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AN IMPROVED BOUNDARY ELEMENT METHOD
FOR THE 2D LIFTING AIRFOIL PROBLEM

ADRIAN CARABINEANU

Abstract. Using an inverse Kédrman-Trefftz transformation, the problem of the lifting flow
around an airfoil with a sharp trailing-edge is reduced to the problem of the flow past a smooth
curve which may be solved without any difficulty by means of the boundary element method. This
new approach gives the possibility to extend the application of the boundary clement method o
thin profiles and to profiles with cusped trailing-edge. A comparison between analytical and cal-
culated values of the pressure coefficient in the same control points for some airfoils shows a very
good agrecment.

1. INTRODUCTION

The boundary element method is a numerical approach to solve boundary
value problems obtained by transformation of the partial differential equations
into integral equations. These integral equations can then be solved numerically
by discretizing the boundary of the domain only. This reduction of dimensional-
ity is a great advantage over domain-type approaches (finite difference method,
finite element method) because it is more economical from the computational
point of view., :

The study of the incompressible potential flow past an arbitrary airfoil by
the boundary element method is already a classical problem presented in texts
books dedicated to computational fluid mechanics [1], [2]. Generally the investi-
gation of the incompressible flow past a smooth obstacle is a simple problem.
This problem becomes more complicated for the obstacles (airfoils) with a sharp
trailing-edge. In this case, for determining the circulation one has to use the
Kutta-Joukovsky condition which states that “the flow leaves the sharp trail-
ing-edge of an airfoil smoothly and the velocity there is finite”.

Many attempts were made for transforming the Kutta-Joukovsky condition
into a numerical relation that may be used in the frame of boundary element
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method. Among them we mention the papers [3], [4], in which one imposes the
zero value to the tangential velocity in the trailing-edge. In other papers [1], [5],
one imposes the same value of the velocity on both the upper and lower panels
of the trailing-edge.

The application of the boundary element method is very difficult for the
airfoils with cusped trailing edge because of the very tight placing of the collo-
cation points in the vicinity of the trailing-edge. The same difficuity arises for
thin airfoils. The limit case of an airfoil which is an open curve (the airfoil re-
duced to its skeleton) is quite impossible to be investigated using the boundary
element method because of the coincidence of the panels from the upper and
lower surfaces.

However, herein we develop a new method which allows us to bypass these
difficulties and to apply the boundary element method even to the profiles for
which the method eas considered not to be applicable.

The first step of this method is to map conformally the airfoil with a sharp
edge onto an arbitrary closed smooth curve by means of an inverse Kér-
man-Trefftz (or Joukovsky) transformation. We may calculate using the bound-
ary element method the tangential velocity over the smooth curve, and then,
using the Karmén-Trefftz (or Joukovsky) transformation we may find out the
tangential velocity on the original aitfoil. As we shall see, the Kutta-Joukovsky
condition is satisfied by imposing the velocity to vanish in the point on the
smooth obstacle corresponding to the trailing-edge.

The idea of using the Karman-Trefftz transformation for mapping the air- -

foil onto a smooth curve belongs to Theodorsen [6]. He observed that by means
of an appropriate inverse Karmdn-Trefftz transformation, many airfoils are
mapped onto pseudo-circles. Using a standard numerical method [7] it is possi-
ble to determine the conformal mapping of a pseudo-circle onto a circle and af-
terwards, by means of the conformal mapping method, the tangential velocity on
the airfoil. :

In comparison with Theodorsen’s method, the present method is simpler
and more general (as we may see in Fig. 2, it may happen to obtain by means of
the inverse Kdrman-Trefftz transform a smooth curve that differs very much
from a circle). .

In the present paper we investigate by means of the boundary element -

method (using the integral equation for the steam function) the plane, steady,
incompressible, potential flow (uniform at infinity) in the presence of an arbi-
trary profile. :

The comparison between the theoretical values and the calculated values of

the pressure coefficients obtained for a Von Mises profile, a Karman-Trefftz pro-
file and a circular arc show a very good agreement.

