
REVUE D'.^NALYSE NUMÉRIQUE ET DE THÉORIE DE L,APPROXIMATION
TOME XXVTI, No 2, 1998, pp. 277_29s

AN INFEASIBLE-INTERIOR-POINT METHOD FOR TI{E
P-(r).MATRIX LCp

ruN JI, FLORIAN A. POTRA

l.INTRODUCTION

The P--matrix rinear comprementarity problem requires the computation of a
vector pafu (x,s) e R2, satis$ing

(1.1) s= fuh+q, xrs=(J, (.x,s))O,

where qeR' and M €[R'"' is ap*-matrix. The class of p*-matrices was intrcr"duce{,þy Kojima et ar, [7] and it contains many types of matrices encountercd inpractical applications, .Let r be a nonnegative number. A matrix M is carecl nP-(rc)-matrix if
(r.2)

where

(1+4r) I x,[lutxl,+
. i eJr(x) I x,[Mx], >0, Vx e R,,

i eJ_ (x)

J*(x)={i:x,[Mx],> 0], J_ (x)={i:x,fMxl, <0),
or, equivalently, if
(l'3) xr Mx> -4r I x,[M1,, V¡ e R,

ieJ*(x)

The class of ail p.(r)-matrices is denr:ted by n(r), antl the crass p. is
defined by

¿ = U p-(r),
x>0

i.e., M is a P-.matrix if M ep_ (rc) for some r ) 0.
obviously, p.(0) = pg¿ (the crass of positive semi-definitc matrices).

Every,çonvex quadratic optimization problem can be written as a monotone LCp

iAMS Subject Classificaríon: 65F10, 65y20.
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and therefore the R LCP generalizes this case. Also, we have P^ = P, where P is

the class of all matrices with positive principal minors. ThisJollows from the fact

that a P-matrix M is a &(r)-matrix for K=maxi-^j"'"'(,Y),01, where
I qv@)')

X.i"(M) is the smallest eigenvalue of (M+M')12, and y(M)>0 is the

so-called P-matrix number of M(see [7, Lemma 3.3]).
Most interior-point methods for li¡ear programming have been successfully

extended to the monotone LCP. However, there are comparatively fewer results for
the P--matrix LCP. The potential reduction method given by Kojima et al. [71

solves a P- (rc)-matrix LCP in at most O((r + t> JiÐ iterations. Nevertheless, no

superlinear convergence results have been proved so far for that method. The first
algorithm for this new class of LCP having both polynomial complexity and
quadratic convergence has been recentþ proposed by Miao [11]. His method is
actually an extension of the Mizuno-Todd-Ye's predictor-corrector algorithm for
linear programming [4].

In the above mentioned algorithms it is assumed that the starting point
("n, ro) satisfies exactly the linear constraints (i.e., s0 = Mx\ + q) and lies in the
interior of the region defined by the inequality constraints (i.e., the vectors x0 and
s0 are strictly positive). Such a starting point is callerl strictly feasible or simply
interíor. All the points generated by the algorithm are also strictly feasible, which
accounts for the name interior-point method. However, in practice it is sometimes
very clifficult to obtain feasible starting points. Numerical experiments have shown
that it is possible to obtain good practical performance by using starting points that
lie in the interior of the region dehned by the inequality constraints, but do not
satis$, the equality constraints (cf. [10]). The points generated by the algorithm will
remain in the interior of the region defined by the inequality constraints but, in
general, will not satisff the equatity constraints. This property is reflected in the
name infeasible-interior-point algt 'n,m that has been suggested for such methods.
While there is an enonnous litcrature dedicated to the study of interior-point
methods, the fìrst results on infeasible-interior-point methods were obtained only a
couple ofyears ago. For a recent survey ofthe results we refer the reader to [20],

