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A CLASS OF DISCRETELY DEFINED POSITiVE LINEAR
OPERATORS SATISFYING DEVORE-GOPENGAUZ,
INEQUALITIES

IOAN GAVREA, HEINZ H. GONSKA, DANIELA P. KACSO

1. INTRODUCTION AND HISTORICAL NOTES

An improved form of Jackson’s well-known theorem on the approximation
of continuous functions given on the interval /= [0, 1] by algebraic polynomials is
the pointwise estimate of Theorem 1, which is due to the work of Timan [17] for
k=1, Dzjadyk [7], Freud [8] for k=2, and of Brudnyi [1] for k> 3 (see also [5]).

THEOREM 1. Let feC(I). If ke N= {1,2,...}, then there is a constant
¢k such that for any n2k-1 we can find an algebraic polynomial p, ell,

satisfying
Jx(1-x) 1
I(f - p,) ()¢, "Wy (f;T+;?]’ xel,
where o, (f,-) denotes the k-th order modulus of smoothness of f
Telyakovskii ([16], k= 1), Gopengauz ([13], k= 2) and DeVore ([6], k=2) b
were the first to discover the validity of inequalities of the type given above with-

the

term removed, i.e., estimates of the form

., - ()
(D l(f—pn)(X)ISCkwk(f;———“x(nx)], xel

w2
7

Moreover, Yu [18] and Li[14] gave counterexamples showing that an inequality
of the type (1) cannot hold for k > 3.

Recently, Cao and Gonska have given in [2] a simple proof of (1) for the
case k=2, at the same time embedding the method of proof into a more general
and instructive framework, namely, the mentioned authors have considered the

AMS Subject Classification: 41A36.
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Boolean sum of a positive linear operator and the Lagrange polynomial of first
order interpolating at the endpoints.

Since the Boolean sum of two positive linear operators is not a positive
linear operator, Gonska and Zhou formulated in [12] the following problem:

“Do there exist positive linear operators L, :C(I)—> II,, such that for all

f eC(l) and all x €/ one has

@ L, (f3 2)— f()|S cang [f w—”(;x)}

with the constant ¢ independent of £, r and x?”

Combining this question with a well-known problem posed by Butzer in
1980 leads to the difficult question whether there exist discretely defined positive
linear operators satisfying (2).

The first solution to Butzer's problem in its original form was given by Cao
and Gonska in 1989 [3]. Furthermore, only recently Gavrea [9] has constructed
non-discrete positive linear operators satisfying (2).

In the present paper we construct a class of discretely defined positive linear
operators ' satisfying DeVore-Gopengauz inequalities, thus also providing a
solution for the stronger form of Butzer’s problem as formulated above. Moreover,
we shall also investigate the potential of these new operators for simultaneous
approximation.

2. CONSTRUCTION OF THE DISCRETE
APPROGXIMATION OPERATORS

In [9] Gavrea constructed non-discrete positive linear operators satisfying

DeVore-Gopengauz inequalities in the following way:
Let L, :C(I)—> 11, be defined as

. ; : St 1
(L f)(®)=F(0)(1=x)" +x"f (W) +(n=1) Y P, , (%) J Pa-2k1 (1) f(2)dt,
k=1 0

. k
with p, , (x)= " x*(1-x)"",k=0,..,n

Consider now a polynomial P, €Il , P, (x)= Z a,x*, satisfying the

following conditions:
a) P(x)20, xel,
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1
b) [ B (x)dr=1,
0

c) Pl(x)20, xel.
Then the operators H,

n+2

:C(I)->11,,, are given as

N

3 (H, )= -2

L
“ ket ( kv2S ) (X).

In [9] it was proved the following

THEOREM 2. The operators H, givern in (3) are linear positive operators,
and for every function f €C(I) and every x €l one has:

@ |, (0)-f)|<= (Dz[f Jx(1-) Jl—fx P(x)de

In order to turn the estimate (4) into one of the DeVore-Gopengauz type, we
have to find polynomials P, (satisfying the conditions a), b) and ¢)), such that
|
(5) 1- [x?P,(x)drs—,
n

0

where c'is a constant independent of .
As one can easily notice, any nonzero polynomial P, satisfying a) and c¢)
necessarily has the following form:

(6) = [0 (d+a,
_ _ ;