3 A Boundary Element Method 5

2. THE KARMAN-TREFFTZ TRANSFORMATION

We consider in the Z-plane a smooth closed curve %, the point Z; of % and
the point Z, in the interior of the domain bounded by .Z.
The Karman-Trefftz transformation

Z-2, (Z-2)+@Z-2)" , %o+
2 (Z-Z)—-(Z-Zy) 2 7

2.1 7=k l1<k<?2,
which is equivalent to
2=kZy _(Z-Zy)

2.2 =
(22) 2-kZ,  (Z-2Z))

maps conformally the exterior of Zonto the exterior of a curve ¢ in the z-plane.
“The curve [ has an angular point z, = kZ, (the trailing-edge) and the trail-

ing-edgé angle is

(2.3) T=7n(2-k).

The point z, = kZ, lies in the interior of /.
For k =2, Z, = R > 0 and Z, = —-R the Karman-Trefftz transformation be-
comes the Joukovsky transformation

. B R
(2.4) . z=Z+ A
which transforms-the exterior of a smooth curve containing the point Z = R onto
the exterior of a profile having a cusped trailing-edge in z = 2R (we suppose that
Z =-R is in the interior of the domain bounded by the smooth curve).

Conversely, the exterior of a profile having the trailing edge z, and the
trailing edge angle m(2 - k) is transformed conformally by the inverse Kar-
mdn-Trefftz transformation

a

-2 (2=7)* +(z-zy)"*
2.5 Z ==
( , ) 2k (z—z)M* —(z-z)V

onto the exterior of a smooth curve (we suppose that z, is in the interior of the
profile).

If k = 2 the profile has a cusped trailing edge. Setting z, = 2R and z, = -2R
we obtain the inverse Joukovsky transformation

, 2t -4RY)"?
(2.6) Z= i :

As we could see, the Joukovsky transformation may be regarded as a par-
ticular Kdrman-Trefftz transformation. We can easily check that for the Kar-
man-Trefftz transformation, ‘




6 Adrian Carabincanu 4
2.7 dz _
(2.7) le_ﬂrl 7 =]

From (2.2) putting z, = kZ,, we get

(2.8) 2~20 =(Z=ZplOZ);  D(Zy)#0,
whence
(2.9) %:(Z—ZO)HX(Z); X(Zy) #0.

3. THE METHOD OF CONFORMAL MAPPING FOR 2D INCOMPRESSIBLE FLOW

By means of the inverse Kdrman-Trefftz (or Joukovsky) transformation we
map conformally the exterior of an airfoil with a sharp trailing-edge in the
z-plane onto the exterior of a smooth curve in the Z-plane. We denote by z, the
trailing-edge and by Z, the corresponding point on the smooth curve. The com-
plex velocity in the airfoil plane is

d 5
3.0 —({Z—=vl—lv2,

where f is the complex potential of an uniform at infinity flow deflected by the
airfoil. At infinity f has the following development

(3.2) f(Z)=Vme'iaz+%ﬁlnz+a0+alz_'+a2z"2+...

o is the incidence angle, V..e™® is the complex velocity at infinity and T is the

circulation around the airfoil.
The function

(3.3) R2) = «2D))

is the complex potential of the flow past the smooth obstacle in the Z-plane and
has the development at infinity

(3.4) f@)=Voeoz+Lmz e nz + a,272 4

By means of a formal manipulation, equation (3.1) may be rewritten

! df _dfdz _  _.
3.5 =L —iy
( ) dz dz d’ ' ]\rz.

Since according to Kutta-Joukovsky condition the velocity is finite at the
trailing-edge, from (2.9) and (3.5) we get
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(3.6) Jim La Jim (-2 420, ~ivy) =0

Hence on the smooth obstacle in the Z-plane the velocity vanishes in Z,.