Most of the results on infeasible-interior-point algorithms have been obta-
ined for linear programming. The best computational complexity results obtained
so far show that infeasible-interior-point algorithms can solve standard form linear
programs with integer data of length L in o{nl) iterations. This compleúty is
shared by the algorithms proposed n [2], [9], Lt2], tt3l, [lS] and [19]. The algo-
rithms of F2l and [19] are also quadratically convergent. ye, Todd and Mizuno

l27l have obtained OfJiU-ireration complexity by applying the Mizuno-Todd-
Ye algorithm to a homogeneous selÊdual reformulation of the original linear



(2.4c) (l + 4r(1 +2r)) t2 þ2

1-p =c[

(2.4d) 2(t!2r)þ 
* (t + 4r(1+ 25)) 02 -,.l-p 20-Ð2

Q.ae) fJ-a=o(l/(l+rc)), B-cr<0.5.
The starting point of the algorithm can be any pair of strictly positive vectors
(ro, ro ) . Rii that is q,-centered in the sense that it belongs to the following set

No = {(x,s) e R]'l :ilXs-pell<ap},

where, as throughout this paper, we have denoted þ = xr s I n.

At a fypical step of ow algorithm we are given a pair (x,s) e R]l and
obtain a predictor direction (u, v)by solving the linear system

(2.5a) Su+ Xv = -Xs,

(2.5b) M.u-v = r,

where r is the residual r = s - Mx - q. clearly, this is just the Newton's direction
for the nonlinear system (2.1), whose Jacobian

udr*JJ)< x<tnG+Jr)

1-p- r<þ2 I n> 1-p -zrþ2 I n>0

"10 + 4r(t +2r)) / 2 þ2 .
2(1-þ)-2rcþ2 I n
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,D0+zo), , 2(l+2r)2r+ +
1+ 4r<(1+ 2rc)
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where

(2.3) )t=ll
I + 4rc(1+ 2rc)

It follows successively that

Q.aa)

(2.4b)

F'(x, s) : =
^9x
M-I

is nonsingularwheneverx > 0 ands > 0 and Misap.-matrix (see [7, Lenuna 4.1])
If we take a step length 0 along this direction we obtain

x(0)= x+0u, s(0)=s+0v, p(0)= x(Q)r s(0)l n
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condition is necessary for superlinear convergence even in the case of the
monotone LCP.

The notation used throughout the paper is rather standard: capital letters
denote matrices, lower-case letters denote vectors, script capital letters ãenote sets,
and Greek letters denote scalars, All vectors are considered to be column vectors.
The components of a vector ¿¿ e [R' will be denoted by lu],(and when there is no
danger of confusionby u,),i:1,...,n.Therelation z > 0 is equivalentto [z]i > 0,
i:l,...,z,while z>0 means [u]¡>0, i:1,...,n. \f øeR,,w€[R,,, then
(u, w) denotes the column vector formed by the components of u and w, i.e.,
(u,w) e R"*'',1(u,w)1, =[z], for l<i<n and. l(u,w))n*¡ =frl¡ for I<i<m.
We denote Ri={ze[R':u2.}l,Ri* ={¿¿eRi :u>0). If zelR,, then
u : : Diag(u) denotes the diagonal matrix having the components of z as diagonal
entries. The most used norm is the /2-norrn so that we write ll.ll irrstead of
ll'll, ' both for vector norms and for the corresponding matrix nolms llAll=
= max {llAxll:llxll= 1}, rWhenever we need other norms like il.lL or ll.ll. we use
the corresponding symbol.

2. THE PRtrDICTOR-CORRECTOR ÄLGORITHM

we denote the feasible set of the problem (l.l) and its solution set
respectively by

,Ø ={(x,s) e R]' :s= luh+q) and Ø* = {(x. ,s*¡ e,Ø:x*ts* = 0}.

Throughout this paper it will be assumed that Ø" is not empty, It is easily seen
that (x., s*¡eØ* if and only if (x*,"*)>0 is the solution of the following
nonlinear system

(2.r) F(x, s) : =

For any given e > 0 we define the set of e-approximate sorutions of (L l) as

Ø! = 11x.,s*) e Rl,' :x*ts* tt,,llMx. -.i* +øll<e).

