" " algorithe shares in marking the **REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION** TOME XXVII, N⁰ 2, 1998, pp. 263–275 isse polynomial of first

Boblean som of a post ereter interpolating at the endpoints. Since the Boolean sum of two sostilized threat operators is not a positive linger operator. On site and Zhou formulated in [12] the following problem

A CLASS OF DISCRETELY DEFINED POSITIVE LINEAR **OPERATORS SATISFYING DEVORE-GOPENGAUZ** INEQUALITIES

 $L_{0}(f(x)) = f(x) \le r(0, f)$

IOAN GAVREA, HEINZ H. GONSKA, DANIELA P. KACSÓ

Combining this question with a well leave proclam point by Burger in 1980 leads to the difficult question whether must discretely defined positive

1. INTRODUCTION AND HISTORICAL NOTES

The first colution to Burbar's problem in its original form was given by Cao An improved form of Jackson's well-known theorem on the approximation of continuous functions given on the interval I = [0, 1] by algebraic polynomials is the pointwise estimate of Theorem 1, which is due to the work of Timan [17] for k = 1, Dzjadyk [7], Freud [8] for k = 2, and of Brudnyi [1] for $k \ge 3$ (see also [5]).

THEOREM 1. Let $f \in C(I)$. If $k \in \mathbb{N} = \{1, 2, ...\}$, then there is a constant c_k such that for any $n \ge k-1$ we can find an algebraic polynomial $p_n \in \Pi_n$ satisfying

$$|(f-p_n)(x)| \le c_k \cdot \omega_k \left(f; \frac{\sqrt{x(1-x)}}{n} + \frac{1}{n^2}\right), x \in I,$$

where $\omega_k(f, \cdot)$ denotes the k-th order modulus of smoothness of f.

Telyakovskii ([16], k = 1), Gopengauz ([13], k = 2) and DeVore ([6], k = 2) were the first to discover the validity of inequalities of the type given above with

 $(L_af)(z) \stackrel{\sim}{=} f$

the $\frac{1}{n^2}$ term removed, i.e., estimates of the form

(1)
$$|(f-p_n)(x)| \le c_k \omega_k \left(f; \frac{\sqrt{x(1-x)}}{n}\right), \quad x \in I.$$

Moreover, Yu [18] and Li [14] gave counterexamples showing that an inequality of the type (1) cannot hold for $k \ge 3$.

Recently, Cao and Gonska have given in [2] a simple proof of (1) for the case k = 2, at the same time embedding the method of proof into a more general and instructive framework, namely, the mentioned authors have considered the

AMS Subject Classification: 41A36.

Ioan Gavrea, Heinz H. Gonska, Daniela P. Kacsó

Boolean sum of a positive linear operator and the Lagrange polynomial of first order interpolating at the endpoints.

Since the Boolean sum of two positive linear operators is not a positive linear operator, Gonska and Zhou formulated in [12] the following problem:

"Do there exist positive linear operators $L_n: C(I) \to \Pi_n$, such that for all $f \in C(I)$ and all $x \in I$ one has OPERATORS SA

 $|L_n(f;x) - f(x)| \le c\omega_k \left(f; \frac{\sqrt{x(1-x)}}{n}\right)$ (2)

with the constant c independent of f, n and x?"

Combining this question with a well-known problem posed by Butzer in 1980 leads to the difficult question whether there exist *discretely defined* positive linear operators satisfying (2).

The first solution to Butzer's problem in its original form was given by Cao and Gonska in 1989 [3]. Furthermore, only recently Gavrea [9] has constructed non-discrete positive linear operators satisfying (2).

In the present paper we construct a class of discretely defined positive linear operators satisfying DeVore-Gopengauz inequalities, thus also providing a solution for the stronger form of Butzer's problem as formulated above. Moreover, we shall also investigate the potential of these new operators for simultaneous AUR FULL TOPO AND 1 - 5 2 11 (BUD) approximation.