Where. Qn—l EHN—I’ n-]r(x)ZO fOI x el’an E[Oa 1)
In order to have condition b) also verified by P,, we have to choose O, -

such that the equality
[

[0-00, (t)dx=1-a,
0

is also fulfilled.
On the other hand, from (6) we get
2 :

1- [x? P (x)dx=
0
1

%j(l 0 (42 0 W+ 22 s [ (-2 0,

0
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Thus, if there exist two positive constants ¢, and ¢, such that
| :
.[ 1-x)° < and o <22
(1-x)Q, () &x << and o, <2,
5 n n

. then P, also satisfies (5).
In the next theorem we shall give the smallest value for the constant ¢ in (7),
putting ., = 0 in the sequel.

In order to give a uniform treatment for all the cases in our next theorem, we
w111 introduce now the following notations:

= ' 1
§ :{P eI, |P(x)>0 for x €[0,1] and “f(l-x)P(x)dx=1},

)

s us(n)—l}[”q 1],

bl e
di=d(n)=n-1 2[ = }

THEOREM 3.  inf j(l x)’Q,_ ,(x)dx j(l )0 (O)dx=1-x,

innlo

.Sl d)(x)J 7\’* :('I_XZ).S‘Fd'I‘].
ol T s+

X"')CA:

, and x, is the largest

where Q) (x)= k’;xd(

root of the Jacobi polynomial J™® relative to the interval [0,1].

Proof. We shall investigate first the case when 7 is an odd natural number,
that is, d = 0 and n = 25 — 1, We consider the Gauss quadrature formula

®) j (I-x) f (¥ dv = Y 4, f(x,)+ RUS),
0 k=1
where x,,k=1,...,s, are the roots of J&D Thus R(f)=0 for yAT: Dy

*
+ ) =71 X7, Iy (»1-. y
t & €14, . We apply the previous quadrature formu

(1-x) O, _, (x). It follows that _

1

[U-00-00, ) dx=3 4,(1-x)0, ,x,)
0 k=1

Because 4, >0, k=1,...,s, we get

1

(9) [ =020, | (x0)d&x24,(1-x,)0, ,(,).
0
One obtains equality in the latter relation when
(1,0
0\ (0=1 (J 2 )J :
X—x,
with
A, = 1 I( —;
1,0y
_[(l—x) (u_)j dx
; X=X,

We compute now the integral from (10) by using again the Gauss quadrature
formula (8). This gives

(1 0)
I (- x)[ (x)] dr=a,(J*0 (x, )1
xs F

The latter equality together with (9) and (10) imply that

j(l %)” P(x) dx = J(l 90 () dx=1-,
0

Pel'[,, 1

* * J(I'O)(x) ? - J(]’d)(x) ? * |
where O, (x)=4,| =———=| A =| 20 a4 A, is given in (10).

X=X, X=X,
We investigate now the case when n is an even natural number. Thus
n=2s,d =1. We shall use Bouzitat’s quadrature formula of the first kind (see [10,

pp. 101 104)):
| o
(11) [ A=) f(x)dr= 4, £(0)+ Y 4, f(x,)+R(S),
0 k=1

where x, are the roots of Js("') (which is Js("d), and R(f)=0 for f ell,,. The
coefficients of Bouzitat’s quadrature formula are given by

e W0 __Np and 4, = Skl . 1
T (s+1)(s+2) D) (s+2) (JEO(x, )2

Jork=1,...,s
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We apply the quadrature formula (11) for f(x)=(1-x)Q,_ (x), with -

0,1 € H: _,» which gives

1 e
12) [ (-0"Q () dx=40, ,(0)+ D A4,(1-x,)-Q, ,(x,)=
0 k=1

2 A, (1-x,) 0, (%)

In order to have equality in the latter relation, Q,_,(x) has to have the form

o (I mY
(13) Qn—l(x):xn.x( o )
X=X,
L p 1
T g Y2
J(]~x)x[-—-———J’ (x)] d
5 X =%,

On the other hand, an application of Bouzitat’s quadrature formula for the
integral in (13) yields

: T ()’ Lty g
j(l—x)[;_—xj dx = A, (J10D(x,))2.