In what follows we shall present an algorithm that finds a point in this set in a finite
number of steps. The algorithm depends on two positive constants o and B given by

?t"

4

Xs

lulx-s+ )
0

(2.2) C[=
l,+
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We define 0 as the largest step length for which

(2.6) llx(0)s(0)-(1-0)pell<B(l-0)p, forall 0<e<0,

and consider the predicted pair

(2.7) x=x*0u, s =s+0y.

We shall see later that these aré shictly positive vectors. Therefore the

Jacobian F'(x,s) is again nonsingular and we can define the corrector direction

(u,v) as the solution of the following linear system

(2.8a) Su+h =(1-e) pe-Æ,

(2.8b) lt/fr-v=0.
Along this direction we consider the family of pairs

t(e)= x+0u, s(0)=s+0v.

By using (2.8) and the fact that (x , r) > 0, ,we have

(2.g) X(e)s(e)>0(1- 0)pe+e2rJv, for 0<0<1.

With a unit step length along the corrector direction we obtain a new pair

(2.10) î=x*u,,î=5+v.
It is easily seen that

(2.11) ,ft=( t-0)¡te+Uv, û=1;tî=(t-O) p!¡'¡,

rr urt=0, then we have û=(t-o) I, ^:,by defrning; ".* cunenr pair as

(x* , s* ) = (î,.î), we obtain the same rate of decrease in feasibility and optimality,
i.e.,

(2.12) r* =,s* - Mx* -q=(l-e)", u' - 
(x*)rsn 

=(l-O) p.
n

Otherwise a new corrector direction (ri, í) is obtained by solving the linear system

(2.13a) Sît+ Xû
_T_u'v
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Along this direction we consider the family of pairs

i(e)= i+0û, 31e¡=3+0û.

By using (2.8) and (2.13) we obrain

(Z.r4a) Îie; elo¡ = (t-0) pe+tv -e-{!e+0(Vfi+02ûî,
n
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(2.r4b)

where

(2. r 5)

û(e)=(l-o) p+- ô(e),
I
n

ô(o) = ur v Q- o) + (vr û+ùT Ð o + ûr îa2

Finally, let 0 be the smallest positive root of the quadratic equation ô(g) = o. (to
the proof of rheorem 2.4we shall showrhat such a ô exists and 0<ô<2.¡ rn,
new current pair (xn,s* ) is defined as

(2.16) 0i
It is easily seen that (2.L2) holds in this case, too. ln order to have a well-defined
algoritlnn, we have to show that (x*,s*) e.fl'o so that the above steps can be

repeated with (l* , s* ) instead of (x, s),

using the technique of [5] (see also [20]), we can compute explicitly the
largest number 0 e [0, l] satisffing (2.6). The result is summarized in the
following lemma.

LENß44 2,1' ï (x,s)eîto, then the largest number 0 e [0, rl satisfying
(2.6) ß given by

Í =!xs- e, g=!uv,trp
ô = llgll, 0o = F2 -llf ll, , &t = lr E,

(2.17a) gr = 0o I (a, +J"? * croô'),

(2.17b) Q =2/(l+ l+41<p,),

where (u,v) is the solution of the linear system (2.5), Moreover, the pair (r,s)
defined by (2.7) satisfies

(2.18) jl.¡e -f t-e)r,rll=p(t-0)p, x>0, r >0,

,s' =.s +eux'=x+

(2.t3b)

n

Mît-Ç =0.
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CoROLLARY 2.2. Let x, s, a, r be four n-dimensional vectors with x> 0 and

s > 0, and let M € [R'"' be a P.(k) -matrix. Then the solwtion (u, v) of the linear

system

(2.19a) Su+ Xv = a,

(2.19b) Mu-v =b

satisfies the following relations:
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We are now ready to prove that the algorithm described in this section is well
defined, For ease of later reference let us first fonnally define our algorithm.