> 2. CONSTRUCTION OF THE DISCRETE APPROXIMATION OPERATORS

In [9] Gavrea constructed non-discrete positive linear operators satisfying 10.11.1087036951 DeVore-Gopengauz inequalities in the following way: were the first to discover the valually of Let $L_n: C(I) \to \Pi_n$ be defined as the $\frac{1}{\sqrt{2}}$ term removed, i.e., estimates of the form $\sqrt{2}$ is $\frac{1}{\sqrt{2}}$. $(L_n f)(x) = f(0)(1-x)^n + x^n f(1) + (n-1)\sum_{k=1}^{n-1} p_{n,k}(x) \int_0^{n-2,k-1} (t) f(t) dt,$ (1)with $p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}, k = 0, ..., n.$ Consider now a polynomial $P_n \in \Pi_n$, $P_n(x) = \sum_{k=1}^n a_k x^k$, satisfying the case $\lambda = 2$, at the sam $0.7 M_{\rm BH}$ ended thus the model of proof lists where following conditions: months in an and a demonstration of the method of the second sec a) $P_n(x) \ge 0, x \in I$, AMS Sofiest Cleatilization +1A36

b) $\int P_n(x) dx = 1$, c) $P'_n(x) \ge 0, x \in I.$ Then the operators $H_{n+2}: C(I) \to \prod_{n+2}$ are given as then P, also a distict (5 (3) $(H_{n+2}f)(x) = \sum_{k=0}^{n} \frac{a_k}{k+1} (L_{k+2}f)(x).$ In [9] it was proved the following will introduce new the following notation THEOREM 2. The operators H_n given in (3) are linear positive operators, and for every function $f \in C(I)$ and every $x \in I$ one has: $|H_{n+2}(x) - f(x)| \le \frac{9}{4} \omega_2 \left(f; \sqrt{x(1-x)} \cdot \sqrt{1 - \int_0^1 x^2 P_n(x) \, \mathrm{d}x} \right).$ (4) In order to turn the estimate (4) into one of the DeVore-Gopengauz type, we have to find polynomials P_n (satisfying the conditions a), b) and c)), such that (5)

Positive Linear Operators Satisfying DeVore-Gopengauz Inequalities

 $1 - \int_{\Omega} x^2 P_n(x) \,\mathrm{d}x \leq \frac{c}{n^2},$

where c is a constant independent of n.

As one can easily notice, any nonzero polynomial P_n satisfying a) and c) necessarily has the following form: -south to be large

(6)

 $P_n(x) = \int_0^{\infty} Q_{n-1}(t) dt + \alpha_n,$

where $Q_{n-1} \in \prod_{n-1}, Q_{n-1}(x) \ge 0$ for $x \in I, \alpha_n \in [0, 1)$.

In order to have condition b) also verified by P_n , we have to choose Q_{n-1} such that the equality

 $\int (1-x) Q_{n-1}(t) \, dx = 1 - \alpha_n$

is also fulfilled. On the other hand, from (6) we get $1 - \int x^2 P_n(x) dx =$ wollow f(x) = 0

 $=\frac{1}{3}\int_{-1}^{1}(1-x)^{2}(x+2)Q_{n-1}(x)\,\mathrm{d}x+\frac{2\alpha_{n}}{3}\leq\int_{-1}^{1}(1-x)^{2}Q_{n-1}(x)\,\mathrm{d}x+\frac{2\alpha_{n}}{3}.$

