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1. INTRODUCTION

The P,-matrix linear 'complementarity problem requires the computation of a

vector pair (x,s) € R satisfying
(1.1) s=Mri+q, x"s=0, (x,5)>0,

where geR” and M eR"*" is a P.-matrix. The class of P,-matrices was intro.

duced by Kojima et al, [7] and it contains many types of matrices encountered in
practical applications. Let x be a nonnegative number. A matrix M is calied a
P.(x)-matrix if

(12)  (A+4x) 3 x[Mx] + > xIMx), 20, VxeR”,
eI (x) ieJ_(x)
where
J,x)={i:x[Mx), >0}, T (x)={ix, [ Mx], <0},
or, equivalently, if
(1.3) X Mez-4x Y x[Mx]. VxeR"
. ied,(x)
Thelc-lass of all P, (x)-matrices is denoted by P.(x), and the class P, is
defined by i
P =) P(x),

x20
Le., Mis a Pimatrix if M e Pi(x) for some k>0,
Obviously, P.(0)= PSD (the class of positive semi-definite matrices).
Every convex quadratic optimization problem can be written as a monotone I,CP
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and therefore the P, LCP generalizes this case. Also, we have P, o P, where P is
the class of all matrices with positive principal minors. This follows from the fact

M,O}, where
4y (M)

Amin (M) is the smallest eigenvalue of (M+M")/2, and y(M)>0 is the

so-called P-matrix number of M (see [7, Lemma 3.3]).

Most interior-point methods for linear programming have been successfully
extended to the monotone LCP. However, there are comparatively fewer results for
. the P -matrix LCP. The potential reduction method given by Kojima et al. [7]

solves a P, (x)-matrix LCP in at most O((k +1) Jn L) iterations. Nevertheless, no

superlinear convergence results have been proved so far for that method. The first
algorithm for this new class of LCP having both polynomial complexity and
quadratic convergence has been recently proposed by Miao [11]. His method is
actually an extension of the Mizuno-Todd-Ye’s predictor-corrector algorithm for
linear programming [14].
In the above mentioned algorithms it is assumed that the starting point
(", %) satisfies exactly the linear constraints (i.e., s"=Mx" + g) and lies in the
interior of the region defined by the inequality constraints (i.e., the vectors x° and
s are strictly positive). Such a starting point is called strictly feasible or simply
interior. All the points generated by the algorithm are also strictly feasible, which
accounts for the name interior-point method. However, in practice it is sometimes
very difficult to obtain feasible starting points. Numerical experiments have shown
that it is possible to obtain good practical performance by using starting points that
lie in the interior of the region defined by the inequality constraints, but do not
satisfy the equality constraints (cf. [10]). The points generated by the algorithm will
remain in the interior of the region defined by the inequality constraints but, in
general, will not satisfy the equa'ity constraints. This property is reflected in the
name infeasible-interior-point alg. “"wm that has been suggested for such methods.
While there is an enormous litcrature dedicated to the study of interior-point
methods, the first results on infeasible-interior-point methods were obtained only a
couple of years ago. For a recent survey of the results we refer the reader to [20].
Most of the results on infeasible-interior-point algorithms have been obta-
ined for linear programming. The best computational complexity results obtained
so far show that infeasible-interior-point algorithms can solve standard form linear
programs with integer data of length L in O(nL) iterations. This complexity is
shared by the algorithms proposed in [2], [9], [12], [13], [18] and [19]. The algo-
rithms of [12] and [19] are also quadratically convergent. Ye, Todd and Mizuno