Algorithm 2.3. Choose (ro,ro) eTtfo and set ylo = l. For k=0,I,..., do

Al through A7:

Al. Set x= xk,J=sk anddefine ¡1 =1x7's) lþ,, = s- lulv-Q,V =V t.
A2. If .x?'.i ( r, and llrll( e, then report (x,s) e 9! and terminate.

A3. Find the solution u, v of the linear system (2.5), define x, s as in (2.7),

and set V* = (l - 0) V, where 0 is given by (2.17).

A4. Find the solution u,v of the linear system (2.8), and define î,3 as þt
(2,10).

A5. Il ur v = 0, then set x* = î,.s* = 3 and go to A7.

A6. þ-ind the solution û,i of the linear system (2.13), and de-/ìne x* ,s' cts

in (2.16) with 0 being the smallest positive root of (2.15),

AT.Set ro*, =x*,,rÉ*'--r*,60 =0, Ltr =ft, rk =rrVt*l=\lj*.

TtæonËu 2.4. For any integer k> 0, Algor"ithm2.3 defines a pair

(2.24) (xk,rk)e1,[o,

and the coruesponding residuals satisfy

(2.2s)

where

t'k =V kro , F* : VrPo '

k-l

9

(2.20a)

(2.20b)

(2.20c)

llDull<llå'll+ Jllãll'+lll ll2 +2rll7ll' ,

ll D-'ull < Jlla lf+ llr- ll' +2rllv ll2,

llD"ll' + llD-rv ll' <llãll2 +2rll7ll'z+2llãll'*

+z¡l ¡^l¡a1f *lll ll' +Zt<llvll2 = y2, ,

¡u,n' =f ttult- .l*?e? -laf ),(2.20d)

where

D - X-tt2 Stt? , v =1XS)-\/2 a, T = D-tb, d =ã +T .

Proof. By premultiplying (2.19a) and (2.19b) by (XS)-tt2 we get

(2.21a) ù+(l+l¡=ã+1,

(2.21b) l,tA - (V +ã) = 0,

where ù = Du, l = D-lv and 14 = D-t MD-t, tt is easily seen that f[ e P. (r)
(see [7, Theorem 3.5]) and it follows from [Lemma3.4f that

ùr ñÍù =ùr (t +l)>-Kllã +lll' .

Then we have

(2.22) llùll'+lltll'=lla'lf -2ùr l,ñ +2ùrl <llãll'+2rllã +111'+zllTll llå"ll

Therefore,

(2.23) (ll7ll- llâ'll)' + lltll' <ldl' +llT ll'? +zr¡¡a +111'z .

Finally, (2.20a)-{2.20b) follow ftom (2.23) and (2.20c) from (2.20a) and (2,22).It

is easily seen from llUvll2 = llftll'? that (2.20d) follows from Proposition 2.2 of
Potra [20]. u

Proof. The'proof is by induction. For k-0, (2.24) and (2.25) are clearly
satisfied. Suppose that they are satisfied for some fr > 0. As in Algorithm 2.3, we-
shall omit the index /c. Therefore we can write

(x,s) e ffo, r=Vto, l"l=Vþlo, ,

The fact rhat (2.25) holds for fr + I follows immediately from (2.1'2). By
applying Corollary (2,2)to (2.8) and using (2.18), we deduce that

(2.27a) llurll<
1+ 4r(1+ 2r)B

8 (1-p)

(2.27b) llD¡l'+ ¡¡D-rv¡¡2 <
(I+2r)þ2

(r-B)

(2.26) Vo=1, v*=fI (t-6,),
í=0

(l-o)p,

1-o)p,
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Similarly, we have

(2.33) l¡tû+vû1¡=$ff,,o0,'.

