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AND GLOBAL SMOOTHNESS PRESERVATION
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O.INTRODUCTION

ln a series of recent papers the present ar¡thors investigated the degree of
approximation by Boolean sutns of certain linear operators tiorn various points
of view (see, e.g., [5] and the references cited there). One of the subjects consid-
ered was the preservation of higher order convexity including monotonicity
(tl4l). In the present note vye shall again deal with the preservation of mono-
tonicity in combination with pointwise estimates for algebraic polynomial ap-
proximation, using a diff'erent point of view from that in [14]. Pioneerìng work
in this direction was done by Lorentz and Zeller [26]; see also the excellent sur-
vey paper by Chalmers and Metcalf tl5l. More recent contributions along rhese
lines are papers by DèVore and Yu [ 8] and Leviatan [2-5].

Our approach will be simpler and more constructive than those in the latter
papers, in the sense that we will not use intermediate spline uppro.riman¡.r, but
directly approximate the function f e C¿. r¡ using an algebraic convolution-type
operator with appropriate properties. Furthermore, we will investigate the pres-
ervation of global smoothness of/as expressed by its modulus of continuity.

While several of the results below are quite general, we shall focus here ólr
the investigation of the quantitative behavior of certain convolution-type opera-
tors Wr,, _ . (being special instances of more general convolution-type operators

G,,,1,,¡ irrd their Boolean sum rnoditìcations to be defined below. The mappings

Wr,, -, are defined constructively using appropriate trigonometric kernels D.,, r
which are obtained using a technique employed earlier by,Beatson. For all our
considerations, the concept of bell-shapednes,s of the kernels D.,,, - ,, will be cru-

cial. It will be shown that the original operators l4l,,, , satisfy Timan-type incquit-

lities, while for their modifications we have Telyakovskii-, DeVore-Gopengauz-,
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^^s ,ziadyk-type inequalities. These names were derived from their historical

.rir"-; it will be made clear below at each occurence what exactly is meant by

tnt*'rn" 
following notation will be used in this paper. By N= {1,2,3,...) we

I.GENERAL CONCEPTS

The classical method of proving Jackson's theorem for/e C[-1, l] uses

convolution 
operators of the form

G(f',x)=(l* ù(x)=*f*¡n"sr)g[cos(0-r)dr, .r = cosO e [-1, l].

Here g e C[-1, l] is a fixed function. Clearly, G: C[-1,1] -+ C[-1, l]. Due to
'¡i*Wtthat f . cos, I o cos€ C2n and that g o cos is even, one also has the rep-

lesentadons

(r,r) G(f , Ð=*flff."'(e-r))'s(cost)dr = *,1,¡rcos(o+r))'g(cosr)dr.

lf g=B,n€ fI,,, is given in its Öeby5ev form

0.2) 8o,(z) =2oo ''orr, ao e ìR , T¡(z) =cos(k 'arccos z),
k=0

then G = 6,,, attains the form

G''(r'¡=*

=iooft' lr t,.*r). cos/<rdr] .r¡,(x)

,[hus, ür, : Cl-l,li -+ I lr, lf K,n(u) is an e.,,en trigonometric kernels cf the form

fr=l

then

- m(n)(1.3) B^1,¡k):=Kn,rn¡(arccos¿)=+- ), p0.,,,,r.T¡(z)
k=l

is of the form ( I ,2).We thus have the representatioiìs

G^<n¡(f ) O = |f ^t 
fcosr)Km (n)larccos(cos(0 - ¡))]d¡ =

= *frf <"os r)K,,1n,(arccosr - ,>u = lf 
^f 

(cos(arccos-r + r))K,,,,,,,(t)dr =

= f lo rr"", ¡at + f, o r. ^,r 
.ft, 

fi lt.or,¡ . .o, rr orlrr t").

If Knr(n) > 0, then gnln¡(z) 10, z e [-1, l], so that Grln¡ is a positive linear
operator. In the sequel we shall exclusively discuss the case where gr1,,, is given
as in (1.3) with Kur(,r\Z0.

Sometimes suitable modifications of the operators G,nJ,,¡ where used in or-
der to guarantee side conditions to be satisfied. To be more specific, we recall
the definition of the Boolean sum of two linear operators p and B, which is
given by P @8:= P +Q- P "Q (subject to compatible domains and ranges of p
and Q), Note that @ is an associative operation, but is, in general, non-com-
mutative. The use of Boolean sum modifications of operators G¿¡1¡¡¡ âs introduced
above is motivated by the following version of a theorem by Barnhill and Gregory
(cf., e.g., [0, Theorem 2.1]).

