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Abstract. We show the classical Kantorovich technique to study the convergence
of a new uniparametric family of third order iterative processes defined in Banach
spaces. We obtain information about this family from the study of the same family
in the real case. Besides we obtain, for a value of the parameter, a method which
has order four when it is applied to quadratic equations.
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1. INTRODUCTION

Several scientific problems can be written in the form

(1) F (x) = 0.

In order to generalize as much as possible, let F be a nonlinear operator defined
in an open convex domain Ω of a Banach space X with values in another Banach
space Y. There are a lot of research works concerning the numerical solution of
(1) by means of iterative processes, mainly by using Newton’s method [8], [11].

But there are other iterative processes to solve (1). One of them is Chebyshev
method [4], [5]:

(2) xn+1 = xn −
[
1 + 1

2LF (xn)
]
F ′ (xn)−1 F (xn) ,

where I is the identity operator on X and LF (x) is the linear operator on X
given by

LF (x) = F ′ (x)−1 F ′′ (x)F ′ (x)−1 F (x) , x ∈ X,

assuming that F ′ (x)−1 exists.
We notice that the only inverse operator we have to evaluate in each step of

Chebyshev method is F ′ (xn)−1 . This same inverse must be also calculate in each
step of Newton’s method. However, the expression of other third order iterative
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processes (Halley, super-Halley [7]) involves the computation of other different
inverse operators. So, we can see Chebyshev method as the third order method
with less computational cost.

In this paper we study a uniparametric family of third order iterations that
only needs the computation of the inverse F ′ (xn)−1 in each step:

(3) xn+1 = xn−
[
1 + 1

2LF (xn) + αLF (xn)2
]
F ′ (xn)−1 F (xn) , α ∈

[
0, 1

2

]
.

This family incudes the Chebyshev method as a particular case (α = 0). We
prove that the methods of (3) have got a faster convergence than Chebyshev
method. Secondly, we find the value of the parameter α for which the convergence
is four when the method is applied to quadratic equations. Finally, we compare
the methods of the family (3), showing that for α = 1

2 we obtain the best method,
from the standpoint of the speed of convergence and the error estimates.

The origin of the family (3) is a Gander’s result [6] on third order iterative
processes in the real case. In this work it is established that for a real function
f of real variable, the iteration in the form:

xn+1 = xn −H (Lf (xn)) f(xn)
f ′(xn) ,

where
Lf (x) = f(x)f ′′(x)

f ′(x)2
,

and H is a function satisfying H (0) = 1, H ′ (0) = 1
2 and |H ′′ (0)| < +∞,

are cubically convergent. In this paper we consider a function H with a finite
Taylor’s expansion and its generalization to Banach spaces. Of course, there are
other functions H that give rise to third order methods. But, for instance, the
functions that originate the Halley or the super-Halley methods, have got a non
finite Taylor expansion. Hence the computational cost is higher.

2. A STUDY OF THE CONVERGENCE

To prove the convergence of the iterative processes given in (3), we assume
that F satisfies the classical Kantorovich conditions [8]. These kind of conditions
have been used by different authors in the study of third order iterative processes
[1], [2], [4], [13]. So, throughout this paper we assume the following conditions:

(i) There exists x0 ∈ Ω where Γ0 = F ′ (x0)−1 is defined.
(ii) ‖Γ0 (F ′′ (x)− F ′′ (y))‖ ≤ k ‖x− y‖ , x, y ∈ Ω, k ≥ 0.

(iii) ‖Γ0F (x0)‖ ≤ a, ‖Γ0F
′′ (x0)‖ ≤ b.
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(iv) The equation

(4) p (t) ≡ k
6 t

3 + b
2 t

2 − t+ a = 0

has got a negative root and two positive roots r1 and r2, (r1 ≤ r2) when
k > 0. If k = 0, then (4) has got two positive roots r1 and r2 (r1 ≤ r2).
Equivalently,

a ≤ b2+4k−b
√
b2+2k

3k(b+
√
b2+2k)

, if k > 0,

or ab ≤ 1
2 if k = 0.

