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AN IMPROVED BOUNDARY ELEMENT METHOD
FOR THE 2D LIF-TING AIRFOIL PROBLEM

ADRIAN CARABINEANU

Abstract. Using an inverse Kármán-Trefftz transformation, the problent of the lifting flow
around an airfoil with a sharp trailing-edge is reduced to the problem of the flow past a smooth
curve which may bc solved without any diffìculty by means of the boundary element method. This
tt*v appt'oach gives the possibility to extcnd the upplication of the boundary clcnrcnt llrctlrod ro
thin protìles and to profiles with cuspcrl trailing-etJge. A conrparison between analytical ancl cal-
culated values of the pressure coefficìent in the same control points f'ol' some airtbils shows a very
good agrecment.

I.INTRODUCTION

The boundary element method is a numerical approach to sorve boundary
value problems obtained by transformation of the partial differential equations
into integral equations. These integral equations can then be solved numerically
by discretizing the boundary of the domain only. This reduction of dimensional-
ity is a great advantage over domain-type approaches (finite difference method,
finite element method) because it is more economical from the computational
point of view.

The study of the incompressible potential flow past an arbitrary airfoil by
the boundary element method is already a classical problem presented in textg
books dedicated to computarional fluid mechanics Il], [2]. Generally the investi-
gation of the incompressible flow past a smooth obstacle is a simple problem.
This problem becomes more complicated for the obstacles (airfoiìs) with a shaqp
trailing-edge. In this case, for determining the circulation one has to use the
Kutta-Joukovsky condition which states that "the flow leaves the sharp trail-
ing-edge of an airfoil smoothly and the velocity there is finite".

Many àttempts were made for transforming the Kutta-Joukovsky condition
into a numerical relation that may be used in the frame of boundary element
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rnethod. Arnong them we mention the papers [3], [4], in which one imposes the
zero value to the tangential velocity in the trailing-edge. In other papers [], [5],
one irnposes the same value of the velocity on both the upper and lower panels

of the trailing-edge.
The application of the boundary element method is very difficult for the

airfoils with cusped trailing edge because of the very tight placing of the collo-
cation points in the vicinity of the trailing'edge. The same difficulty arises for
thin airfoils. The limit case of an airfoil which is an open curve (the airfoil re-

duced to its skeleton) is quite impossible to be investigated using the boundarv

element method because of the coincidence of the panels from the upper and

lower surfaces.

However, herein we develop a new method which allows us to bypass these

difficulties and to apply the boundary element method even to the profiles for
which the method eas considered not to be applicable.

The first step of this method is to map conformally the airfoil with a sharp

edge onto an arbitrary closed smooth curve by means of an inverse Kár-
mán-Treffn (or Joukovsky) transformation. We may calculate using the bound-

ary element method the tangential velocity over the smooth curve, and then,

using the Kármán-Trefftz (or Joukovsky) transformation we may find out the

tangential velocity on the original aitfoil. As we shall see, the Kutta-Joukovsky

condition is satisfied by imposing the velocity to vanish in the point on the

smooth obstacle conesponding to the trailing-edge.

The idea of using the Kármán-Trefftz transformation for mapping the air.
foil onto a smooth curve belongs to Theodorsen [6]. He observed that by means

of an appropriate inverse Kármán-Trefftz transformation, many airfoils are

mapped onto pseudo-circles. Using a standard numerical method [7] it is possi-

ble to determine the conformal mapping of a pseudo-circle onto a circle and af-

terwards, by means of the conformal mapping method, the tangential velocity on

the airfoil.
In comparison with Theodorsen's method, the present method is simpler

and more general (as we may see in Fig. 2, it may happen to obtain by means of
the inverse Kármán-Trefftz transform a smooth curve that differs very much

from a circle).
ln the present paper we investigate by means of the boundary element

method (using the integral equation for the steam function) the plane, steady,

incompressible, potential flow (uniform at infinity) in the presence of an arbi,
trary profile

The comparison between the theoretical values and the calculated values of
the pressure coefficients obtained for a Von Mises profile, a Kármán-Trefftz pro-
fìle and a circular arc Show a ver-y good agreement.

?2 A Boundary Element Method

2. THE TÁruIÁX-'TNE¡'T'TZ TRANST'ORMATION

We consider in the Z-plarc. a smooth closed curye 9, the point Z¡of .! and
the point Z, in the interior of the domain bounded by "/.

