We get
SO~ (x,8)=[1/2CEN] [ (-1 a7 f(xye " di,

which implies

f ) =W, BISICEN [0, (f;) e drs

<[/ CEN®,, (f38) [ [1+17e] /8 dr =
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n/€

~[E/CEN @, (f38) [ [1+1)7*! e dus
0

(Lemma 3.2)

é’(ﬁ Ie_"zd”] 0, (f38) [+ e du=
0 0

A

Ve dul| [ eur e dulo,,, (f:8)=
0

0

=0(0,,,(f;8), 0<E<],

which proves the theorem.

4. FINAL REMARKS

Remark 4.1. Related with Q(x, &), the Poisson-Cauchy singular integral in
Introduction, it is the well-known Poisson integral defined by

I(x,8)=(/m) [ f(x+0)/(2 +ED)]dr, £>0.

As concerns this integral, Th. Anghelutd proved in [1] the estimate

£ ()= 1(x, &)= O(o(f:E)|In(1/E)]), as E>0+, f el

Comparing with Theorem 1.1, we note that although QO(x,&) and I(x,¢)
differ in their limits of integration, they give the same order of approximation.

Remark 4.2. It is not difficult to verify that, for example, Q(x,&) and
W(x,£) are positive linear operators on C,., satisfying the conditions in the

classical Korovkin’s result. - . . :
However, it is easy to verify that the estimates which can be derived by, e.g.,

[3] are weaker than those given by our previous results.

Remark 4.3. As regards the Poisson singular integral /(x,&) in Remark 4.1,
a saturation theorem is proved in [6]. Then it would be of interest to obtain
saturation theorems for P(x, £), P (x,€), Q(x,8), W(x,£) and W,(x,£), too.
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Remark 4.4. With respect to the Poisson singular integral I(x,&), it is
known the following Hardy-Littlewood’s result (see, e.g., [9, p. 101)):

felipa (0O<a<l) iff dI(x,&)/ox=0E* "), £—0+.

A question which arises is to give an analogous characterization for
OP(x,E)/0x, 8P, (x,&)/ ox, 8Q(x,£)/x, OW(x,E)/dx and oW, (x,8)/ dx, too.

Remark 4.5. Direct and converse approximation results in uniform appro-
ximation by linear combinations of Gauss-Weierstrass-type operators obtained in
W(x,&) by replacing m with + o0 and — 7 with — oo, were given in [10].

Also, the results in [10] are given in terms of the L? -norm in {11].

Then it would be of interest to obtain the estimates in the present paper by

replacing the uniform norm with the L?-norm, p > 0.
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