By substituring the above inequalities in (2.r5), we get ô(g)<(?rrt)a(e) if
ùrv>0, Otherwise ô(0) >@rn)q(O) if urv <0, where

(1+ 2r) B

287

g(0)=l-0+
(l -p) n

Together with (2.4d), which implies a(2)<0 for nà2, we have þ(0) p(2)<0.
Therefore the positive root ô of the quadratic equation ô(g) = 0 satisfies
0< ô < 2. Because na çu'v¡e is the orthogonal projection of u ¡ onto span(e:),

and 0<ô<2, wehave

llt v -,n-t (u, v)ell< llArll.
By using (2.4), (2.12), (2.14), (2.16), (2.27) and (2,32)12.33), we get

llX's* -tt* ell<2llu vll<
(1+4r(1 +2r)) l2 p'

(l-0)p=c¿lt*.l-p
The positivity of x* Td {. can, also be proved by continuity based on the following
inequality, which is obtained fuom (2.4), (2.r4a), (2.27a) and (2,321{2.33):

Îqe¡S1e¡ > (t-O) (t-c¿) þe > 0, V 0<0 <2.

Finally, it follows that (2.24) is satisfied for k-r 1 and the proof of our
theorem is complete. D

3' GLOBAL CONVERGENCE AND POLYNOMIAL COMPLEXITY

ln what follows we assume that ü-* is nonempty. under this assumption we
shall prove that Algorithm 2.3, wfth e = 0, is globaliy convergent in the sense that

.li. lr- = 0 and lim rk = 0.t(-+0 k _+o

LENß44 3.1. Assume that .g-* is nonempty. Let (¡*,¡") e,g'and the
sequence (xo,so ) is generated by Atgorithm 2.3. Then

(3.1a) vt(ek )tro+(ro)t"o)<(t+ 4r)(z+Onþt ,

(3.1b) (l-V*)(("0)tr. +1s¿¡rx-)<(l+4r) (t+V*)+ (t_ yt t)Ç) npt,
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where D = Y-ttzg "'. On the other hand, from [7, Lemma 3.4] we have

(z.zl) ut v >-rll(xs)' ll ll.¡rr-(l-0) velz >-,I9i=tr-e) p." (1-B)'

It is easily seen from (2.1 1) and (2.28) that

(2.2e) û>- (l-6)rr.

By using (2.4) and (2.27H2.29) together with the fact that n-l1u'V¡e is

the orthogonal projection of U¡ on span(e), we can write

(2.30) llft - r.tr ll =llu-r - na çu'v¡ e ll < llTv ll <

. Jt ++r(t +?r) P' (t_O) u.!lt+4i0*2"_)) 
t z þ' 

Ê < oÊ.Jsll-B¡ -'r-- 2(l-B-rp2 ln¡¡

By using (2.4), (2.9) and (2.27a), we obtain

X(e) r(e) > 0(1- e) (1- o) pe > 0, for 0 < 0 < L

Obviously, we have t(0)=t>0,s(0)=s>0 and i(1)=i,s(1)=.î so that if
i>0,.î>0 fails, then there must exist a 0 e(0,1] and an index i such that

[t(0)]r [s(0)], = 0, which contradicts (2.31). Therefore, we have fhat i > 0,.î > 0.

Inthe case when uTv:0 wehave x* =î,.s* =ô so that(2.24)holds for k+ I as

well. It remains to prove that (2.24) is also satisfied when tzt # 0. Applying
Ccrrollary 2.2 to (2.I3), we deduce that

(2.32a) ll uú ll < J t + qrT + zr) lln-t (nr Ð ell Ú¡ ll .
Jstl - Þ) (r - 6) rr

I -7'-
rXí>-; u ' n

(1 + 4r(l +2r)) þ' lu'¡l
s(r-p)' J;

2

(2.32b) llDî,ll' + ¡¡D-rú¡1'? < (t + 2rc)

which fi.uther implies that

n

<Ji^I^uv U ls lu''rlv

tl
irû+uri <¡ Du 2 + D]v 21i¡ Dû2+ 5-tç 211 <

.)
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Proof. we omit the index ,t. Applying corollary 2.2 to linear system (2.5)
and using Lemma 3:1, we can write

