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1. APPROXIMATION PLAN

The approximation algorithm of differential difference equations by system
of ordinary differential equations has been considered by many authors [1, 2]
during the researches of control and stability problems in systems with delay.
The most popular is Krasovsky N. N, and Yu. M. Repin [1] approximation sys-
tem plan. This approximation system plan was applied to neutral type equations
(3] and to differential functional equations.

The aim of the present paper is to improve precision of Krasovsky-Repin
approximation plan of differential equations with delay by system of ordinary
differential equations and to construct the algorithm for computing nonasymp-
totic roots of quasipolynomials.

Let’s considered the initial problem

(1) x’(t)=f(t, X([), X(["T)), te l.O’ T]a {
(2) X(t) = (9(’)» te [—T7 0],

where T > 0 — constant, ¢(f) — given continuous function; f{t, u, v) — continuous
function, which satisfies the Lipschitz condition by u and v with constant L, and

L,. The interval [T, 0] is divided into m parts by points t; = —%, j=(-)Tr;1, me

. T I— .
N and the functions y; (1) = x I—ﬁ , j=0,m are introduced.

The initial problem (1)-(2) in [1] is assigned to system of ordinary differ-
ential equations
IAOENENORMO)

3 , o
: z,-(r)=%(zj-1(t)—zj(t)), j=0,m,

1991 AMS Subject Clasitication: 34A34, 39A10.



16 Igor Cherevko and Larisa Piddubna 2

with initial conditions
T R
4) g 0)= (P(*f?), j=0,m.

N. N. Krasovsky shows [1] that uniformly for all bounded functions (1)
' maxg 7, lx(t) = zO(t)l =0(m) =0, form— ..
If the solution of the problem (1)~(2) satisfies the Lipschitz condition, then

(5) |0L(m)| Sjl%’ K>0.

So, the replacing of delay equation (1) by system (3) is correct on fixed interval
[0, T] if m is taken large enough. We can consider system (3) as series of secci-
sive jointed delay elements [1]. Formally we can obtain it if we use two elements

of the decomposition of function y;_, (r)=x(t—#+%j in a Taylor series in

(r - T—]) point environs. Now if we restrict to three elements of the deomposition
m

in Taylor series
©) y,-_l(t)=x(t—%+r) YO+ S0+ o+,

then we assigned equation (1) to a system of ordinary differential equations
Z[’)(t) = f(t7 ZO, zm)*
O 1 ( A%

” T s — o -
= 7'1") Zj(t)+;2j+zj'l—-1j_1, j—l,m.

2
Initial conditions for system (7) are
T ’ ’ T "
8) 2(0) = ®(0), zj(0)=¢(—#), z,-<0)=<p( —’;} yil

Further we show, that Caushy problem (7)-(8) approximates the problem (1)~(2)
for delays equations and state the value of precision approximation.

2,DELAY ELEMENT APPROXIMATION

LEMMA 1. Let’s consider the system of linear differential equations

I{t 21 T .t
"‘('—) gt—z+g=x(t)
2\m m

9

2 _—
L{zY » T - o
E E’ Zj"“EZj‘l’Zj—Zj_l, _]—2,"1
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with initial conditions
- ’ L
(10) Zj(0)=x(—#} 2;(0) = [—%) j=Lm,

where x(t) € C'[-1, T], X'(f) satisfies the Lipschitz condition, T, T > 0 are con-
stants. Then

(1)

j=Lm

z;(1) —x(t—ﬂj <A
ml) " m
is valid, where A > 0 is constant which doesn’t depends on Jjand m,
Proof. We assume that x(f) € C2[-t, T] and consider the problem
2
T

(12) 72” +17 +z=x(t), z(0)= x(=1), Z'(0) = x(~7).

Denote y(f) = x(¢ — 1) and estimate the value of difference €(r) = z(t) - y(¢), which
is the solution of the problem

(13) e"(r) =2 8'(t)+—8(t) @), e()=9(1), e0) = 0,€(0) =0,

where (p(t)=T%[x(t)—x(t—'c)—x'(t—‘c)]—x"(t—'r). If x°(r) satisfies the Lip-
schitz conditions with constant K,, then |(p(t)|SK2‘c. If x"(¢) exists and is
bounded by M,, then |g(z)] < %M;_T.

For the solution of (13) we get

!
(14) &)= [ K(t,5)0(s)ds,
0

oS .
where K(t,s)=1e = sm([TS)

Using the following property of function @(r) and K(z, s) from (14) obtain
(15) e(n|< C7?,
where C = K, or C = M,/6.

Now we consider system of equations (6). Denote y j(t):x(t—%) and con-

sider the difference ej(t) = zj(t) —y;(#). For g(t) and according to (15) we get

T 3
&1 (0] =]z, (0) - yi (1) < C(E) .
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Continuing similarly, we receive
AN
(16) jej(¢)|s,c(;) <cL.