The Kármán -Trefftz transformation

(2.t) __,.20-Zt ,,.20+Zt.1: K--T- - n--, I <k<2,

which is equivalent to

Q.2)
z-Wo
z- Wt

maps conformally the exterior of 9onto the exterior of a curve I in the z-plane.
The curve /has an angular point zn = kzo(he trailing-edge) and the trail-

ing-edge angle is
(2.3) r=n(2-k).

The point zt = kZt lies in the interior of l.
For k = 2, Zo = R > 0 and Zt = -R the Krármán-Trefftz transformation be-

comss the Joukovsky transformation

(2.4) z=z+4', Z

which transforms'the exterior of a smooth curve containing the point Z= R onto
the exterior of a profile having a cusped trailing-edge in z' 2R (we suppose that
Z= -R is in the interior of the domain bounded by the smooth curve).

Conversely, the exterior of a profile having the trailing edge ¿o and the

trailing edge angle n(2 - k) is transformed conformally by the inverse Kár-
mán-Trefftz transformation

(2.s) ,=w
onto the exterior of a smooth curve (we suppose that z¡ is in the interior of the

profile).
If k = 2 the profile has a cusped trailing edge. SettinE Zt= 2R and 7, = -)ft

we obtain the inverse Joukovsky transformation

(2.6) 7 = 
z+ (22 

-4R2)tt2 .
2

As we could see, the Joukovsky transformation may be regarded as a par-

ticular Kármán-Trefftz transformation. We can eagily check that for the Kár-
mán-Trefftz transformation,
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(2.7) ):*#='
From (2.2) putting zr,= kZr, we get

z.- zs = (Z - Zùk O(Z): ó(z)*0,(2.8)

whence

12.9) E = rt - zùka x(Z): NZù + o.

3. THE METHOD OF CONFORMAL MAPPING FOR 2D INCOMPRESSTBLE FLOW

By means of the inverse Kármán-Trefftz (or Joukovsky) transformation we
map conformally the exterior of an airfoil vúith a sharp trailing-edge in the
z-plane onto the exterior of a smooth curve in the z-plane. vy'e denote by ze the
trailing-edge and by 4 the corresponding point on the smooth curve. The com-
plex velocity in the airfoil plane is

(3.t) df
fi= v1-rv2,

whgre/is the complex potential of an uniform at infinity flow deflected by the
airfoil. At infinity/has the following development

(3.2) fk)=v*e-ia,*f,tn. *asra6-t ra2z-2 *...

s is the incidence angle, V-e-io is the conrplex velocity at infinity and f is the
circulation around the airfoil.

The f'unction

(3'3) fl4 =.ÍkØ))
is the complex potential of the flow past the smooth obstacle in the Z-plane and
has the development at infinity

(3.4) f (z) = v-ejdz * f,nz +'Atz-t + A,z-2 + ...

By means of a formal manipulation, equation (3.1) may be rewritten

(3,s) {={*-=v1-iv2.dz dz d¿

Since according to Kutta-Joukovsky condition the velocity is finite at the
trailing-edge, from (2.9) aú (3.5) we ger

A Boundary Elcnrent Method

(3.6) df
dZ = lim (Z- z¡)k-t ^¡(Z)(u¡ - iv2 ) = 0.

Z--+Zu

Hence on the smooth obstacle in the Z-plane the velocity vanishes in Zn.

4.THE APPLICATTON OF THE BOUNDARY ELEMENT METHOD
FOR SIMULATING THE FLO\ry PAST THE SMOOTH OBSTACLE

As we deduce fiom (3.4) the flow past the smooth obstacle in the Z-plane is

uniform at infinity and the complex velocity there is V-e-'o. We get for the

stream function V = Im-f, the expansion at infinity

(4.t) \t(X,Y)= /-(l/coso- Xsin 
")-*

where R=(X2 +y2)v2 .

lntroducing the perturbation stream function

(4.2) Y(X,Y) = V(X, Y) - V-(Ícoscr- Xsina)

we deduce the behaviour of Y(X, Y) at infinity:

(4.3) Y(X,Y)=f;tnn+o(R-r).