(3.6a) llãll= ll(X^r),,'rll= Jnrr,

(3.6b) llE- l l = ll (xS) -t'' Xrll<( l - s¡ -rrz p..,r llxr ll <\r ( l _ *) -'l, ìr t, r 
ll xro llr <

I (l - a)-rl2 p-"' ll(^to)-' roll_,¡l(ro)t" <.,1^[ñ,

(3.6c) llãll<llãll+ ¡¡â"¡¡s (r+ a)''fi[,
Finally, the required inequality follows by substituting (3.6) n (2.20d). n

It is easily seen from (2.17.a) that

1=,1o, l*,.'1o, 12 +aoõ2 ) r .'o.
VI

, The right-hand side of the above inequalify is increasing in lcr,l and

decreasingin ø0. Usingrhe factthat coàpt-crr>0 and lcr,l<ll,fll ligll<ug,
we obtain

(3.7) tlet<ôi(B-a).
Finally, from Lemma3.2, (2.17b) and (3.7) we obtain

(3.8) ek )0* = 2l (l+./t++a. /(Ê-c[), k> 0

with the help of (3.8) and Theorem 2.4 we can easily prove the main result
of this section, which basically states that Algorithm z.: is 4óualy converg,e nt at a
linear rate.

TIüOREM 3,3, Suppose that the optimal set g-" is nonempty
(i) If e = a, then Algorithm 2.3 either finds an optimal solution z* e Øu in ,

finite number of steps or produces an infinite sequence ,o = (ro , sk ,ll ) strch

that hrn (ro )tro =0, and lim (rr ¡ = 6.,(-+æ f+o'
(ä) If e> 0, then Algorithm2,3 terminates with a z e !F" in at most

K,. =
lln(e / e )t

lln(1- 0.)l

iterations, where eo =max{po,ll"oll}, and lx] denotes the smallest inÍeger
grenter or equal ,to y,
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where

(3.2) E=11x0)rs.+(s0)rx.)/11x0¡rs0;.

Proof. By writing x, r, V for x¿ , sk , V¿ , respectively, and by using (2.25),
we have

ysO +(l-V)s* -s= M(tyxo +(l-V)x. -x).

By the definition of P.(rc)-malrix (cf. (1.3)) and using the facf that (x.,s*))0
and (x, s) > 0, we have

(3.3) [ryx0 + (1 - V) x. - ,]t [,yru + (1- V) s* - s] )

> - 4r(v' ("0)tro + (l - v) v((x. )tso + (¡o)t s*) + xrs),
where

Jn = {t:[r.yxO +(1-V) y* -x'J,[Vro +(l-V)s- -s], >0].

On the other hand, we have

(3.4) [,U"0 +(1-V) *" -*f'[ry"o *(1-V)s* -s]=

= lt2 nþo+ (l - V) V((xo )tr* + (ro )tr. ) -

- V((xo)rs+(s0)r x)+xrs-(l-VXst x* +x's* )+(l-V) (*-).r..
The desired inequalities (3.1) follow from (3.3) and (3.4) by using (2.25) and the
factthat ("*)tr* =0, sIr* +.rts* >0 and s?'"0 +x?'so >0. ¡

From Lemma 3.1 and corollary 2.2 we shall derive a useful bound for the
quantities

(3.5) õo =llUkvklltpo, k>0,

where (uo,uo ) is obtained at step A3 of Algorithm 2.3. This bound is going to
play an important role in our analysis.