Now we do the conditions on x(r) more weakly. We assume that x'(z) satisfies
the Lipschitz conditions with constant K| and |x'(t)| <M,. Consider the

smoothing function
1+h

x,(t)=% [ xs)as, re fr ),
!

the second derivative of the function satisfies the Lipschitz condition with con-

stant —.

Let’s estimate the value of function x, (1) = x(¢)—x,(t) and its derivative

1+h 1+h
(17 |xQ(!)|= x(t)~% J. x(s)ds| = x(t)*— .[ [x(£) - (s — 2)x"(Bs)]ds
(18) (0 = x'(t)——;;[x(t+h)—x(t)]|g% K,

Consider problem (12), where x(¢) =x () +x,(¢). Let z = z; + z, where z; and
Z; are the solutions of problems

2 » ’ / ’
%z, +T + 2 =x(1), 7)(0)=x(-1), z(0)=x;(-T),
- p ,
Iz—zz t12 + 2 =x(0), 20 =x(-1), 2(0)=x3(-7).
Estimate the difference z(r) - x(r - 7). We have [|z(f)—x(r- 7)|<
<z (D) + 2 () = x, (1 =1) = X (2 - || (1) = x5, (8 = O + ]z (8)] + [y (2 = D).
As function x,(f) is sufficiently smooth, the according to (15) I

3
(19) 'z,(t)—)c,(t—r)|S2K;:T : |

For function z,(r), take into account (17), (18), we can receive estimation \'
|zz(t)|ShB, where

(20) B:T—K'+M(I z)

2 k 2 )
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3
2Kh'1" +2Bh.

If we consider the system of equations (9), where x(t) = x1(#) + x,(r), and estimate

, 2K T 2
Zj(’)—l(t"j—T) 2t i
m

< +ZBh< )
z,(t)—r( m)

hm hm
3.DELAY’S EQUATION APPROXIMATION

For x,(t - 7) the estimation (17) is true. Therefore |z(r) - x(t - 1) <

similarly, we receive

+2Bh. Putting

3/2 3/2
h=T’T, we'll have w =A

. Lemma 1 1is
m m

Consider the question about the closeness of the solutions of (1), (2) and
(7). (8).

THEOREM 1. Let’s assume that the initial function ¢(t) € C'[-t, 0] and
satisfies the “matching” condition

21) lim ¢'(s) = @0, 0), ®(~0)

function f(t, u, v) is continuous and satisfies the Lipschitz condition by u and v
with constant L\, L,. Then it is true

(22) max [¢(5)~2o(0)] = (L),

<[0, T

where limo(r)=0.
r—0

Proof. If the condition (21) is satisfied, then the solution of (1), (2), x(t) 1
in C'[-1, T]. Let’s z(0), j= O m is the solution of differential equation system

z(s) x[s—%)‘ j= O,m.

Putting z; = z(“ +z(2), where zﬁ-”, zﬁf) are solutions of problems

(7), (8). Let us denote R;(t) = max

0<s<r

LA #4" =x(t) M0y =7 =x(i).
n m
T AL, () _ (D My — 0 _ =27
=z, 'tz =g, (0)= —x(—-—),
(23) Pl 2 ! ; (0) =2

/“)+7(“—-7(“ ‘7“)(0\=70 =r(_m‘f)
\ 14

e ~ it SN ~in
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%z,'@) +2® = z5(n-x(), 7Z2(0)=0,

24) TP =, 20)=0,

m m} m—1

—’%z'(z) +73 =2 ZD)=0.

For system (23) the conditions of lemma 1 are fulfilled, then

BTk 2 TR e
Zjl—x(t—;)1£ﬁ_]" j—l,m.

The solution of system (24) satisfies inequality 'z j2(t)l < Ry(1), jzrr;. There-

fore, we obtain

A 5
| <= =
25) RJ(I) < +Ry(1), j=1lm
Let’s perform (1) and (4) in integral form

!

x(1) = x(0) + j 7(s, x(s), x(s —T))ds
0

!

20(1) = x(0) + [ f(5, 20(8), 2n($))ds.

0

Using the property of function f(z, 4, v) and inequality (25) we obtain

160~ 20| [[LiRo(s) + Ly Ry (5)]ds < j [(L, +L,)Ry(s) +imL-2—]ds.

0 0
Using Gronwall’s Lemma [4] we obtain

R(t)= (r)r;?;("x(S) 3 ZO(S)l < T

+Ly)m

From the last inequality it follows, that the solution x(¢) of the initial problem
(1)-(2) is uniformly approximated by the function zy() that can be defined from

approximate system (7)—(8) on any bounded interval [0, T]. Theorem 1 is proved.
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