4

Positive Linear Operators Satisfying DeVore-Gopengauz Inequalities

Thus, if there exist two positive constants c_1 and c_2 such that $\int (1-x)^2 Q_{n-1}(x) \, \mathrm{d}x \le \frac{c_1}{n^2} \quad \text{and} \quad \alpha_n \le \frac{c_2}{n^2},$ Then the depictments $H_{\mu\nu\rho}(\sigma(t)) \rightarrow W_{\mu}(\sigma)$ we given by then P_n also satisfies (5). In the next theorem we shall give the smallest value for the constant c_1 in (7), putting $\alpha_n = 0$ in the sequel. $= \{2, 1, 2, \dots, N\}$ In order to give a uniform treatment for all the cases in our next theorem, we will introduce now the following notations: THEORDA 2. The sporators releasion in (F) are inner positive operements $\Pi_{n-1}^* = \left\{ P \in \Pi_{n-1} | P(x) \ge 0 \text{ for } x \in [0,1] \text{ and } \int_0^1 (1-x) P(x) \, \mathrm{d}x = 1 \right\},$ $s := s(n) = 1 + \left[\frac{n-1}{2}\right],$ และ อาศาราช (และ ประกะวรไม่มาก หรือ) (กระองทุก - กะประจุ 10 หรือสุจะ) อนจะกฎหละ เจราะ พระ $d:=d(n)=n-1-2\left[\frac{n-1}{2}\right].$ THEOREM 3. $\inf_{Q_{n-1}\Pi_{n-1}^{*} \int_{0}^{1}} (1-x)^{2} Q_{n-1}(x) dx = \int_{0}^{1} (1-x)^{2} Q_{n-1}^{*}(x) dx = 1-x_{s},$ where $Q_{n-1}^{*}(x) = \lambda_{n}^{*} x^{d} \left(\frac{J_{s}^{(1,d)}(x)}{x-x_{s}} \right)^{2}, \lambda_{n}^{*} = (1-x_{s}^{2}) \cdot \frac{s+d+1}{s+1},$ and x_{s} is the largest root of the Jacobi polynomial $J_s^{(1,d)}$ relative to the interval [0,1]. *Proof.* We shall investigate first the case when n is an odd natural number, that is, d = 0 and n = 2s - 1. We consider the Gauss quadrature formula

Ioan Gavrea, Heinz H. Gonska, Daniela P. Kacsó

(8)
$$\int_{0}^{1} (1-x) f(x) dx = \sum_{k=1}^{s} A_{k} f(x_{k}) + R(f),$$

where $x_k, k = 1, ..., s$, are the roots of $J_s^{(1,d)}$. Thus R(f) = 0 for $f \in \prod_{2s-1}$. Let $Q_{n-1} \in \prod_{n-1}^*$. We apply the previous quadrature formula for $f(x) = (1-x) Q_{n-1}(x)$. It follows that

$$\int_{0}^{s} (1-x) (1-x) Q_{n-1}(x) dx = \sum_{k=1}^{s} A_k (1-x_k) Q_{n-1}(x_k).$$

Because $A_k > 0$, k = 1, ..., s, we get

(9)

5

 $\int_{0}^{1} (1-x)^2 Q_{n-1}(x) \, \mathrm{d}x \ge A_s (1-x_s) Q_{n-1}(x_s).$

One obtains equality in the latter relation when

$$Q_{n-1}^{*}(x) = \lambda_{n}^{*} \left(\frac{J_{s}^{(1,0)}(x)}{x - x_{s}} \right)^{2}$$

with with a base multiple in the farm rule of the farm of the second of

$$\int_{0}^{*} \frac{1}{\int_{0}^{1} (1-x) \left(\frac{J_{s}^{(1,0)}(x)}{x-x_{s}}\right)^{2} dx}.$$

We compute now the integral from (10) by using again the Gauss quadrature formula (8). This gives

$$\int_{0}^{1} (1-x) \left(\frac{J_{s}^{(1,0)}(x)}{x-x_{s}} \right)^{2} dx = A_{s} (J_{s}^{(1,0)}(x_{s}))^{2}.$$

The latter equality together with (9) and (10) imply that

$$\inf_{x=\pi_{n-1}^{*}}\int_{0}^{1}(1-x)^{2}P(x)\,\mathrm{d}x=\int_{0}^{1}(1-x)^{2}Q_{n-1}^{*}(x)\,\mathrm{d}x=1-x_{s},$$

where $Q_{n-1}^{*}(x) = \lambda_{n}^{*} \left(\frac{J_{s}^{(1,0)}(x)}{x - x_{s}} \right)^{2}$, $\lambda_{n}^{*} = \left(\frac{J_{s}^{(1,d)}(x)}{x - x_{s}} \right)^{2}$, and λ_{n}^{*} is given in (10).