[27] have obtained O(+/nL)-iteration complexity by applying the Mizuno-Todd-
Ye algorithm to a homogeneous self-dual reformulation of the original linear

that a P-matrix M is a P.(x)-matrix for « = max {—
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programming problems where the original infeasible starting point enters the
forrcfulation of the homogeneous self-dual problem itself and becomes a feasible
starting .point for it. The quadratic convergence of the corresponding  iterative
process is proved in [22]. i fr
The first infeasible-interior-point algorithms for LCP were proposed by
Y. Zhang [28] and S. Wright ([23] and [24]) and they had. O(n’ L) -iteration com.-
plexity. Zhang’s algorithm was studied for the horizontal linear complementarity
problem, while Wright’s algorithms, which are also subquadratically convergent,
were proposed for the monotone linear complementarity problem. The latter
problem is obv_iously a particular case of the former problem, but, according to the
work of Giiler [3], horizontal linear complementarity problems can always be
reduced to monotone linear complementarity problems, so that the two problems
are equivalent. To our knowledge no extensions of infeasible-interior-point
methods for more general linear complementarity problems have been proposed so
far. However, the computational complexity has been improved. Kojima, Mizuno
and Todd [9], mention that the O(nL) infeasible-interior-point algorithms for
linear programming considered in that paper can be generalized for 'ilinear com-
plementarity problems, but the superlinear convergence of the resulting algorithms
has not been yet established. In a recent paper [20], the second author has
proposed a new infeasible-interior-point’ method for ‘monotone linear
complementarity problems, whose computational complexity depends on the
quality of the starting point. If the starting points are large enough, then the
algorithm has O(nL) iteration complexity. If a certain measure of feasibility at the
starting point is small enough, then the algorithm has O(+/nL) iteration com-
plexity. At each iteration both “feasibility” and “optimality” are reduced exactly at
the same rate. The algorithm requires two matrix factorizations and at most three

back-solves per iteration and it is quadratically convergent for problems having a ~ '

strictly complementary solution. Therefore its asymptotic efficiency index in the
sense of Ostrowski [17] is v/2.

In the. present paper we extend the algorithm of [20] for solving the
£ (x) -matrix LCP. This algorithm also requires two matrix factorizations and at

most three back-solves per iteration step. Both “feasibility” and “optimality” are
reduced exactly at the same rate as well. It has O((x +1)*nlL) iteration complexity
for a general P, (x)-matrix LCP and arbitrary, sufficiently large, positive starting
points. If the starting points are close to being feasible then the computational
complexity drops to O((x +1)v/nL) iterations. The algorithm is quadratically

convgijgen.t for problems having a strictly complementary solution. The latter
condition is not restrictive because, as shown by Monteiro and Wright [15], such a
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condition is necessary for superlinear convergence even in the case of the
monotone LCP.

The: notation used throughout the paper is rather standard: capital letters
denote matrices, lower-case letters denote vectors, script capital letters denote sets,
and Greek letters denote scalars, All vectors are considered to be column vectors.

The components of a vector u € R" will be denoted by [u]; (and when there is no
danger of confusion by ), i =1, ..., n. The relation » > 0 is equivalent to [«]; > 0,
i=1,...,n, while >0 means [4], 20, i=1,...,n If ueR", we R"”, then
(1, w) denotes the column vector formed by the components of u and w, ie.,
(u,w) € R"™", [(u,w)], =[u], for 1<i<n and [(u, w)l,,; =[w]; for 1<i<m.

We denote RY={ueR":u20}, R}, ={ueR":u>0}. If ueR”, then
U : = Diag(u) denotes the diagonal matrix having the components of u as diagonal
entries. The most used norm is the J-norm so that:we write [[]l instead of
Il both for vector norms and for the corresponding matrix norms [|4]]=
- =max {||4x[|:||x||=1}. Whenever we need other norms like il-1l, or ||-Il, we use
the corresponding symbol.

2. THE PREDICTOR-CORRECTOR ALGORITHM

We denote the feasible set of the problem (1.1) and its solution set
respectively by

F ={(x,)e R ;5= Mx+q} and F ={(x",s" ) eF:x'Ts" =0
Throughout this paper it will be assumed that %~ is not empty. It is easily seen
that (x",s")eF" if and only if (x",s")20 is the solution of the following
nonlinear system

Xs
2.1 F 4= =0.
. eore(ie)

For any given € > 0 we define the set of e-approximate solutions of (1.1) as
F,={(x",s") e R :x"Ts" <, | My =5 +q||<e).