LBmr¿a 3.2. Let (ro,uo) be obtained in the k-th iteration at step A3 of
Algorithm2.3 and let õ o be defined by (3.5). Then

ô¿ <ð- =nJ .125+4(l+n)4 (1+K)2,
where

^\= 
^ñ 0 + 4r) (2+ O ll(^so )-' 

"o 
ll* I 

^l 
I - s.,

with Ç given by (3.2).



on the sent
ergence 2.3
strictly Let

us denote by ü-" the set of all such solutions, i.e.,

9" = {(x,s) eØ. :[x], +[s], > 0, i=1.2,...,n].
It is well known that there is a unique partition

ßU ît = {1,2,...,ft}, Øl îr =Ø,

such that for any (x, s) e Ø" we have ([x], > 0, [s], = 0, V i eØ) and
([x]r = 0, [s], > 0, v i e Í'). This means that the "basiç', and ,,non-basic,, 

variables
are invariant for any strictly complementary solution. Let us denote the corres-ponding partition of Mby

Mru

Mou Mu¡,

M*¡,
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tu[-

Also, for any vector .y € [R, we denote by ,ya the vector of components
ïyl,,i e,%1, andbyy¡y the vector of componenls fyl,, i eIt.

LENß4A 4.1. The iteration sequence {(ro ,ro )} generated by Argorithm 2.3
is bounded, t,e,,

(4.1) 0<[ro],, [ro], <( + 4x)(z+O(( 0.r 0. I I I Ix ) s ),!f.!,,luT,¡r5J=t'

Proof. It is easily seen from (2.25) and (3,1a) that (xk).ro +(ro)r"0.
< (1 + 4r) (2 + O (r 

o 
). r0, which frmher implies our desired result. !

LENov{A 4.2. Let {zk =(xk,so¡¡ be generated by Atgorithm 2.3. For any
solution z* =(x* ,s*¡ e,g-* , there is a constant y l suchthat

(4.2) l[.r¿ (l)], -[x.], l, llso (l)1, -[s.],ls ,,llto --t'll2 
.' 

l)n

Proof. For any z' = (x* , s* ¡ e:Ð* , using (2.5) we have

(so *r)(-:(r)-' 
I =(rro - x.) (,0 _,.1

la -r/["*(l)_".J =[ o )
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From the above theorem we can obtain polynomial complexity under certain
assumptions on the starting point. For the case when the starting point is feasible,
or close to being feasible, it is easily seen from (2.4e), (3,8), Lemma 3.2 and
Theorem 3.3 that the following corollary holds.

coRotLaRy 3.4. Assume thqt Ø* is nonempty and that the starting point is
chosen such thaî there ís e constont C independent of n satisfying the inequality

(2 +Oll(so)-''oll- <
C

(l+r) n

Then Algorithm 2.3 terminates in at most K., = O((l+ K) J; h(eo. / e)) íterations.
Most of the complexity results on infeasible-interior-point. methods are

obtained for starting points of the form

xo =pp€, so =p¿è,

where Po and p(t are sufficiently large positive constants (big M initialization).

F-or such starting points we clearly have (x0,s0) e $î o and

(=ll"-ll, l(np)+lls-lI l(np¿), forsome (x*,s*).Ø",

ll (^so ) 
-' r o 

ll* < I + (pp I p ìll Mell_ +(t I p )llq ll_ .

'fherefore, if p, and p, satisff the inequalities

p r2n-t llx.ll, , pr/ > max {o rllMell*, llqll- , n 
-r 

lls-llr },

for some (r*,r*).,1", then n<o((1 +K)^l;) and therefore \rye obtain the
following complexity result from (2.4e),(3.8), Lemma3.2 and.Theorem 3.3.

coRorLeRv 3.5. Assume that ü-. is nonempty and thqt the starting point is
chosen of the form (3 .9) such that (3 .r0) is satisfied for some (x*, s 

* 
) e !Í* . Then

Algorithm2.3 terminates in at most

(3.11) R" = o((l+r)2 nln(eo / e))

iterations,

4. QUADRATIC CONVERGENCD

ln the previous section we have proved that Algorithm 2.3 is globally
QJinearly convergent under very general assumptions. polynomial complexity was
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:--Qn

-'sN = -8 u
*0
-0

's/r > 0.
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LÈML{,\ 4.4'. Suppose that.Ð" #Ø. Let 1zk :(xk ,sk)} be generatecl by
Algorithm 2.3.Then there is q constant y , such that þr each k there is a solution
z! e Ø" such that

(4.4) 
llzk -zl ll<yrtro.