We investigate now the case when *n* is an even natural number. Thus n = 2s, d = 1. We shall use Bouzitat's quadrature formula of the first kind (see [10, pp. 101 104]):

(11)
$$\int_{0}^{1} (1-x) f(x) dx = A_0 f(0) + \sum_{k=1}^{s} A_k f(x_k) + R(f),$$

where x_k are the roots of $J_s^{(1,1)}$ (which is $J_s^{(1,d)}$, and R(f) = 0 for $f \in \Pi_{2s}$. The coefficients of Bouzitat's quadrature formula are given by

$$A_0 = \frac{1}{(s+1)(s+2)}$$
 and $A_k = \frac{1-x_k}{(s+1)(s+2)} \cdot \frac{1}{(J_s^{(1,0)}(x_k))^2}$, for $k = 1, ..., s$.

266

268

a ad Fi

We apply the quadrature formula (11) for $f(x) = (1-x)Q_{n-1}(x)$, with $Q_{n-1} \in \prod_{n=1}^{*}$, which gives

(12)
$$\int_{0}^{1} (1-x)^{2} Q_{n-1}(x) dx = A_{0} Q_{n-1}(0) + \sum_{k=1}^{s} A_{k} (1-x_{k}) \cdot Q_{n-1}(x_{k}) \geq A_{s} (1-x_{s}) Q_{n-1}(x_{s}).$$

In order to have equality in the latter relation, $Q_{n-1}(x)$ has to have the form

(13)
$$Q_{n-1}(x) = \lambda_n^* \cdot x \left(\frac{J_s^{(1,1)}(x)}{x - x_s}\right)^2,$$

protocological conditions $\lambda_n^* = \frac{1}{\int_{-\infty}^{1} (1-x) x \left(\frac{J_s^{(1,1)}(x)}{x-x}\right)^2 dx}$, of wow oblighted with λ_n alternation.

On the other hand, an application of Bouzitat's quadrature formula for the integral in (13) yields

$$\int_{0}^{1} (1-x) \left(\frac{J_{s}^{(1,1)}(x)}{x-x_{s}} \right)^{2} dx = A_{s} (J_{s}^{\prime(1,1)}(x_{s}))^{2}.$$

Using the latter equality and the relations (12) and (13), it follows that

$$\inf_{P \in \Pi_{n-1}^*} \int_{0}^{1} (1-x)^2 P(x) \, \mathrm{d}x = \int_{0}^{1} (1-x)^2 Q_{n-1}^*(x) \, \mathrm{d}x = 1-x_n^*$$

We investigate restary decides when a real even out and humber. These with Q_{n-1}^* given as in (13).

Unifying the results for the cases n odd and n even, we can now state the following:

(14)
$$\inf_{Q_{n-1}\prod_{n=1}^{*},0} \int_{0}^{1} (1-x)^{n} Q_{n-1}(x) dx = 1-x_{s}, \quad n \in \mathbb{N}.$$

$$\int_{0}^{1} (1-x) x^{d} \left(\frac{J_{s}^{(1,d)}(x)}{x-x_{s}}\right)^{2} dx$$

Positive Linear Operators Satisfying DeVore-Gopengauz Inequalities

In order to compute the integral from the denominator of λ_n^* , we shall use the following Gauss quadrature formula:

$$\int_{0}^{1} (1-x)^{d} f(x) dx = \sum_{k=1}^{s} A_{k} f(x_{k}) + R(f),$$

where $x_{k}, k = 1, ..., s$ are the roots of $J_{s}^{(1,d)}$.
We have
$$\int_{0}^{1} (1-x)^{d} \left(J_{s}^{(1,d)}(x)\right)^{2} 1 = (x + x)(1, d) (x + x)^{2}$$

 $\int_{0}^{1} (1-x) x^{a} \left(\frac{-s}{x-x_{s}} \right) dx = A_{s} \left(J_{s}^{\prime(1,d)}(x_{s}) \right)^{2},$ where $A_{s} = \frac{s+1}{s+d+1} \cdot \frac{1}{(1-x^{2}) \left(J_{s}^{\prime(1,d)}(x_{s}) \right)^{2}}$ (see [10, p. 94]). Thus we obtain $\lambda_n^* = (1 - x_s^2) \frac{s + d + 1}{s + 1}$, which completes the proof. \Box

The next theorem provides a method which enables us to discretize a linear polynomial operator, such that the discretized operator has the same degree of approximation as the initial (non-discrete) one.