In what follows we shall present an algorithm that finds a point in this set in a finite
number of steps. The algorithm depends on two positive constants o and B given by

~

G A
x , P=% ,
x+\/(1+4m(1+2x))f2 At/ (1+4K(1+2x)) /2

(2:2) 96l g

5 An Infeasible-interiot-point Method 281

where

- 2(1+2k)? V2(1+2x)
2.3 N=17{ "1 )
&) { +1+41<(1+2r<)Jr,/1+41<(1+21<)J
It follows successively that
(2.42) 1/ (V2 +4/3) <A <1/1(1++2)
(2.4b) 1-B-«xB* /n>1-B-2«kB> /n>0
(240) J+4x(1+2x)) /2 B2 . A+ dx(1+2x)) /2 B2 :a

20-B)~2kB* /'n 1-B
2.4d) 2(1+2x) B I (1+41<(1+217<))B2 “L

1-B 2(1-p)°

(2.4e) B-o=Q(1/(1+x)), PB-a<05.

The starting point of the algorithm can be any pair of strictly positive vectors
(x°,5% e [R?" that is a--centered in the sense that it belongs to the following set

Ny ={(x,58) € RY} :[| Xs— pe[| S ap},

++

where, as throughout this paper, we have denoted u=x"s/n.

At a typical step of our algorithm we are given a pair (x,s)e R>" and
obtain a predictor direction (x, v) by solving the linear system

(2.5a) Su+ Xv=—-Xs,
(2.5b) Mu—v=r,

where r is the residual r=s— Mx —q. Clearly, this is just the Newton’s direction
for the nonlinear system (2.1), whose Jacobian

[
_F’(x,s):z o

is nonsingular whenever x > 0 and s > 0 and M is a P,-matrix (see [7, Lemma 4.1]).
If we take a step length 0 along this direction we obtain

x(0)=x+0u, s(0)=s+0v, WO)=x(8)"s(0)/n.



282 Jun Ji, Florian A, Potra 6

We define O as the largest step length for which

(2.6) 1X(8) 5(8) ~ (1-0) pe[|<B(1-0) p, forall 0<0< 0,
and consider the predicted pair

2.7 X=x+0u, §=s5+0v

We shall see later that these are strictly positive vectors. Therefore the
Jacobian F’'(¥,5) is again nonsingular and we can define the corrector direction

(u,v) as the solution of the following linear system

(2.8a) S+ Xv=(1-0) pe— X5,

(2.8b) Mu-v =0.
Along this direction we consider the family of pairs
X(0)=x+0u, 5(0)=5+07.
By using (2.8) and the fact that (¥,5) > 0, we have
(2.9) X(8)5(0)>0(1-8) pe+6°T¥, for 0<0<1.
With a unit step length aloﬁg the corrector direction we obtain a new pair

=5+V.

Ca>

(2.10) X=X+u,
It is easily seen that

5 - b arirguiviian g B uih il
(2.11) Xs=(1-0)pe+Uv, p=—2"5=(1-0)p—-u'v.
n

3=

If @7 =0, then we have i=(1-0) p and, by defining the new current pair as
(x",5%)=(X,5), we obtain the same rate of decrease in feasibility and optimality,

ie.,

+\T
@Q12) =g M -g=(1-8)r, p =S g G
n

Otherwise a new corrector direction (#, V) is obtained by solving the linear system

T
(2.132) Si+xo=2"V,

n
(2.13b) Mi-$=0.
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Along this direction we consider the family of pairs
x(0)=x+0u, 5(0)=35+0v.
By using (2.8) and (2.13) we obtain

T

(2.14a) X(0)§(0)=(1-0) pe+(7v-eﬂe+e(17a)+920&,
n
. 2 1.
(2.14b) H(0)=(1-6) u+;p(6),
where '
(2.15) pO)=a"v(1-0)+(F a+a"9)0+a"vo>.