TttgoRgtr¡ l.l. Let P and Qbe linear operators mapping afunction space.
G into a subspace H of G. Let Gs be a subset of G, and let g= {tl be a set of
linearfunctionals defined on H.

(i) Let t (Pfl = /. A for all ¿e g and all f e H.
Then t l( P @ Q)Í) = t (l) for all /.e s and allf,e H.

(ii) Let Qf =f for all f e Go.

Then (P @Øf = f .for all fe G¡1,

(1ä) Let f and Qf be in the set of all functions g such that Pg = g.
Then (P@Øf = f.

(iv) Let (ld - Q).f, p 
" (ld - Øf e ker /., the kernel of /,. Ttrcn

, // n 
^ ^ 

\ A . / A/ (.r.r\euu.t=¿v,,
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K,,çr70)=|+
ar(rr )

) Po,r,u, 'coskv, v€ IR ,

' Jirr.o,,; Iä"r. 
cosltlo - r¡;]o
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Proof. The proofs of (i) through (iii) were given in [10]'
(iv) we have t 

'::T:"A= L\:!,:iitr:íl'T ,rn)['*=, * ,, = , a E

Lf the linear function inteqpolating/at a and b, i.e.,

(1.4) L(-f ,x),=t'tltr'-dl*.r;@þâ, a<-r3h.

Let A: CIa,bl -+ Cla, blbea linear operator. For/e CÍa, blandalx3b'
we introduce its modifications

A + (1, x) := (L@,AX"f, x)= (L + A - L " A)(f ,x) =

= A(.f ,¡) + (à - o)-' {(' - a)' l.f (b) - A(f , b)) + (h - x )' V @) - A (f , a )l},

A.(.f ,x):= (A @ Dff,x)= A(f -Lf ,x)+L(f 'x)'

As a consequence of Theorem l. I , for the special situation at hand one has

CoRor-l-¡Ry 1.2. (cao and Gonska [10, corollary 2.2]) The operator

A+ = L@ A as gíven above has the.following prope rties:

(i) A* (l; c) = f (c) for alt f e C[a, b] and c = a or t = bi

(ii) A(flr) Cfl1, then A* f = f for all 
"f 

e fir .

For the operators A* introduced above, Theorem I ' I gives

CO¡OIURy 1.3. For the operator A" = A@ L , we have the followittg:

(i) A(/ -Lf;c)=0 .for c = a or t' = b, then A* (f',r)= l@)'

(ä) A.f =f forall f e[It'

Proof.
(i) Let / = Et.be the point evaluation functional at c, and P i= A, Q := L' We

verify that the sufficient conditions from'fheorern I'l (iv) are satisfied' Note

first that
e,.((td -Df)= f k)- L(.f ;c)= f (c) -.f(c) =0'

Secondly,
e,'(A " (td - L) f) = A((td - D r; Ò = A(.f - LJ'; c) = g'

so that A"(.f ;c')= f (c) immediately follows.

(ii) This is a direct consequence of Theorenl l. I (ii)'
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Remark 1.4. The Boolean sum approach to imposing interpolatory side
conditions at the end-points of [a, b] has the disadvantage that the positivity of
the operator A might be lost when passing to A+ or A*. For an example, see

[3, Example 2.5]. A different and quite interesting approach to imposing such
interpolations conditions without the loss of positivity was recently presented by
I. Gavrea [9, 20]. It appears to be of interest to investigate a blend of Gavrea's
technique with the Boolean sum approach.

2.PREVIOUS RESULTS

In the following lemmas we collect some of our earlier results concerning the
quantitative behavior of the operators G,,,1,,¡ and their Boolean sum modifications.

An impordant tool for proving Timan-type inequalities is

LEMMA 2.1. (Cao [7], [8, Theorem l]) Let K,n¡u¡be a non-negative kernel

as g,iven above. Then.for -l < .r I I and f e C[- 1, l ],

lf {r) - c,,,1,,{/ ,*)l <2a,lf ,(l - pr,,nr,,r )l *l+ Ji I - Pt. rn(r¡)

The following assertion gives some sufficient conditions under which

polynomial Boolean sum operators .4,] satisfy Telyakovskiî-type inequalities.