0 &

Using the latter equality and the relations (12) and (13), it follows that

1 I
inf [ (1-x) P(x)dr= [ (1-%)°Q, | (x)dr=1-x,,
Pell,_ | 0 0 ;
with Q;_l given as in (13).

Unifying the results for the cases #» odd and »n even, we can now state the
following:

! .

(14) innf_ [a-%%0, ((ndx=1-x, neN

Q/r—i n—1 g

_ . i
Obviously, A, = , nelN
‘ JOD (1)
[a-xx | =—=
p o

0
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In order to compute the integral from the denominator of M., we shall use the
following Gauss quadrature formula:

1 S
[a=0)f @ de=Y 4, f(x)+R(S),
k=1

0

where x,,k=1,...,s are the roots of J"¥,

We have .
1 2
J(l.d)
f (1-x) (Tx(x) de= A, (1D (),
4} s
T el : (éee[lo 94]). -
Yostd 41l (1-x2) (S0 (x,))> iy

Thus we obtain 7\,: =(1—Jcs2)S+d+1

, which completes the proof. 0

The next theorem provides a method which enables us to discretize a linear
polynomial operator, such that the discretized operator has the same degree of
approximation as the initial (non-discrete) one.

THEOREM 4. Let #, :C(I) > I1,, be a positive linear operator of the form

|

(Z. 1) ()= [ p(t) K, (x.0) £ (1)1,

0

where p is a weight function strictly positive on (0, 1), and K, (x,-) ell, for every

x el. Then:
() K,(x,6)20,V(x,t)elx1.

(ii) The operator %, f :C(I)— I1, defined by
(1))=Y 4K, (x,%,) £(x,)
k=1

is a positive linear operator satisfying
Z, (e)=%,(e) for i=0,1,2,

whenever A, .and k=1,...,n, are the coefficients and the nodes of a positive

quadrature formula of the form
1

(15) [ () /() =3 A7 (x) +R()
0 k=1

and having the degree of exactness at least 7 + 2.



270 .. Ioan Gavrea, Heinz H. Gonska, Daniela P. Kacs6 8

Proof. (i) For x el fixed, let f, : 71— R, be defined as
[ () =K, (x, )= K, (x,1).
Since the operator %, is positive, we also have that (£, f,) (x)20. Thus
I 1 |
1
[ o) K, (x,0) £,()dr20. But [ p(t) K, (x.0) £ (1) dt == [ o(0) £ (1) dr.
0 0 0
The last two relations imply now that
f()=0=|K, (x,0)]=K, (x,t) = K, (x,2) 2 0.
(ii) Because K, (x,t) €11, and the quadrature formula (15) has the degree of

exactness at least n + 2, we can write
1

(Z,¢)(x)= [ p(t) K, (x,0)¢" di =

0
= ) ALK, (x, %) x5, =(Ze) (%),
k=0

fori=0,1,2.

In the sequel, we shall use Theorem 4 in order to construct discretely defined
positive linear operators which satisfy DeVore-Gopengauz inequalities.

We shall consider first the operators H, ,, defined in (3). One easily notices

that these operators can be written as follows:

1
(H,,20) ()= £0) (1=x) [ B (¢(1-x)) dr +

1 |
+f (x| B () de+ [ K (x,0) () dr,
0 0

where

+

"
K, (x,1)= z Ay Py v, i (%) Py (F)
k=0i=1

 dr, with

Fi —

X
and a,, k=0, ..., n, are the coefficients of the polynomial P/ (x)= Jf o)
0

0, (9=

L]

2
ALty fﬁ‘”(ﬂ}
s+1 T x—x,

and s and d are given as in Theorem 3.
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Let us consider now a positive quadrature formula (with respect to » =1) of
the form

1
[rood=3" 4.f0x)+R(P),
0 k="

such that R(f)=0 for f ell,,, (i.e., its degree of exactness is at least n + 2).

Since K, (x,¢) is a polynomial of degree » in ¢, we have
! n

(17) [K,(xe,0)t7dr=) 4,K,(x,x,) x,, for i=0,1,2.
0

k=1

We construct now the discretely defined operators

1
(18) (Hy 2 f) () =(1=x)" £(0)- | P/ (t(1-x))dr +

THEOREM 5. The operators .H:n :C(L)—>11,,, given in (18) satisfy the
Jollowing inequality:

3

(Hy ) ()= f (RS o, b@}

where the constant c is independent on f, n and x.