Finally, let 6 be the smallest positive root of the quadratic equation p(8) =0. (In
the proof of Theorem 2.4 we shall show that such a 6 exists and 0< < 2.) The
new current pair (x*,s") is defined as

(2.16) x*=3+0a, st =5+60.

It is easily seen that (2.12) holds in this case, too. In order to have a well-defined
algorithm, we have to show that (x*,s*) e, so that the above steps can be
repeated with (x*,s") instead of (x, s).

Using the technique of [5] (see also [20]), we can compute explicitly the

largest number 6 € [0, 1] satisfying (2.6). The result is summarized in the
following lemma.

LEMMA 2.1. If (x,s) €N, then the largest number 8 € [0, 1] satisfying
(2.6) is given by

f=—1—Xs—e, =lUv,
[ u
o=|lgll, o,=B*-IlfI*, o, =f"g,
0, =0a, /(o +1/af‘ +(1062),
0=2/(1+1+4/¢,),

where (u, v) is the solution of the linear system (2.5). Moreover, the pair (X,5)
defined by (2.7) satisfies

(2.17a)

(2.17b)

(2.18) | Xs —(1-0) pe|=B(1-8)p, >0, 5>0.
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COROLLARY 2.2. Let x, s, a, r be four n-dimensional vectors with x >0 and
§>0, and let M € R"*" be a P.(k)-matrix. Then the solution (u, v) of the linear
system

(2.19a)
(2.19b)

Su+Xv=a,
Mu—-v=>b

satisfies the following relations:

(2.202) | Dul|< 1B+ 1@ |2+ 1B P +2¢||E1P
(2.20b) D<@+ 118 [P +2¢ €17,
(2.20c) | Dul?+||D7'v | <||@|P+2x [|€]17 +2 118 | +
2| B IWIE IR+ 15 1R +2k )P = %2,
2 1 ~114 1 2,..2 ~12
(2.20d) IOvIF < gl + ot e = l1air ),
where

D=X""8" G=(X8)""a, b=D"b, T=a+b.

Proof. By premultiplying (2.19a) and (2.19b) by (X$)™"? we get

(2.21a) T+(V+b)=a+b,
(2.21b) Mi-(F+b)=0,

where % =Du, ¥=D""v and M=D"'MD™". It is easily seen that M € P.(x)
(see [7, Theorem 3.5]) and it follows from [Lemma 3.4] that
T Mu=uT(F+b)2—x||d+b|’.

Then we have

.22)  ||F|P+|IVIP =ll@ P -2a T M+ 2u7h <||&@|F +2x ||a + 51 21| |15 ]I
Therefore,
(2.23) (N =1B1D* +I151P <|@P+]b6 | +2x [|d + b .

Finally, (2.205)—(2.20b) follow from (2.23) and (2.20¢) from (2.20a) and (2.22). It
is easily seen from |[Uv|]* = ||[U¥|]* that (2.20d) follows from Proposition 2.2 of
Potra [20]. O
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We are now ready to prove that the algorithm described in this section is well
defined. For ease of later reference let us first formally define our algorithm.

Algorithm 2.3. Choose (x°,s°) e, and set y,=1. For k=0,1,..., do
Al through AT:

Al. Set x=x*,s=s" and define p.=(x7's)/p,r=s—Mv—q,\|/= (L

A2.If x"s<e, and ||r|| <€, then report (x,s) eF, and terminate. _

A3. Find the solution u, v of the linear system (2.5), define x,5 as in (2.7),
and set = (1-8) y, where 0 is given by (2:17).

A4. Find the solution u,v of the linear system (2.8), and define X,5 as in
(2.10).

AS. Ifu'v =0, thenset x* =%,s* =5 and go to A7.