THEOREM 4. Let $\mathscr{G}_n: C(I) \to \Pi_n$ be a positive linear operator of the form $(\mathscr{L}_n f)(x) = \int \rho(t) K_n(x,t) f(t) dt,$

where ρ is a weight function strictly positive on (0, 1), and $K_n(x, \cdot) \in \Pi_n$ for every $x \in I$. Then: (i) $K_n(x,t) \ge 0, \forall (x,t) \in I \times I.$

(ii) The operator $\mathscr{G}_n^* f: C(I) \to \Pi_n$ defined by

$$(\mathscr{G}_n f)(x) = \sum_{k=1}^n A_k K_n(x, x_k) f(x_k)$$

is a positive linear operator satisfying

$$\mathscr{U}_n^*(e_i) = \mathscr{U}_n(e_i) \text{ for } i = 0, 1, 2,$$

whenever A_k and k = 1, ..., n, are the coefficients and the nodes of a positive quadrature formula of the form

(15)
$$\int_{0}^{1} \rho(x) f(x) dx = \sum_{k=1}^{n} A_{k} f(x_{k}) + R(f)$$

and having the degree of exactness at least n + 2.

269

Positive Linear Operators Satisfying DeVore-Gopengauz Inequalities

Ioan Gavrea, Heinz H. Gonska, Daniela P. Kacsó 271 270 Let us consider now a positive quadrature formula (with respect to $r \equiv 1$) of *Proof.* (i) For $x \in I$ fixed, let $f_x : I \to \mathbb{R}_+$ be defined as $f_x(t) = |K_n(x,t)| - K_n(x,t)$. the form $\int f(x) \, \mathrm{d}x = \sum_{k=1}^{n} A_k f(x_k) + R(f),$ Since the operator \mathscr{G}_n is positive, we also have that $(\mathscr{G}_n f_x)(x) \ge 0$. Thus $\int \rho(t) K_n(x,t) f_x(t) dt \ge 0. \quad \text{But} \quad \int \rho(t) K_n(x,t) f_x(t) dt = -\frac{1}{2} \int \rho(t) f_x^2(t) dt.$ such that R(f) = 0 for $f \in \prod_{n+2}$ (i.e., its degree of exactness is at least n+2). Since $K_n(x, t)$ is a polynomial of degree n in t, we have The last two relations imply now that Thus the statement of the theorem bol $f_{x}(t) = 0 \Leftrightarrow |K_{n}(x,t)| = K_{n}(x,t) \Leftrightarrow K_{n}(x,t) \ge 0.$ (17) $\int_{0}^{1} K_{n}(x,t) \cdot t^{i} dt = \sum_{k=1}^{n} A_{k} K_{n}(x,x_{k}) \cdot x_{k}^{i}, \text{ for } i = 0, 1, 2.$ (ii) Because $K_n(x, t) \in \Pi_n$ and the quadrature formula (15) has the degree of exactness at least n + 2, we can write We construct now the discretely defined operators $(\mathscr{L}_n e_i)(x) = \int \rho(t) K_n(x,t) t^i dt =$ $(H_{n+2}^*f)(x) = (1-x)^2 f(0) \cdot \int P_n^*(t(1-x)) dt +$ (18) $= \sum_{k=0}^{n} A_{k} K_{n}(x, x_{k}) \cdot x_{k}^{l} = (\mathscr{D}_{n}^{*} e_{i})(x),$ where Q_{i} is as in Theorem 5. $Q_{i}^{0} = \operatorname{tr} (\Gamma_{i+2}^{0} \text{ such that } Q_{i+2} (i) \geq 0$. $x \in \Lambda$ and $+x^2f(1)\cdot\int\limits_{0}^{\infty}P_n^*(xt)\,\mathrm{d}t+\sum_{k=1}^nA_k\cdot K_n(x,x_k)\,f(x_k).$ for i = 0, 1, 2. In the sequel, we shall use Theorem 4 in order to construct discretely defined THEOREM 5. The operators $H_{n+2}^*: C(1) \to \prod_{n+2}$ given in (18) satisfy the positive linear operators which satisfy DeVore-Gopengauz inequalities. We shall consider first the operators H_{n+2} defined in (3). One easily notices following inequality: $|(H_{n+2}^*f)(x) - f(x)| \le c\omega_2 \left(f; \frac{\sqrt{x(1-x)}}{n}\right),$ that these operators can be written as follows: neres of the vertical fraction are nerespected for the outer K. (2014). A second of the second $(H_{n+2}f)(x) = f(0)(1-x)^2 \int_0^x P_n^*(t(1-x)) dt +$ where the constant c is independent on f, n and x. $+f(1) \cdot x^{2} \cdot \int_{0}^{1} P_{n}^{*}(tx) dt + \int_{0}^{1} K_{n}(x,t) f(t) dt,$ *Proof*: The operator H_{n+2}^* is linear and positive. Thus, using relations (17) and Theorem 2, we get where $H_{n+2}^*e_i = H_{n+2}e_i = e_i$, for i = 0, 1, and (19) $K_n(x,t) = \sum_{k=0}^{n} \sum_{i=1}^{k+1} a_k p_{k+2,i}(x) \cdot p_{k,i-1}(t)$ $(H_{n+2}^*e_2)(x) = (H_{n+2}e_2)(x) = x^2 + x(1-x)\left(1 - \int_{-\infty}^{1} x^2 P_n^*(x) \, \mathrm{d}x\right).$ and $a_k, k = 0, ..., n$, are the coefficients of the polynomial $P_n^*(x) = \int Q_{n-1}^* dt$, with A REAGENEY JORES 62 01 Thus relations (19) imply $Q_{n-1}^{*}(x) = \frac{s+d+1}{s+1}(1-x_{s}^{2}) x^{d} \left(\frac{J_{s}^{(1,d)}(x)}{x-x}\right)^{2},$ $(H_{n+2}^*\Omega_{x-2})(x) = (H_{n+2}\Omega_{x-2})(x),$ 6.30 where $\Omega_{x,i}(t) = |t - x|^i$, $i \in \mathbb{N}$. and s and d are given as in Theorem 3.