Proof: The operator H;+2 is linear and positive. Thus, using relations (17) -

and Theorem 2, we get

(19) H . ,e=H

f 126 =€, Tor i=0,1, and

1
(H,,26,) (x)=(H,,,6;) (x) = x" +x(1-x) (1— szP,:(x) dx].
0

Thus relations (19) imply

(H,,,Q, ) (x)=(H,,,2, ;) (x),
where Q (1) =|r-x[ ,ieN.
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We shall need now the following résult, established by Gonska and 1 We have: |
i : i itive li tor defined on C(/) with
Kovacheva in [11]: If L is a positive linear operator de 1ne1 on C(I) f(l_x)ZQn_,(x)dx=7L(1—xs+ J‘ (1-x)%0, ,(x) deSl(l—xx +%j
Ley=ey, Le =e,, thenfor f €C(I),x €l andeach h,h 6(0,5} we have: 0 0 n
1

_ But 0<)=——o <1 and 1-x, <% (see [15, p. 288]). Thus

20) (L) () f(x)[{ #2H L~ x)] @, (3 h). 4 TG S n
0

Thus the statement of the theorem holds. [J ; 2
Our next theorem will prove that one can construct infinitely many operators J (I-x)"Q, (x)dx< P

o tors by .
verifying Theorem 5. We shall denote these operators by %1, , Remark 7. We mention here that polynomials O,_, satisfying the requi-

To that end, we take O, _, €II, _, of the following form rement from Theorem 6 exist, for example,

0,1 (X)=MG5_ | (x)+0,_, (x)),

1
Qn_z(x):n“zpn_z(x),
where (O, _, is as in Theorem 3, 0,_, €Il _, such that 0,.,(x)20, xel, and

where P, , €Il _,,n>2 satisfy the condition 0<P,_,(x)<c, for xel, and ¢

k 1 is a constant independent of n and x.
- ‘ .

+[(1-x) 0, ,(x) dx
0

3. SIMULTANECUS APPROXIMATION

We define now P, (x)= I Q,_,(t)dr and the operators ; +2 given as in (18) In this section we shall investigate the potential of the operators 7/, ,, and
n ¥ .-I.

A 9,,, for simultaneous approximation. We will therefore need the next three
with P, from above. We also denote by #,,, the continuous operators defined as

S . results given by Cao, Gonska and Kacsé in [4]:
in (3) and P, chosen again as above. We shall use the latter operators in'Section 3. = Vi RN/ R

LEMMA 8. Let n>2 and cn<m(n)<¢n. Furthermore, let L,: C(1)— Tl

be a sequence of positive linear operators, satisfying the following conditions:

A X . mn)
THEOREM 6. The operators ¥, , , defined above satisfy

T : (1) L,e, =ey,
Hroo ()= D] <o, [f o } . i
e/ n i) (2,9, ) (=0 YLD, L)
_ n n

i N :

if J(l—x)zQ,,_z(x)de—c—z. - Then we have for every f eC' (1)
n
0
: : . . ML Y N<e-If 0
Proof. Tt is sufficient to show that there exists a positive constant ¢

independent of £, n and x, such that __ LEMMA 9. Let n>2, cn<m(n)<&n, and L:C(I)—>11,,, be asequence

of positive linear operators satisfying the following conditions:

t
[ =270, () drs—. ) Leg=e,
0
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i g 1
(i) (L,e,)(x)-x=a,x+B,, where o,,B, = © )

1- |

(111) (Lan,z)(x)=@(%2_xl+;4‘)-

Then for every f e C* (1), we have
(L s eIl

LEMMA 10. Let k € N, and L, be a sequence of linear operators mapping
c( to CHU). If
() lim |I(Lye; —e)! =0,
n—rw

) WL AP [ clf | forall £ eC* (D),
then for all f e C* (1) the following holds:

i [(L,f =) ®11=0.
The main result of this section reads now as follows:
THEOREM 11. Let k=0, 1, 2. Then, for every f €C* (1), we have:
() lim (7, of = PU=0,
i) tim (9,2 f =P N=0.
Proof. Using the Cauchy-Schwartz inequality, one obtains
x(1—x)
X ;

(9,129, () S (05,59, ) () S e

Thus the requirements from Lemmas 8 and 9 are fulfilled. An application of
Lemma 10 yields now the statement of our theorem. [
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