4. THE APPLICATION OF THE BOUNDARY ELEMENT METHOD
FOR SIMULATING THE FLOW PAST THE SMOOTH OBSTACLE

As we deduce from (3.4) the flow past the smooth obstacle in the Z-plane is
uniform at infinity and the complex velocity there is Ve ', We get for the
stream function W =Im f, the expansion at infinity

4.1 Yy(X,Y)=V_(Ycosa- Xsma)— ]nR+O(R )

where R=(X%2+Y2)V2,
Introducing the perturbation stream function

(4.2) (X, Y)=y(X,Y)—V.(Ycosa— Xsin ).

we deduce the behaviour of W(X,Y) at infinity:
4.3) _ Y(X,Y)= -—1nR+0(R .

Taking into account that W is a harmonic function, we have for (X, ¥) € &
the integral representation (valid for functions which have at infinity the behav-
iour given by (4.3)):

44 RE(X, ¥) = | (%—‘f(g,n)ln lP(gn)aln)

7

a

(€, n) represents the current point on the smooth curve %, ds is the arc element
on Zand d/dn is the inward normal derivative on .#. We also denoted by

172
r=((X-8%+-n?)".
On the streamline constituted by the airfoil we have

(4.5) Wi, =g =const.

whence, by virtue of (4.2) it follows

(4.6) Wiy =¢—V.(Ycosa-Xsino)

Introducing (4.6) in (4.4) and taking into account that
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Ol de=e p
@7 fan nlds=-n for (X.Ne
I//
we get

= e lgo=_ LAl
2nq+J. 5 (@,n)lnrds- V. (Y coso.— X sin0.)
(4.8) it
—ij.(ncosa—ésinoc)%ln%ds.
7

%—\’{; is the tangential perturbation velocity on the smooth curve £. From (3.6)

and (4.3) it follows
4.9) I Xy, ¥p) = V.. (ny, cosci=ny, sincr).

The existence and unicity of the solution (9'¥'/dn, g) of the first kind inte-

gral equation (4.8), (4.9) is stated in 18].

Approximating the smooth curve & by a contiguous polygonal line con-
sisting of N panels %,j=0, 1, ..., N - 1, and the function 0¥ /dn on % with its
value in the midpoint (X}, Y) of %, we obtain from (4.8) and (4.9) the algebric
system:

T ow 1
“2ng+ Z—a?(x,-, Y,.)f lnEds =V, (¥, coscL— X ;sin00) -
(4.10) £ ?3

i

—ij(ncosa—ﬁsina)galn !
f)’)

r—jds; j=0,N-1

of N equations with N unknowns ¢ and %jl—l(X- Y), i=1,N-1. In (4.10) we de-

12

) )12
noted by rjz((Xj—é) +(Yj—n) ) .
- The coefficients
= (L
(4.11) G,.j_jlnrjds
%

may be computed numerically if i # j. For N large enough the approximation

4.12) J.ln—rl—_dsz—2l,~ln\:(xj_xi)2 +(yj_},i)2]
iy

gives good results (we denoted by /; the length of L.
If i = j we obtain analytically [9]:
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[

!

(4.13) G, = 1,.(1 +1n2).

For the term in the right part of equation (4.10) we may use the quadrature
formula

~7tV,.(Y; coso— X sinat) - ij.(ncosa-ﬁsina)%lnrlds =

(4.14) o1 e 3
= ) H;(Y;coso— X sina),

where L

(4.16) 2y s

The convergence of the solution of the algebric system (4.10) to the exact
values of 0¥ /0n in the control points when N goes to infinity is dicussed in [10].
Using the solutions of (4.10), by means of the relation

4.17) %—r(x,Y)=%\5—(X,Y)+Vm(nycosa—nxsina)

obtained from (4.2), we may calculate the tangential velocity in the control
points (X, ¥}), i =0, N —1 on the smooth obstacle.