Ioan Gavrea, Heinz H. Gonska, Daniela P. Kacsó

We shall need now the following result, established by Gonska and Kovacheva in [11]: If L is a positive linear operator defined on C(I) with $Le_0 = e_0$, $Le_1 = e_1$, then for $f \in C(I)$, $x \in I$ and each $h, h \in \left(0, \frac{1}{2}\right]$ we have:

(20) $|(Lf)(x) - f(x)| \le \left[\frac{3}{2} + \frac{3}{4}h^{-2}L(e_1 - x)^2; x)\right]\omega_2(f; h).$

Thus the statement of the theorem holds. \Box

Our next theorem will prove that one can construct infinitely many operators verifying Theorem 5. We shall denote these operators by \mathcal{H}_{n+2}^* .

To that end, we take $Q_{n-1} \in \prod_{n=1}^{*}$ of the following form

 $Q_{n-1}(x) = \lambda(Q_{n-1}^*(x) + Q_{n-2}(x)),$

where Q_{n-1}^* is as in Theorem 3, $Q_{n-2} \in \prod_{n=2}^*$ such that $Q_{n-2}(x) \ge 0$, $x \in I$, and

 $\lambda = \frac{1}{1 + \int_{0}^{1} (1 - x) Q_{n-2}(x) dx}.$

We define now $P_n(x) = \int_0^x Q_{n-1}(t) dt$ and the operators \mathcal{H}_{n+2}^* given as in (18)

with P_n from above. We also denote by \mathcal{H}_{n+2} the continuous operators defined as in (3) and P_n chosen again as above. We shall use the latter operators in Section 3. THEOREM 6. The operators \mathcal{H}_{n+2}^* defined above satisfy

$$|(\mathcal{H}_{n+2}^*f(x) - f(x))| \le c\omega_2\left(f; \frac{\sqrt{x(1-x)}}{n}\right)$$