Proof. consider the following equarity-inequality linear system:

Mnaxa

M ¡rtx a
(4.s) xN

SB

XB,

Under the assumption that g" +Ø, (4.5) has a solution and the solution set of
14's¡ is 9..'Bty Hoffman's lemma [4], for any zk,there is a constant ï+, inde-
pendent ofkand zl e g-. such that

(4.6) llzk -zÍll<y qll(Mur*L+qo, Mrnxru +Q u _s¡t, xh,sÍ)ll<

,<T +llGMnnxfi +rf , _ M¡vrxkr, 
"n ,rß)ll+y4lhrll.

l\doreover,

ll"oll = llvroll= 4(*uo 
¡ = 

ll"ollu.
lro Fo

Finally, (4.4) follows from Lemma 4.3 and,(4.6H4.7).a

L'vn¿n 4'5 Let {zk = (xk, tk ¡¡ b" generated by Argorithm 2.3. Then

(4.8) l[z],1<Tsþk, l[u],|<^tsþk, with ys:(t+ï fl)Tt.
, Proof. Let z! = (xl , s! ¡ e ø. sarisff (4.4). rt follows from Lemm a 4.2 and

Lemma 4.4 that

l[¿¿], l< l[r' ], + lul, -[x( ],l+ ltxf l, -lro l,l= llro (t)], _ [xf 1, ¡+ llrÍ ], _ ["0 ],1<

<

. Similarly we can obtain the inequality forl[v],l. tr
we end the paper by stating and proving our quadratic convergence result.
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llDo (ro (1)-x-)ll<

t6

Applying Corollary 2.2tothe above linear system, we have

I

(4.3) llDo (*o (1)-x.ll<Jr-x¡¡ (xoso) 1(xo - x-)("0 -t-)ll<

- ^ll+2. llto - t.llo

Jt _ o Jrr*
ll

where Dk =(Xu;-715t ¡1 = Diag(d). Thus

l["u (1)], -[x.],1= [d]l'lldl,[ro (1)], -[x-], )l<

lro ),

The inequality involving s can be obtained similarly' !

LElvff\4a 4.3. Let g" + ø. Then there is a constant y , such that

[¡o], I yr(ro)'' ro , Yie !tt, ltu], I yrlxl¡r sk, Yie'Ø].

Proof. Let (;r., s*¡e!v,. It is easily seen from (3.1b) and the fact that

Vr SVr, k>l that

(ro )tr. +(to )t x. < (l +arc) ((l + Vr )/ (1- Vr )+Ç)npt <

<(l+4r)((2-60)/eo +O (*o)"0 .

Therefore,
(1+4r)((2-0n)/00 +o ("u)tr', vie9,t,

[s- ],

and

trr,, .W (*o)r ro, v i e Ø).

(["0 ], lro l, ) t

r.k - -* 12

<Y,!T, with T t=
tr

(l+2rc) yo

1-cr

["u ], (

Hence the desired result holds with

Tz = (1 +  r) ((2 - 0o) / 0o +O max
11

tftÍtX:, lnâX 
"i e% fx 1- i.rr [s l,
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THEoREM 4.6. IÍ the linear complementarity problem (1.1) has a strictly
complementarity solution, then there are two constants y qnd y independenl of k
such that the points produced by Algorithm 2.3 satisfu

(4.9) pt *,3yþ?, ll"o.'ll< yllroll, , k>1.

Proof. From (2. L7), (3.7), (3.5) and (4.8) it follows that

0r >l-ô/(Þ-cr)21-yp

witlr y = j-"y?/ (Þ- cr). From (4.7) we see that (4.9)holds with y : ypTll¡ro ¡¡. n
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