Taking into account that Y is a harmonic function, we haye for (X, Y) e g
the integral representation (valid for functions which have at infinity the behav-
iour given by (4.3)):

(4.4) ny(X, n=l(Sre,nit"i-*rg,o*¡n-L)0,.
('

((, r¡) represents the current pclint <-rn the smooth ctJrve g, ds is the arc element
on ,!t and ô/ân is the inward normal derivative on .9. We also denoted by

, =({x -E)2 +(Y -r1)r)t'' .

On the streamline constituted by the airfoil we have

(4.5) \tyr=Q=const.

whence, by virtue of (4.2) it follows

(4.6) YV, = q -V*(Y cosa - X sin a)

Introducing (4.6) in (4.4) and taking inro account thar

Adrian Carabincanu 7
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fèrnI¿r=-n for 6,ne rJdn r
(4. r3) G¡¡ = li l+ln 2

(4.7) li
7

we get For the term in the right part of equation (4.10) we may use the quadrature

formula

(4.8)

-2nq + 
J # ,ç ri;tn 1ds = -nV*(Y cos o¿ - X sin cx,) -
7

-v- J 
(1.o, o - (sln a)Sln !¿''

.l

is the tangential perturbation velocity on the smooth curve 9. From (3.6)

-nV*(Y,coso - X; sina) - V*[ (qcosa - (sina)$ lnId, =rj
ç

(4.14) N-l

\ n ,V, cos û, - X, sin c),
i=0AY

àn where

(4.1s)
and (4.3) it follows

(4.e)

yii V*l¡
(X,-X¡)nx,+(Y¡-Y¡)ny

(Xi-Xì2 +(Yi-Yj
S{xo, Ys) = -v*(nr, .o, a - n¡, sin cx).

The existence and unicity of the solution (âY/ôn,q) of the first kind inte-

system:

of N equarions with N unknowns q unO S{X ¡,Y¡), i= l,,VJ. ln (4.10) we de-

nored by ,, = ((", -\)' *(r, -n)')"'

(4.16) H¡¡=-TIV*.

The convergence of the solution of the algebric system (4.10) to the exact

values of ðY lòn in the control points when N goes to infìnity is dicussed in [10].

Using the solutions of (4' l0), by means of the relation

(4.1i) #,", Ð =#6,Y) +v*(n, cos a - n¡ sin ct)

obtained from (4.2), we may calculate the tangential velocity in the control

points (Xu Y,), i = O À' -l on the smooth obstacle.

5. THE T,IFTING FLOW PAST ATRFOILS WITH SHARP TRAILING'EDGE.
NUMBRICAL RBSULTS

we denote by s the arc length on the airfoil and by s the arc length on the-

conesponding smooth curve. The tangential velocity on the airfoil is

The coefficients

(4.1 l ) c, = lnLds
(s,l) Y's =

â<p

âs ¡r

- ârp
-as

ltt'

ds
ds

where <p is the reâl potential of the velocity. From the Cauchy-Riemann equation

may be computed numerically if i + i. For N large enough the approximation

(4,12) Jrnlor=-2rrhf(x ¡-x,)'*(tr-t,)']
7i t

(s.2)

and from the relation

(s.3)

âry

ðn l't'

â<p

às 1'r'

gives good results (we denoted by l, the length of .9 ¡).

If i = j we obtain analyticallY [9]:

ds
d.ç lAl
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we deduce the values of the tangential veìocity on the airfoil in the control points
(-r,. _y,) corresponding by the Kárnlán-Trefftz (or Joukovsky) transformation to

The second airfoil we are taking into consideration is a Kármán-Trefftz

profile (Fig. 2, solid line) obtained fiom the circle

(s.7) (=f ã"u*-0.2*$ctnO¡, 0u=-#, 0e [0,2n]

by means of the conformal mapping

(5.8) - "'' 
((+ l)k +((-4-t, 

lt = 1.8, ;d-¿Á(*[eç,y -", ^- ¡.u,

Using the inverse Karman-Trefftz transformation

the control points (X,, Y,)

(s.4) "=#,rlfll
In the present paper we sball study the flow past three different airfoils. The

first is a Von Mises airfoil with a cusped trailing-edge. Using the transformation

(s,s) ; z=Ç*fre', +fie-z

we map conformally the exterior of the circle

(.5.6) q=*å-å-$ctn06, 0o=-#,0e[0,2n]

onto the exterior of a VonMises profile (Fig. l, solid line).