5. THE LIFTING FLOW PAST AIRFOILS WITH SHARP TRAILING-EDGE.
NUMERICAL RESULTS

We denote by s the arc length on the airfoil and by S the arc length on the,
corresponding smooth curve. The tangential velocity on the airfoil is

200 _09 dS
(51) 14 S—-g;l/—aslw ds1;"

where ¢ is the real potential of the velocity. From the Cauchy-Riemann equation

. oy _?ﬂ
(5.2) =l

and from the relation

dz

(5.3) as _ 4z

ds
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we deduce the values of the tangential velocity on the airfoil in the control points
(x;. v;) corresponding by the Karman-Trefftz (or Joukovsky) transformation to
the control points (X, Y;):

(5.4) L g

I Eﬂf/ dz

2

In the present paper we shall study the flow past three different airfoils. The
first is a Von Mises airfoil with a cusped trailing-edge. Using the transformation

5.5 N - 2lpe1 22 p2
(5.5) z=0+5:0" 4550
we map conformally the exterior of the circle
o 8. e 8 8i
(5.6) §=§-C—(‘;—%—%—%cmew 6y =-%, 0€ [0,2n]
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Fig. I. - Von Mises profile and corresponding curve.

By means of the inverse Joukovsky transformation (2.6) with R = 0.96 we

map the exterior of the Von Mises profile onto the exterior of a smooth curve
(Fig. 1, dashed line).
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The second airfoil we are taking into consideration is a Karman-Trefftz
profile (Fig. 2, solid line) obtained from the circle

06,06 Lo 6 -_T
(5.7) (=% ooy 02— Setby, 8y ==, 0e (0.2

by means of the conformal mapping

P (0 Do (Sl VAN
= ik k=1

Using the inverse Karman-Trefftz transformation

(5.8)

I C.9 N CAd 9
(Z+k)”k"'(z—k)”k

(5.9)

we map the Karman-Trefftz profile onto a smooth curve (Fig. 2, dashed line).
Although it was possible to choose as smooth curves corresponding to Von Mises
and Kdrmén-Trefftz profiles the circles from the {-plane, we prefered to take into
consideration the curves in the Z-plane obtained using the relations (2.6) and
(5.9) in order to simulate the general case.
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Fig. 2. - Karmén-Trefftz profile and corresponding curve.
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The third airfoil we are taking into consideration is the circular arc, ob-
tained from the circle

(5.10) 0 € [0, 2x]

e n
C—cosﬁo icBoi [0 =650,

by means of the Joukovsky transformation
z=C+C7"
Using the inverse Joukovsky transformation,

72+ (-2
(5.12) Z——————2

(5.11)

we map the exterior of the circular arc onto the exterior of the circle (5:10).
The tangential velocity over the airfoils above mentioned may be obtained
analytically by means of the relation

v-s =2V, [sin(8, — o) —sin(6 - )] ‘%{

For calculating by the boundary element method the tangential velocity we
choosed on the circles in the {-plane the control points (&, 1), § = 0,39 corre-
sponding to O=(i-1)m/20, the points (&, n:) corresponding to 6=
=(2i-3)n/40 and the points (&, n7) corresponding to 0=(2i-1)n/40. By
means of the mappings (5.5), (5.8) or (5.11) these points are transformed into the
control points (x;, y;) on the airfoils and into the points (x,y}), respectively
(x!, ), which represent the end points of the boundary elements on [. Then us-
ing the mappings (2.6), (5.9) or (5.12) we obtain the control points (X;, ¥;) on the
corresponding smooth curve and the points (X/,Y)), (X[,Y;) representing the
endpoints of the boundary elements 2.

After calculating the tangential velocity on the airfoils by the boundary
element method, we may compute the distribution of the pressure coefficient

_y s’
(5.14) Cp—l——VT—.

Comparisons between the analytical values of the pressure coefficient and
the values calculated by means of the boundary element method are performed in
Fig. 3 for the circular arc, in Fig. 4 for the Von Mises airfoil and in Fig. 5 for the
Kdrmén-Trefftz airfoil. The angle of attack is considered zero for the circular arc

and 10° for the Von Mises and Karman-Trefftz profiles.
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