 $if \int_{0}^{1} (1-x)^2 Q_{n-2}(x) \, \mathrm{d}x \le \frac{c}{n^2}.$

Proof: It is sufficient to show that there exists a positive constant c independent of f, n and x, such that

$$\int_{0}^{1} (1-x)^{2} Q_{n-1}(x) \, \mathrm{d}x \le \frac{c}{n^{2}}.$$

Positive Linear Operators Satisfying DeVore-Gopengauz Inequalities

We have:

$$\int_{0}^{1} (1-x)^{2} Q_{n-1}(x) dx = \lambda \left(1 - x_{s} + \int_{0}^{1} (1-x)^{2} Q_{n-2}(x) dx \right) \le \lambda \left(1 - x_{s} + \frac{c}{n^{2}} \right).$$

273

But $0 < \lambda = \frac{1}{1 + \int_{0}^{1} (1 - x)Q_{n-2}(x) dx} < 1$ and $1 - x_s \le \frac{c}{n^2}$ (see [15, p. 288]). Thus

$$\int_{0}^{1} (1-x)^2 Q_{n-1}(x) \, \mathrm{d}x \le \frac{c}{n^2}.$$

11

10

Remark 7. We mention here that polynomials Q_{n-2} satisfying the requirement from Theorem 6 exist, for example,

$$Q_{n-2}(x) = \frac{1}{n^2} P_{n-2}(x),$$
where $P_{n-2} \in \prod_{n-2}, n \ge 2$ satisfy the condition $0 \le P_{n-2}(x) \le c$, for $x \in I$, and is a constant independent of n and x .

3. SIMULTANEOUS APPROXIMATION

In this section we shall investigate the potential of the operators \mathcal{H}_{n+2} and \mathcal{H}_{n+2}^* for simultaneous approximation. We will therefore need the next three results given by Cao, Gonska and Kacsó in [4]:

LEMMA 8. Let $n \ge 2$ and $cn \le m(n) \le \tilde{c}n$. Furthermore, let $L_n: C(I) \to \prod_{m(n)}$ be a sequence of positive linear operators, satisfying the following conditions: (i) $L_n e_0 = e_0$,

(ii) $(L_n \Omega_{x,1})(x) = \mathcal{O}\left(\frac{\sqrt{x(1-x)}}{n} + \frac{1}{n^2}\right).$ Then we have for every $f \in C^1(I)$

$\|(L_nf)'\| \leq c \cdot \|f'\|.$

LEMMA 9. Let $n \ge 2$, $cn \le m(n) \le \tilde{c}n$, and $L_n: C(I) \to \prod_{m(n)}$ be a sequence of positive linear operators satisfying the following conditions: (i) $L_n e_0 = e_0$,

13

(ii)
$$(L_n e_1)(x) - x = \alpha_n x + \beta_n$$
, where $\alpha_n, \beta_n = \mathcal{O}\left(\frac{1}{n^2}\right)$
(iii) $(L_n \Omega_{x,2})(x) = \mathcal{O}\left(\frac{x(1-x)}{n^2} + \frac{1}{n^4}\right)$.

and the first

12

Then for every $f \in C^2(I)$, we have

 $||(L_n f)''|| \le c \cdot ||f''||.$

LEMMA 10. Let $k \in \mathbb{N}$, and L_n be a sequence of linear operators mapping C(I) to $C^k(I)$. If

(i) $\lim_{n \to \infty} ||(L_n e_i - e_i)^{(k)}|| = 0,$

(ii) $\|(L_n f)^{(k)}\| \le c \cdot \|f^{(k)}\|$ for all $f \in C^k(I)$,

then for all $f \in C^k(I)$ the following holds:

 $\lim_{n\to\infty} \|(L_nf-f)^{(k)}\|=0.$

- THEOREM 11. Let k = 0, 1, 2. Then, for every $f \in C^{k}(I)$, we have: (i) $\lim_{n \to \infty} \|(\mathcal{H}_{n+2}f - f)^{(k)}\| = 0$,
- (ii) $\lim_{n \to \infty} \|(\mathcal{H}_{n+2}^* f f)^{(k)}\| = 0.$
- Proof. Using the Cauchy-Schwartz inequality, one obtains

 $\left(\mathcal{H}_{n+2}\Omega_{x,1}\right)(x) \leq \sqrt{\left(\mathcal{H}_{n+2}^*\Omega_{x,2}\right)(x)} \leq c \cdot \frac{\sqrt{x(1-x)}}{n}.$

Thus the requirements from Lemmas 8 and 9 are fulfilled. An application of Lemma 10 yields now the statement of our theorem. \Box

ACKNOWLEDGEMENTS. The authors express their sincere thanks to Rita Hülsbusch and Jutta Gonska for their efficient technical assistance during the final preparation of this paper.