(s.e) Z_ z+k lk ,-r z - k)ttk
(z+ k -k-k¡trr

we map the Kármán-Trefftz profile onto a smooth curve (Fig.2; dashed line).

Although it was possible to choose as smooth curves corresponding to Von Mises

and Kármán-Trefftz profiles the circles from the (-plane, we prefered to take into

consideration the curves in the Z-plane obtained using the relations (2'6) and

(5.9) in order to simulate the general case.
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By means of the inverse Joukovsky transformation (2.6) with R = 0.96 we
rnap the exterior of the Von Mises profile onto the exterior of a smooth curve
(Fig, l, dashed line).

, li.irrtr¿:trt' i Itl lr t't ¿ ¡:ito t't t tl iì rfti) 0 t h t; ¡tt'u t)

Fig. 2. - Kármán-Trefttz profile and conespondirtg curve.
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The thirii airioil we are taking into consicieration is the çircular arc, ob-

tained from the circle
.n

(s.10) ç
e0 - ictn06, 0o

îE

20'
0 e [0, 2n]

cos06

by means of the -Ioukovsky transformation

(5.1 l) z = ç+ ç-t '

Using the inverse Joukovsky transformation,

(5.12) 7=z+k2:4)tt2
2

we map the exterior of the circular arc onto the exterior of the circle (5: l0).
The tangential velocity over the airfoils above mentioned may be obtained

analytically by means of the relation

\)

'i.r . rl
t').

t¡::l ,2,

{. .,j}

ti bt-

.t
,r.. i :)

t,rïi.){l{.r))v .s = 2v*[sin(00 - cr) - sin(o - ",f l#l
.J* i:ìtì¿tl,.jtl{)iìI( ..) i;l'ì0t^(ltli¡lìtì Ël'i)lìtìl'Il*fi 0i}(Ìf'l'Ìr:)ic¡'ìt

Fig. 3. - Circular arc at zero angle of attack.

For calculating by the boundary element method the tangential velocity we

choosed on the circles in the (-plane the control points (å,, 1), i = 0,39 corre-

sponding to 0 = (l - l)n120, the points ((i,\l¡) corresponding to 0 -
=(2i-3)n140 and the points fÇ,n) coresponding to 0 =(2i-l)n140. By

means of the mappings (5,5), (5.8) or (5.11) these points are transformed into the

control points (x,, ),) on the airfoils and into the points (xi,y), respectively

Gi,y), which represent the end points of the boundary elements on /. Then us-

ing the mappings (2.6), (5.9) or (5.12) we obtain the control points (X,, Y,) on the

corresponding smooth curve and the points (Xi,Y¡), (Xi,Y¡1 representing the

endpoints of the boundary elements {/,.
After calculating the tangential velocity on the airfoils by the boundary

element method, we may compute the distribution of the pressure coefficient

(5.14) cr--r v
Comparisons between the analytical values of the pressure coefficient and

the values calculated by means of the boundary element method are performed in

Fig. 3 for the circular arc, in Fig. 4 for the Von Mises airfoil and in Fig. 5 for the

Kármán-Trefftz airfoil. The angle of attack is considered zero for the circular arc

anrl l0o for the Von Mises ancl Kármán-Tre.fftz profiles'
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1. APPROXIMATION PLAN

t:..
I

l

I

The approximation algorithm of differential difference equations by system

of ordinary ãir","ntiut eqíations n" oï;,,îî::iï'i.',i 
îill"lJ'Ïü,ì åli.',]

d Yu. M. Repin [1] approximation sys-

il. 
*^ applied to neutral type equations

o improve precision of Krasovsky-Repin

approximatìon plan of differential equationì with delay by system of ordinary

dìiferential equãtions and ro consruðr the algorithm for computing nonasymp-

totic roots of quasiPolYnomials.

Let's considered the initial problem

t ] I i) I

i,tiì1 t'¿:t i:i 't:;, 
,:tl'lt:l tl.l liiì tllttlíli1 l'tlì [:.xtr'¿t]rl:;" 'il'ì¿lltJiti:'i;i l'lllillijl''iì

Fig. 5. - Pressure coefficient/chordl Kármán-Tretïtz profile'
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