First, we analyse the real sequence {tn} defined for

(5) t0 = 0, tn+1 = G (tn) = tn −
[
1+ 1

2Lp (tn)+αLp (tn)2
]
p(tn)
p′(tn) , n ≥ 0,

when α ∈
[
0, 1

2

]
and p is the polynomial (4).

The real sequences (5) allow us to establish the convergence of the sequences
(3) defined in Banach spaces. So, under the hypothesis (i)–(iv), the sequences
(5) and (3) are well defined and converge to r1 and to x∗, a solution of (1),
respectively. Moreover

‖xn+1 − xn‖ ≤ tn+1 − tn, ‖x∗ − xn‖ ≤ r1 − tn, n ≥ 0,

that is, {tn} majorizes {xn} (see [8], [12]).

Lemma 2.1. Let p be the polynomial defined in (4). Then if 0 ≤ α ≤ 0.5, the
sequences {tn} given in (5) are well defined, are increasing and converge to r1.

Proof. It is easy to prove that tn+1 ≥ tn because p is a decreasing convex
polynomial in [0, r1] .

On the other hand, let G be the function defined in (5). Then

G′ (t) = Lp (t)2
[
3
(

1
2 − α

)
+ 5αLp (t)−

(
1
2 + 2αLp (t)

)
Lp′ (t)

]
.

As Lp′ (t) ≤ 0 for t ∈ [0, r1] , we have G′ (t) ≥ 0, for t ∈ [0, r1] , 0 ≤ α ≤ 1
2 . Thus

tn ≤ r1. Consequently, {tn} converges to r1. �

Notice that the sequences {tn} converge cubically to r1 as a consequence of
the Gander’s result given in the introduction. Now, we study the sequences
{xn}, α ∈

[
0, 1

2

]
, defined in Banach spaces.

Lemma 2.2. For α ∈
[
0, 1

2

]
and n ≥ 0 we have:

[In] There exists Γn = F ′ (xn)−1 .



26 J. A. Ezquerro, J. M. Gutiérrez, M. A. Hernández and M. A. Salanova 4

[IIn] ‖ΓnF ′ (x0)‖ ≤ p′(t0)
p′(tn) .

[IIIn] ‖Γ0F
′′ (xn)‖ ≤ −p′′(tn)

p′(t0) .

[IVn] ‖Γ0F (xn)‖ ≤ − p(tn)
p′(t0) .

[Vn] ‖xn+1 − xn‖ ≤ tn+1 − tn.

Proof. We use an inductive process. For n = 0, [I0]–[IV0] follow immediately
from the hypothesis. To prove [V0] we have

‖LF (x0)‖ ≤
∥∥Γ0F

′′ (x0)
∥∥ · ‖Γ0F (x0)‖ ≤ p(t0)p′′(t0)

p′(t0)2
Lp (t0) ,

and then,

‖x1 − x0‖ ≤
(

1 + 1
2 ‖LF (x0)‖+ α‖LF (x0)2 ‖

)
‖Γ0F (x0)‖

≤ −
(

1 + 1
2Lp (t0) + αLp (t0)2

)
p(t0)
p′(t0) = t1 − t0.

Let us assume now that [In]–[Vn] are true for a given n. Then

∥∥Γ0F
′ (xn+1)−I−Γ0F

′′ (x0) (xn+1−x0)
∥∥ =

∥∥∥∥∫ xn+1

x0

Γ0

[
F ′′ (x)−F ′′ (x0)

]
dx

∥∥∥∥
≤ k

2 ‖xn+1 − x0‖2 .

Consequently,∥∥I − Γ0F
′(xn+1)

∥∥ ≤ k
2 ‖xn+1 − x0‖2 + b ‖xn+1 − x0‖

≤ k
2 t

2
n+1 + btn+1

= 1 + p′ (tn + 1) < 1,

and, by the Banach lemma on inversion of operators, there exists [Γ0F
′(xn+1)]−1

(and therefore F ′ (xn+1)−1) and besides,∥∥ΓnF
′ (x0)

∥∥ ≤ − 1
p′(tn) = p′(t0)

p′(tn) .