A6. Find the solution 4,v of the linear system (2.13), and define x",s" as
in (2.16) with 6 being the smallest positive root of (2.15).

A7.Set x* ' =x" ¥ =5*,0, =0, p, =p, M =ry,,, =y

4
THEOREM 2.4. For any integer k>0, Algorithm 2.3 defines a pair

(2.24) (x*,s"yew,,

and the corresponding residuals satisfy

(2.25) P =yt =Wk,
where
k-1 L
(2.26) wo=1, y,=]] (1-8).
i=0

Proof. The proof is by induction. For A= 0, (2.24) and (2.25) are clearly
satisfied. Suppose that they are satisfied for some k>0. As in Algorithm 2.3, we. -
shall omit the index k. Therefore we can write

(,) Ny, F=wyr’, W=y,

The fact that (2.25) holds for £+ 1 follows immediately from (2.12). By
applying Corollary (2.2) to (2.8) and using (2.18), we deduce that

— a1+ 26
. < 1-8)u,
(2.272) IG5 4= B
2.
2.27b) \Dal? + D5 s%(l—% i,



286 Jun Ji, Florian A. Potra 10

where D = X 25", On the other hand, from [7, Lemma 3.4] we have

2 Pt
@28) 7Tk (XS 1K - (1-8) el 2 - (1-B) .

(1-B)
It is easily seen from (2.11) and (2.28) that
3 1-B—«kp%/n =
(2.29) uz-—B—l-_BL—(l—e)u.

By using (2.4) and (2.27)+2.29) together with the fact that n'(@V)e is

the orthogonal projection of UV on span(e), we can write

(2.30) 15 ~ fie|| = | U —n”" (@"v) el| < |7 <
2
< J1+4(1+2x) B2 (1_6)“S1/(1+4K(1+2K))/2 B i<

V8 (1-B) 2(1-B—«B* /n))
By using (2.4), (2.9) and (2.27a), we obtain
X(0)5(0)>0(1-0)(1-a)pe>0, for 0<H<1.

Obviously, we have ¥(0)=%>0,5(0)=5>0 and X(1)=x,5(1)=§ so that if
£>0,5>0 fails, then there must exist a 0 €(0,1] and an index i such that
[X(8)]; [5(0)], =0, which contradicts (2.31). Therefore, we have that x>0, § > 0.
In the case when %'V =0 we have x* =%, s* =§ so that (2.24) holds for k + 1 as

well. It remains to prove that (2.24) is also satisfied when #'v #0. Applying
Corollary 2.2 to (2.13), we deduce that

J1+4x(1+2x) |0 @ 'v) e|| Ty||  (L+4x(1+2x)) B [u"v|
VB(1-B)(1-0) 81-B)° Vn

(2.32a) || Ov||<

- |? Py
— i — =T (1+2k) (5" V)
AP+ D9 < xX3) 22 1| < L,
(2.32b) || Du|"+[|D7V|I <A +2x) (X S) . e 21=B) (1-0)
which further implies that
o n ran (T+dx (1+2x) B2 g
S| U S( [u"v|
S e v

i S 1 wil i 1 2 =
via+a' b <[ D + (| D75|F 2 [ Dalf+ | DR T2 S—(li/ﬁi [_% =
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Similarly, we have

(2.33) |117&+x7ﬁu<(1—+2"_)9||(7\7||.

1-p
By substituting the above inequalities in (2.15), we get p(0)<(#'¥)(8) if
@'V > 0. Otherwise p(0) 2 (77¥) o(8) if #'v <0, where
(1+2x)B ,  (A+4k(1+2x)p* ,
0+ 5
(1~B)Vn 8(1-B)
Together with (2.4d), which implies (2) <0 for »>2, we have p(0)p(2) <0.