REFERENCES

Ju. A. Brudnyi, Generalization of a theorem of A. F. Timan (in Russian), Dokl. Akad. Nauk SSSR 148 (1963), 1237–1240.
 J.-D. Cao, and H. H. Gonska, Approximation by Boolean sums of positive linear operators. II. Gopengauz-type estimates, J. Approx. Theory 57 (1989), 77–89.

3. J.-D. Cao, and H. H. Gonska, Computation of DeVore-Gopengauz-type approximants, In: Approximation Theory, VI (Proc. Int. Sympos. College Station, 1989), C. K. Chui et al. (Eds), New York, Academic Press, 1989, pp. 117–120.

275

- J.-D. Cao, H. H. Gonska and D. P. Kacsó, Simultaneous Approximation by Discretized Convolution-type Operators, Approximation and Optimization (Proceedings of ICAOR), Vol. I, Cluj-Napoca, 1996, pp. 203-218.
- R. A. DeVore, Degree of Approximation, In: Approximation Theory, II (Proc. Int. Sympos. Austin 1976), G. G. Lorentz, C. K. Chui, L. L. Schumaker (Eds), New York, Academic Press, 1976, pp. 117-161.
- 6. R. A. DeVore, Pointwise Approximation by Polynomials and Splines, In: Theory of Approximation of Functions (Proc. Int. Conf. Kaluga, 1975), S. B. Stečkin, S. A. Telyakovskii), Moscow, Izdat. "Nauka", 1977, pp. 132–144.
- 7. V. K. Dzjadyk, A further strengthening of Jackson's theorem on the approximation of continuous functions by ordinary polynomials (in Russian), Dokl. Akad. Nauk SSSR 121 (1958), 403–406.
- 8. G. Freud, Uber die Approximation reeller stetiger Funktionen durchgewöhnliche Polynome, Math. Ann. 137 (1959), 17–25.
- 9. I. Gavrea, The approximation of the continuous functions by means of some linear positive operators (to appear in: Resultate Math. 30 (1996), 55–66).
- 10. A. Ghizzeti and A. Ossicini, Quadrature Formulae, Berlin, Akad. Verlag, 1970.
- 11. H. H. Gonska and R. K. Kovacheva, The second order modulus revisited: Remarks, applications, problems, Confer. Sem. Math. Univ. Bari 257 (1994), 1-32.
- H. H. Gonska and X.-L. Zhou, Polynomial approximation with side conditions: recent results and open problems, Proceeding of the First International Colloquium on Numerical Analysis (Plovdiv 1992), D. Bainov, V. Covachev (Eds), Zeist/The Netherlands: VSP International Science Publishers, 1993, pp. 61-71.
- 13. I. E. Gopengauz, A question concerning the approximation of functions on a segment and a region with corners (in Russian), Teor. Funktsii Funktsional Anal. i Pril. 4 (1967), 204-210.
- 14. Wu, Li, On Timan type theorems in algebraic polynomial approximation (Chinese), Acta Math. Sinica 29 (1986), 544-549.
- 15. G. Szegö, Orthogonal Polynomials, Providence, RI. Amer. Math. Soc., 1985.
- 16. S. A. Telyakovskii, Two theorems on the approximation of functions by algebraic polynomials (in Russian), Mat. Sb. 70 (1966), 252–265.
- 17. A. F. Timan, Strengthening of Jackson's theorem on best approximation of continuous functions given on a finite interval of the real axis (in Russian), Dokl. Akad. Nauk SSSR 78 (1951), -17-20.
- 18. X.-M. Yu, Pointwise estimate for algebraic polynomial approximation, Approx. Theory Appl. 1 (1985), 109-114.

Received July 1, 1997.

Ioan Gavrea Department of Mathematics Technical University of Cluj-Napoca RO-3400 Cluj-Napoca Romania

Heinz H. Gonska and Daniela P. Kacsó Department of Mathematics University of Duisburg