LeuuR 2.2,.(Cao and Gonska [2, Theorem 3]) Let n > I and m(n)e

e Nu l0l with cn<m(n)1õn,n>2,for some constants c', õ. lzt A,,: C[-1, l] '-l
-l [rn(¿) be a sequence of linear algebraic' polynomial operators. Suppose that

for A,, we have the Timan-lype estinrule

54

(1.s)

and

(1.6)
1- x2

lA,,(Í,;r) -/(x)1..,,[/,+. #), I,l< r

Then,for AI , the Telyqkovskií-tv¡te esÍimate

loi rf ,,r) - /(r)l < ccr¡ .f, l*l< I, holds true

The assertion below states under which conditions one has inequalities of
Ihe D eV ore -G ope ngauz- ty pe.

LButvlR 2.3. (Boss, Cao and Gonska [5, Corollary lD Let m(n)22, K,,q,,¡(v)

>0,0<€r< l,andlet
(i) l-pr.n,(,,) =O[tÎ],
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(ii) 
+-Zet.m(n) 

+ 
|p2,,,r,,t= o[ul ].

Thenforf e C[-1, l],

lc;,,,¡ 
(,f , 'l - /(")l 

< c 'uz(r t u,, .ú .l ), lrl < L

Here the constant C is independent of f, x, and n .

The following lemma states the conditions under which one has

D<j adv k -type in e qua litie s .

LEMMA2.4.(Cao andGonska[9])Let neN and K,,,1,¡(v)>0, -l <xll.
Thenforf e C[-1, l],

(32) Àk,n,(,¡) =ftsinffpn.,nt,,t, l s'ksm(n).

LEMMA 3.3. Let m(n)e N. lf, for I I k < m(n), we define Lk.m1n¡ as

above, then the following hold:

(i) If I - p,,,,,,,, =

(ii) If 1-p¡,,,,, =

then ] - z)\t. 
^(u 

t * |)"r,,, ut= r( å)
Proof. We have Lt,^(u)=Lsinf, gt,,nin¡, i,€., l-Àr,r(u) =l-#sinlpr,,n(,r) =

= (l - LsinL) + a rin a{t - pr,,n(nr ).

By Taylor's formula 1-ry =OQ2); furthermore, 0<i= l, 0 < ¡ < n.

Thus I -Lr.^,nr=Of+l
\n' )

Also, from Lz.^1r¡=ftsin2lp2.m(n), we have

(3.3) 
t-r^,,^r,¡ + 

ïL2.,,<nt =)-2Lsinfor,,¿(n) * i(hr^T)or,,,,,,.

5¡n." !lrì1 =t-t*OG4), we obtain

Lsinv-J-#+o(+), ,"d

ftsinu =, - # *, $) = | - #-, [+)
From condition (ii), we find thar

Pt.rn(r¡) =O(1) and P2,,r(n) =O(l):

from 13 3l and condition liiì we have
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where

then l-À ,,,,,,, =O(#),"(#

"(#

)

)
1- Pz ¡n(n) =o(þ), *a

lftrl - Gfi¡¡(f ,")l <'ro, (¡, I -Pr,a(n)

3.NOTES ON GENERALIZ¿ED BEATSON KERNELS

In this report [3], Beatson used Steklov means of order I to construct
so-called bell-shaped trigonometric kernels based upon Jackson kernels of order
se NL To be more specific, recall

DEFINITIoN 3. L (Lorentz and Zeller 126l) A continuous .function on f--rc, nf
is called bell-shaped if it is even and if it decreases on 10, n).

The following property of bell-shaped functions will be useful below,
LEMMA 3.2. (Beatson [3, Lemma 2]) I¿t the 2n-periodic function g be

bell-shaped. Then.for all t, x e [0, n], one has

sQ-x)-sQ+¡)20.
Beatson's construction to define bell-shaped kernels can be generalized as

follows. With Kn(,¿) given as above, we construct new trigonometric kernels as

the first order Steklov means

t - 2lt,,r,t * jo, 
^,, 

= o(#)

(3. 1)

.,t*I!
D,,(, 

r 
(v),= *,J,_; K,,,,,r(t)dt =

tn( rt\
: I *"$'' ¡v+4

2 ' ,L 2nPt.,,,rnJr.-rf 
cos*t dt =

k=l ,t

- I *n$', sinffpr.^t,,,coskv =z' fo kn

. m(n)

=i* 2Xk.n(ntcoskv,
!:-!
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dD.r,,-.(v) 
=flc,,,r_dv 2n

j[,', ä (,. i)]" _ [,', i(" - i)]" i
ll"'å (" . i)]'' [''" å(" - #)]'" 

J

=$1,',îF-i))" "

= "**-,('-I) 
i¡,,"+{" 

-i)]" -[,,"å(" -#)]'"]
z'[,i"-j(" ,i)]''

Since o2s - 62s =(a2)' -(b2)' = (a2 -b2)[(o2¡s-t ¡ ço2¡s-262 *
the quantity o2s - 62s agrees in sign with a2 - b2 = (a - b)(a + b).