0(0)=1-6+

Therefore the positive root 6 of the quadratic equation p(0)=0 satisfies
0<6<2. Because n”! (#'¥)e is the orthogonal projection of U v onto Span(e),
and 0 <6 < 2, we have

1T 500" (@) || < | T 7.
By using (2.4), (2.12), (2.14), (2.16), (2.27) and (2.32)2.33), we get

J(+4x(1+2¢)) /2 B2
1-B

The positivity of x* and s* can also be proved by continuity based on the following
inequality, which is obtained from (2.4), (2.14a), (2.27a) and (2.32)—2.33):

[X"s" —prel|<2U )<

(1-O)pu=op*.

X(0)50)2(1-0)(1-0)pe>0, V0<6<2.

Finally, it follows that (2.24) is satisfied for £+ 1 and the proof of our
theorem is complete, [

3. GLOBAL CONVERGENCE AND POLYNOMIAL COMPLEXITY

In what follows we assume that %" is nonempty. Under this assumption we
shall prove that Algorithm 2.3, with & = 0, is globally convergent in the sense that

limp, =0 and lim r* = 0.
k-0 k-0

LEMMA 3.1. Assume that F  is nonempty. Let (x",s"YeF " and the
sequence (x*,s*) is generated by Algorithm 2.3. Then |

(3.1a) Ve ()7 s%+(s*) x%) < (14 4k) 2+ ) mp,
G.10) 1=y ) (") s +(*) %) <U+d1) Loy, ) + 1=y, ) O
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where
(32) C=((x") s+ %)/ (x°)s%).

Proof. By writing x,s,y for x*,s* « » respectively, and by using (2.25),
we have
ys® +(1-y) s —s= M(yx® +(1—y) x" - x).

By the definition of P, (k)-matrix (cf. (1.3)) and using the fact that (x",5")20
and (x,s)>0, we have

(3.3) [yx’ +(1=y) x" = x]" [ys® + (1-y) s™ —s]>

2—4x(y? (x°) s+ (1-y) w((x")s° +(x°) s )+ x"s),
where

Iy ={i:[yx’ +(1-y) x" = x], [ws® + (1~ y) s” ~s], > 0.
On the other hand, we have
(34) [yx® + (1-y)x" —x]" [ys® + (- ) s" 5] =

=ylmpg H(1-y) w((x*) 5"+ (s°) x") -
—y((x°) s+ () )+ s — (L= yXsTx" +x7s )+ (1= y) () 5"

The desired inequalities (3.1) follow from (3.3) and (3.4) by using (2.25) and the
fact that (x")"s" =0, s7x" +x7s" >0 and s"x° +x7s" >0. 0

. From Lemma 3.1 and Corollary 2.2 we shall derive a useful bound for the
quantities

(3.5) 8, =IU*v |l/u,, k=0,
where (u*,v*) is obtained at step A3 of Algorithm 2.3. This bound is going to
play an important role in our analysis.

LEMMA 3.2. Let (u*,v*) be obtained in the k-th iteration at step A3 of
. Algorithm 2.3 and let 8, be defined by (3.5). Then

8, <8" =ny125+4(1+m)* (1+x)2,
where

n=/n(1+4k) 2+ O[(S°) " |l N1 -at,

with £ given by (3.2).
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Proof. We omit the index £. Applying Corollary 2.2 to linear system (2.5)
and-using Lemma 3.1, we can write

(3.6a) | lal/=11(X$)"? el| = \[np,

(3:60)  [1B1]=[I(X8) ™ drl|< (1= 0) " 2 Xl < g (1- ) 2 2 a0 <
<=0 IS 0) PO, wis®) x <yl

(3.6¢) IEH< NN+ 115 )I< (1+ 1) /.

Finally, the required inequality follows by substituting (3.6) in (2.20d). [
It is easily seen from (2.17a) that

1 —————
(p—s(lall"'\/ |a||2+(x082)/a0.
1

.+ The right-hand side of the above inequality is increasing in |a,| and

decreasing in a,. Using the fact that oy 2B*—a’>0 and lo [N ATHgll € a8,
we obtain

3.7 /¢, <8/(B-a).
Finally, from Lemma 3.2, (2.17b) and (3.7) we obtain

(3.8) 0,20 =2/(1+1+48" /(B-a), k>0,

With the help of (3.8) and Theorem 2.4 we can easily prove the main result
of this section, which basically states that Algorithm 2.3 is globally convergent at a
linear rate.