So we have shown [In+1] and [IIn+1].
To see [IIIn+1], we notice that∥∥Γ0F

′′xn+1

∥∥ =
∥∥Γ0

[
F ′′ (xn+1)− F ′′ (x0)

]
+ Γ0F

′′ (x0)
∥∥

≤ k ‖xn+1 − x0‖+ b ≤ p′′ (tn + 1) .
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To show [IVn+1] we have, from (3) and the Taylor’s formula,

F (xn+1) = F (xn) + F ′ (xn) (xn+1 − xn) + 1
2F
′′ (xn) (xn+1 − xn)2

+

∫ xn+1

xn

[
F ′′ (x)− F ′′ (xn)

]
(xn+1 − x) dx

= −1
2F
′′ (xn) (ΓnF (xn))2 − αF ′′ (xn) ΓnF (xn)LF (xn) ΓnF (xn)

+ 1
2F
′′ (xn) (xn+1−xn)2+

∫ xn+1

xn

[
F ′′ (x)−F ′′ (xn)

]
(xn+1 − x) dx

=
(

1
2 − α

)
F ′′ (xn) ΓnF (xn)LF (xn) ΓnF (xn)

+ αF ′′ (xn) ΓnF (xn)LF (xn)2 ΓnF (xn)

+ 1
8F
′′ (xn)LF (xn) ΓnF (xn)LF (xn) ΓnF (xn)

+ α
2F
′′ (xn)LF (xn) ΓnF (xn)LF (xn)2 ΓnF (xn)

+ α2

2 F
′′ (xn)LF (xn)2 ΓnF (xn)LF (xn)2 ΓnF (xn)

+

∫ xn+1

xn

[
F ′′ (x)− F ′′ (xn)

]
(xn+1 − x) dx.

The inductive procedure leads us to

‖LF (xn)‖ ≤ Lp (tn) , ‖ΓnF (xn)‖ ≤ − p(tn)
p′(tn) .

As 0 ≤ α ≤ 1
2 , we deduce

‖Γ0F (xn+1)‖ ≤ k
6 (tn+1 − tn)3−

− p(tn)
p′(t0)

[(
1
2 − α

)
Lp (tn)2+αLp (tn)3+ 1

8Lp (tn)3+ α
2Lp (tn)4+ α2

2 Lp (tn)5
]
.

Repeating the same process with the polynomial p, we obtain

p (tn+1) = k
6 (tn+1 − tn)3 +

+ p (tn)
[(

1
2−α

)
Lp (tn)2+αLp (tn)3+ 1

8Lp (tn)3+ α
2Lp (tn)4 + α2

2 Lp (tn)5
]
,

and consequently,

(6) ‖Γ0F (xn+1)‖ ≤ −p(tn+1)
p′(t0) .
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Finally, to see [Vn+1], we proceed as in the case n = 0. �

The following result gives us conditions on the convergence of the methods or
the family (3).

Theorem 2.3. Assume that conditions (i)–(iv) hold and

B̄ = B (x0, r1) = {x ∈ X; ‖x− x0‖ ≤ r1} ⊆ Ω.

Then:

(a) The sequences (3) are well-defined for α ∈
[
0, 1

2

]
, lie in B (interior of

B̄) and converge to a solution x∗ of the equation (1).
(b) x∗ is the only solution of (1) in B (x0, r2) ∩ Ω.
(c) We have the following error bounds:

‖x∗ − xn‖ ≤ r1 − tn.

Proof. The convergence follows immediately from Lemmas 2.1 and 2.2. Be-
sides, x∗ is the solution of (1) as a consequence of (6). To show the uniqueness,

we assume that y∗ is another solution of (1) in B (x0, r) for some r > 0. Then,
following Argyros and Chen [4], we deduce

0 = F (y∗)− F (x∗) =

∫ 1

0
F ′ (x∗ + t (y∗ − x∗)) dt (y∗ − x∗) .

We have to see that
∫ 1

0 F
′ (x∗ + t (y∗ − x∗)) dt has got an inverse. So, we take

into account that

I − Γ0

∫ 1

0
F ′ (x∗ + t (y∗ − x∗)) dt =

= −Γ0

∫ 1

0

∫ x∗+t(y∗−x∗)

x0

F ′′ (z) dzdt

= −Γ0

∫ 1

0

∫ x∗+t(y∗−x∗)

x0

[
F ′′ (x0) +

(
F ′′ (z)− F ′′ (x0)

)]
dzdt,

and if γ (t) = ‖x∗ − x0 + t (y∗ − x∗)‖ , then∥∥∥∥I − Γ0

∫ 1

0
F ′ (x∗ + t (y∗ − x∗)) dt

∥∥∥∥ ≤
≤
∫ 1

0

(
b+ k

2γ (t)
)
γ (t) dt

<

∫ 1

0

(
b+ k

2 [tr + (1− t) r1]
)

[tr − (1− t) r1] dt

= k
6r

2
2 +

(
k
6r1 + b

2

)
(r2 + r1) .
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Now, we define the polynomial

q (r) = k
6r

2 +
(
k
6r1 + b

2

)
r +

(
k
6r

2
1 + k

2r1 − 1
)
.

If q (r) ≤ 0, then∥∥∥∥t− Γ0

∫ 1

0
F ′ (x∗ + t (y∗ − x∗)) dt

∥∥∥∥ < 1

and the inverse
∫ 1

0 F
′ (x∗ + t (y∗ − x∗)) dt exists. Consequently, we deduce the

uniqueness of the solution x∗ in B (x0, r) ∩ Ω.
Notice that q (0) < 0 and q (r1) = p′ (r1) < 0 and then, the uniqueness holds

in B (x0, r) ∩ Ω with r > r1. Moreover, by using Cardano’s formulas, for k > 0
we have r1 + r2 = r0 − 3b

k and r1r2 = 6a
kr0
, where −r0, r1 and r2 are the roots

of the equation (4). So q (r2) = −2a+br20
r0

< 0. If k = 0, then q (r2) = 0. In both

cases, the uniqueness in B (x0, r2) ∩ Ω holds (if k > 0 the uniqueness holds in
B (x0, r3) ∩ Ω where r3 is the positive root of q (r) = 0).

Finally, by Lemma 2.2 and for m ≥ 0, we have

‖xn+m − xn‖ ≤ tn+m − tn.
By letting m→∞, we conclude the result. �

3. ERROR ESTIMATES

This section is devoted to the study of the error estimates for the real sequences
(5). As a result we obtain error bounds for the sequences defined in Banach
spaces.

We distinguish two situations:

• If the polynomial p given in (4) is quadratic, we follow the technique
developed by Ostrowski [9], to obtain error bounds.
• If p is a cubic polynomial, we use the technique introduced in [7]. This

provides error estimates instead of error bounds.

Let p be the polynomial given in (4) with k = 0:

p (t) = b
2 t

2 + a.

Assume that p has two positive roots r1 and r2 (r1 ≤ r2) . Let {tn} be the se-
quence defined in (5) and an = r1 − tn, bn = r2 − tn, n ≥ 0. Then

p (tn) = b
2anbn, p′ (tn) = − b

2 (an + bn) .
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By (5), we have

an+1 = r1 − tn+1 = a3
n
a3n+4a2nbn+5anb2n+2(1−2α)b3n

(an+bn)5

and
bn+1 = r2 − tn+1 = b3n

b3n+4b2nan+5bna2n+2(1−2α)a3n
(an+bn)5

.

If r1 < r2, let us write θ = r1
r2
< 1 and µn = an

bn
. Then µn+1 = µ3

nh (µn) where

h (x) = x3+4x2+5x+2(1−2α)
2(1−2α)x3+5x2+4x+1

, 0 ≤ x ≤ 1.

If α = 1
2 , notice that

µ4
n ≤ µn+1 = µ4

n
µ2n+4µn+5
5µ2n+4µn+1

≤ 5µ4
n.