THEOREM 3.3 Suppose that the optimal set F° is nonempty.
(1) If € =0,-then Algorithm 2.3 either finds an optimal solution z° € F " ina
Jinite number . of steps or produces an infinite sequence z* = x*, 5% %) such
P P q )
thar lim (x*)"s* =0, and lim (#*)=0.
k> o koo

(i) If €> 0, then Algorithm 2.3 terminates with a z € F« in at most

K - In(e/g,)|
© (1=
iterations, where &, =max{u,,||r’|}, and [y] denotes the smallest integer
greater or equal to .
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From the above theorem we can obtain polynomial complexity under certain
assumptions on the starting point. For the case when the starting point is feasible,
or close to being feasible, it is easily seen from (2.4e), (3.8), Lemma 3.2 and
Theorem 3.3 that the following corollary holds.

COROLLARY 3.4, Assume that & is nonempty and that the Starting point is
chosen such that there is a constant C independent of n satisfying the inequality

SULCTL
(1+x)/n

Then Algorithm 2.3 terminates in at most I?g =0((1+x) Jn In(e, /€)) iterations.
Most of the complexity results on infeasible-interior-point. methods are
obtained for starting points of the form

C+OlS) ™ ., <

X\ =p,e, s° =p,e,
where p, and p, are sufficiently large positive constants (big M initialization).

For such starting points we clearly have (x°,s°) e . and

C=llx"ll np,) + sl Amp,), forsome (x",s")ed”,

IS*) " Pl <1+, /9 )| Mell, +(1/ p, gl

Therefore, if p, and p, satisfy the inequalities

P, 2n 1"l py2max{p,||Mel.,, ligll,.n” sl },
for some (x',s")eF", then N<O(1+x) «/;) and therefore we obtain the
following complexity result from (2.4e), (3.8), Lemma 3.2 and Theorem 3.3.

COROLLARY 3.5. Assume that " is nonempty and that the starting point is
chosen of the form (3.9) such that (3.10) is satisfied for some (x*,s*)e F*. Then
Algorithm 2.3 terminates in at most

(3.11) K, =O0((1+x)*nin(e, / €))

iterations.

4. QUADRATIC CONVERGENCE

In the previous section we have proved that Algorithm 2.3 is globally
Q-linearly convergent under very general assumptions. Polynomial complexity was
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obtained under some additional assumptions on the starting points. In the present
section we shall study the asymptotic convergence properties of Algorithm 2.3
under the further assumption that (L.1) has a strictly complementary solution. Let
us denote by % ¢ the set of all such solutions, i.e.,

F={(x,5) e i [x], +[s), > 0,i=1,2,...,n}.
It is well known that there is a unique partition
BUN={1,2,...,n), BON =0,

such that for any (x,s)e%° we have ([x]; >0, [s], =0, Vie®B) and
([x]; =0, [s], > 0, Vi e ). This means that the “basic” and “non-basic” variables
are invariant for any strictly complementary solution. Let us denote the corres-

ponding partition of M by
M= [ My, M BNJ .
Mys My,

Also, for any vector ryeR" we denote by yg the vector of components
[¥]i,i €9, and by yy the vector of components [ y],. LieN.

LEMMA 4.1. The iteration sequence {(x*,s* )} generated by Algorithm 2.3
is bounded, i.e., :

(4.1) 0<[xk],,[sk]iS(l+4K)(z+C)((x°)Ts°)_max{ ! ! }Eyo,

Ji=1l..,n [xo]j i [so]j
Proof. 1t is easily seen from (2.25) and (3.1a) that (x*)7s° +(s)Tx% <
S(1+4¢) (2+8) (x°)"s°, which further implies our desired result, (J -

LEMMA 4.2. Let {z* E(xk,sk)} be generated by_ Algorithm 2.3. For any

. * * * W
solution z" =(x" ") e F , there is a constant Y, such that

(42) I 01 =L, st (), 57 <y, B2 0
H

Proof. For any z* = (x",s") eF’, using (2.5) we have

(S" X"J (x"(l)—x'} _((X" - X"y (s* -s*}
M -1 ()-s*) 0 '
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Applying Corollary 2.2 to the above linear system, we have

=1l Ve, .
T T CAOREA VRPN [0 I C S S Ut D]

\/1+21< |z -z
«/1 o \/—

where D* = (X*) 2(8*)? = Diag(d). Thus

I (O], =[x "3 1= 141, M, (L (D], =[x 1)1
k
S L T, ST P

I =2 420 7,
<y =2k, with y, =T
u

The inequality involving s can be obtained similarly. [J
LEMMA 4.3. Let F° # 0. Then there is a constant v , such that
i) Sy2(xf‘)rsk Vie 9.

Fe. It is easily seen from (3.1b) and the fact that

[x*1, <7, (6")'s*, View, [s

Proof, Let. (x",s")€
<y, k21 that
()" () X" <A +40) () /(L= )+ mpy <
<(1+4x)(2-8,) /0, +&) (x* )" s*

Therefore,
(1+4x) ((2-

[s”

(x)'s*, View,

$ ]60>/60+c)

and
, Vie .

[s51 S(1‘*414)((2—*50)/60 +C) (xk)TSk
l [x ],

Hence the desired result holds with

3 .. by 1 1
¥, =(1+4x)((2-6y)/ 0y +C) max{rlne%( [x*],. xlréa;[s—]}
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LEMMA 4, 4 Suppose that F° #0. Let {z* = =(x*,s Y be generated by
Algorzthm 2.3.Then there is a constant vy ; such that for each k there is q solution

z¥ € F  such that
(4.4 Iz — 2 syt
Proof. Consider the following equality-inequality linear system:

Mppxy =qp

Mypxg Sy Tqy
4.5) 05, =0

Xg, Sy 20,

Under the assumptlon that &° #0, (4.5) has a solution and the solution set of
(4 5) is 7 By Hoffman’s lemma [4], for any z* there is a constant Y4, inde-

pendent of k and zf € F" such that

(4.6) ”Zk —Zf”Sh“(MBBx[I; 495, MNBXZ Ty~ Sy, x;\‘,,s[’;)”g

ko, ok kooko Lk k
Y4 (=Mpgyxy +55, —Myyxy, xy, sy llFE-

Moreover,

H %)) i II

0

Finally, (4.4) follows from Lemma 4.3 and (4.6)H4.7). 1

e =y = (W b)=

LEMMA 4.5 Let {z* = (x*,s* )} be generated by Algorithm 2.3. Then
(4.8) [l 1<y sus VLIS ysubs with yo=(l4y,y5) 7y

Proof. Let z¥ = (x¥, s* Ye F” satisfy (4.4). It follows from Lemma 4.2 and

Lemma 4.4 that

10" ) L, = B+ 1 ], =t = I O, =D )+ e ], =[]0

Sy sl =2 12 2 < Ay va) vapt =y gut.

.. Similarly we can obtain the inequality for|[v],|. O

We end the paper by stating and proving our quadratic convergence result.
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THEOREM 4.6. If the linear complementarity problem (1.1) has a strictly
complementarity solution, then there are two constants y and y independent of k

such that the points produced by Algorithm 2.3 satisfy

4.9) THES T ] | 7 1A O 23§

Proof. From (2.17), (3.7), (3.5) and (4.8) it follows that
| B, 21-8/(B-a)>1-yu

with y =+vny2/(B-a). From (4.7) we see that (4.9) holds with 7 = Yl 0. O
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