So µn ≤ 5µ4
n−1 ≤ . . . ≤ 5−

1
3

[
5

1
3 θ
]4n

and µn ≥ µ4
n−1 ≥ . . . ≥ θ4n . Hence

(r2 − tn) θ4n ≤ r1 − tn ≤ (r2 − tn) 5−
1
3 [5

1
3 θ]4

n
.

Consequently,

(r2 − r1) θ4
n

1−θ4n r1 − tn ≤ 5−
1
3

(r2−r1)[5
1
3 θ]4

n

1−5−
1
3 [5

1
3 θ]4n

.

The second inequality holds if 3
√

5θ < 1.
On the other hand, as k is decreasing in α, the best error bound is attained

for α = 1
2 and the worse for α = 0 (Chebyshev method).

Then, the error bounds obtained for the method of the family (5)(
0 < α < 1

2

)
are better than the bonds given by Chebyshev method and worse

than the ones given by the method (5) with α = 1
2 .

The definition of R-order of convergence given by Potra [10] allows us to
establish that the methods of the family (5) and hence the methods of (3), have
at least R-order three for 0 ≤ α ≤ 1

2 and four for α = 1
2 .

Finally, we analyze the case r1 = r2. Then an = bn and

an+1 = an
3−α

8 ,

r1 − tn = r1

[
3−α

8

]n
.

We see that the convergence of the methods of (5) is linear, but it is faster for
increasing values of the parameter α.
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Let us now consider the polynomial p, defined in (4), with k > 0. Assume
that p has two positive roots r1 and r2 (r1 ≤ r2) and a negative root, −r0, that
is

p (t) = k
6 (r1 − t) (r2 − t) (r0 + t) .

First we study the case r1 < r2. We denote again an = r1 − tn, bn = r2 − tn and
define

Q (tn) = b3nan+1

a3nbn+1
= (r1−G(tn))(r2−tn)3

(r2−G(tn))(r1−tn)3
,

with G defined in (5).
As G (r1) = r1, G

′ (r1) = G′′ (r1) = 0, we have for t close enough to r1

Q (t) ∼ (r2 − r1)2 lim
t→r1

r1−G(t)

(r1−t)3
= G′′′(r1)

6 (r2 − r1)2

= 3(1−2α)p′′(r1)2+p′′′(r1)p′(r1)

6p′(r1)2
(r2 − r1)2

= (r2−r1)
(r0+r1) + 2 (1− 2α) (r0−2r1−r2)2

(r0+r1)2
= λ.

By letting n→∞, we have tn → r1 and it follows

an
bn
∼
(an−1

bn−1

)3
λ ∼ . . . ∼

(√
λ r1r2

)3n 1√
λ
,

and if
√
λθ < 1, then

r1 − tn ∼
(r2−r1)(

√
λθ)

3n

√
λ−(
√
λθ)

3n , n ≥ 0.

When r1 = r2, we have

Q̃ (tn) = an+1

an
= r1−G(tn)

r1−tn .

Then, when t approaches r1,

Q̃ (t) ∼ Q̃ (r1) = 3−α
8 ,

and

r1 − tn ∼ r1

(
3−α

8

)n
.

If p is a cubic polynomial, we obtain better error estimates for increasing
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values of α ∈
[
0, 1

2

]
, because λ is decreasing as a function of α. We obtain again

the best error estimates for the method defined in (3) with α = 1
2 .

Now we are ready to give the following result.

Lemma 3.1. With the previous notations, let θ = r1
r2
. Then for the methods of

the family (5) applied to the polynomial (4) with k = 0, we have the following
error bounds:

• When r1 < r2 and α = 1
2 .

(r2 − r1) θ4
n

1−θ4n ≤ r1 − tn ≤ r2−r1
1−5−

1
3

[
5
1
3 θ
]4n 5−

1
3
[
5

1
3 θ
]4n

, if
3
√

5θ < 1.

• When r1 < r2 and 0 ≤ α < 1
2 :

(r2 − r1) θ3
n

1−θ3n ≤ r1 − tn ≤ (r2 − r1)
[
√

2θ]
3n

√
2−[
√

2θ]
3n , if

√
2θ < 1.

• When r1 = r2:

r1 − tn = r1

[
3−α

8

]n
.

If we apply the methods of (5) to a polynomial (4) with k > 0, the error
estimates are:
• When r1 < r2:

r1 − tn ∼
(r2−r1)(

√
λθ)

3n

√
λ−(
√
λθ)

3n , if
√
λθ < 1,

with λ = (r2−r1)
(r0+r1) + 2 (1− 2α) (r0+2r1−r2)2

(r0+r1)2
.

• When r1 = r2:

r1 − tn ∼ r1

(
3−α

8

)n
.

4. EXAMPLES

We give two examples to illustrate the previous results.

Example 1. Let us consider the space X = C [(0, 1)] of all continuous func-
tions defined in the interval [0, 1] with the norm
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‖x‖ = max
s∈[0,1]

|x (s)| ,

and the equation f (x) = 0, where

F (x) (s) = x (s)− s+ 1
2

∫ 1

0
s cos (x (t)) dt, x ∈ C ([0, 1]) , s ∈ [0, 1] .

With the previous notations and for x0 = x0 (s) = s, we calculate the first and
second Fréchet derivatives of F to obtain

a = b = sin 1
2−sin 1+cos 1 , k = 1

2−sin 1+cos 1 .

So, in this case, the polynomial (4) is

p (t) = 1
6(2−sin 1+cos 1)

[
t3 + 3 (sin 1) t2 − 6 (2− sin 1 + cos 1) t+ 6 sin 1

]
,

which has two positive roots

r1 = 0.6095694860276291, r2 = 1.70990829134757.

Then, by Theorem 2.3, we know that F (x) = 0 has a solution in B (x0, r1) and
this solution is unique in B (x0, r2).

Moreover, we have the following error estimates for 1011 ‖x∗ − x2‖ when α = 0
and α = 1

2 :

If α = 0, 1011 ‖x∗ − x2‖ ≤ 1011 (r1 − t2) ∼ 48601696.08024329.
If α = 1

2 , 1011 ‖x∗ − x2‖ ≤ 1011 (r1 − t2) ∼ 16958.95309621804. �

Observe that the previous results do agree quite well with our previous analysis
which showed that better error estimates are obtained for the method (3) with
α = 1

2 .

Example 2. Let us consider again the space X = C [(0, 1)] , where now we
define the equation F (x) = 0, with

F (x) (s) = 1− x (s) + x(s)
4

∫ 1

0

s
s+tx (t) dt, x ∈ C ([0, 1]) , s ∈ [0, 1] .

This is a quadratic equation that is known as Chandrasekhar’s equation [3].
For x0 = x0 (s) = 1, we have a = 0.2652, b = 0.5303 and k = 0. In that case

the polynomial (4) has two roots:

r1 = 0.287042, r2 = 3.48512.

So Chandrasekhar’s equation has a solution that lies in B (x0, r1) and is unique
in B (x0, r2) .
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In Tables 1 and 2 we show some error expressions.

‖x∗ − xn‖ ≤ r1 − tn

for two methods of the family (3) and other well known third order iterative
processes, like the Halley method ({un}) or the super-Halley method ({vn}) .

n r1 − tn (α = 0) r1 − tn
(
α = 1

2

)
0 0.2870424876072915 0.2870424876072915
1 0.0035775864318520 0.0007359920056491
2 8.92413 · 10−9 4.48122 · 10−14

3 1.38979 · 10−25 6.16436 · 10−55

Table 1. Methods of (3) for α = 0 and α = 1
2

n r1 − un r1 − vn
0 0.2870424876072915 0.2870424876072915
1 0.0017877932422075 0.0001471713056166
2 5.577583 · 10−10 1.433989 · 10−17

3 1.696526 · 10−29 1.292759 · 10−69

Table 2. Halley and super-Halley methods

As we can see the method corresponding to α = 1
2 provides better error

estimates than the Chebyshev and the Halley methods, but worse than the super-
Halley method. The cause is that the super-Halley method also has convergence
of order four when it is applied to quadratic equations. �
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