+ (bz)'-t l,

{¡"" +{' - i)1" - [,'"å(, 
- #)]" ]

Hence has the same sign as

(3.5)
['''å('

T + sln +(, .#)],[""å(" -#)- 
""+(". #)]n

l.orentz and Zeller í26, p. 5021 proved that if 0 < a, F < | , tn"n

(3.6) sin(a + g) > lsin(a - B¡1.

Thus

o'."i,i(u) <0, o < v < r¿. D
dv

4. DEGREE OF MONOTONE APPROXIMATION

Let j be a natural number. The j-th forward difference of an./e c[-1, l]
with increment å is then given by

Ll,f Ø,= É,-,lr-*[
J

f(t + kh), 0 < h <2/j andr e [-1, | - jh].
k

A function/is called j-convex if f e ct-|. ll an<l all j-th forward clifferences

Ll,.f Q) ,0 < h < 2lj, are non-negative. Also, rhe funcrion.f is said fo be T-convex

44 H. H. Gonska and J.-D. Cao 8

]. - 2L'''"" t lxz',,r' t =

3
2

3

2

'(
t - #*r(#))r,,,,,,,, * å[ r -ffi * o nt(n ) -

=1|-rrt ,,1,¡ + |Pz ,,1, + Tû
^)-5n"

(Pr,,nrnl - P2,m(n))

= "(i)- #þ,,r(n¡ - I 
+ t- Qz,,ru¡ )+ "(i)= 

r(å) u

Matsuoka investigated the following Jackson kernels of higher orders (see

117,p.79 ff .l,l27D'
2s

sln t'tV

2
For se N , let Kr,,-r(v):= c,,,,

v
z

sln

where cr,., is chosen so that n-t lnrrr-,(v)dv = 1 ' Thus,

(3.4) K,n-.,(v)=|* fou,.,,-.,cos/cv.
k=l

The kernels constructed in (3.1) and based upon K.,,-. will be denoted by

Drn-r'

ln the next lemma it will be shown that the kernels D*,,-* are bell--shaped

(as was already observed by Beatson without proof).

LEMMA 3.4. Letn, s€ N . Thenfor 0 < v < fi,

dD'L_"(v) . u.
dv

Proo.f.lf 0 < v < n, we have by definition

',"(f)
2,r

D.,,,-,, (v) = *,,,', ] 
r,,,, dt

sln t
2

Thus,
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V(x) := *|, - ù[f @ - Aç, Ð]+ (b - Ðlf @ - t(Í,Ðl].

Then v is also increasing on [a, b].

LevuR 4.4. Int A be a positive linear operator mapping Cla, b) into
c[a, bl, with A(1, x) = I . For j e N, l¿r the cone oJ' j -convex functions be invar i-
ant under the operator A. Then the cone of j -convex functions is also invariant
under the operator A+.

Proof. If ; = 1, and/e C[a, b] is increasing on [a, b], by Lemma 4.3 it fol_
lows thatthelinearfunction v(¡) is increasing, i.e. Alv("x)>0, 0 <h<b_a,xe
e la, b - hl. Under the conditions of Lemma4.4,wehave LtoA(¡,.r)>0. Since
A* (f , x) = A(f ,x)+ v(r), we have t,¡* (Í, x) = LtnAff ,x)+ Alv(x) > 0.

. lf j ) 2, then Ll,(* + 0) = 0, and thus

LtnA* (1, x) = Ll,Açf ,x) + alv(x) = tieç, x¡.

Hence, if Llf (x) > 0, frorn the assumption of Lemm a 4.4 wehave that

No¡ff . Ð = LrnA* ff,.r) > o. E

The Telyakovskií-type estimate for the operators lV"|_, is next.

THEoREM 4.5.Ißt ne N and s>2.Thenforf e Cl_l,ll,

in addition, if f(x) is I -convex, then so is Wj_,(f , x).

Proof. From Theorem 4.2, we have the Timan-type estimate

lr rrl - w.{^-,(f ,;)l < cor¡

Using Lemm a 2.2, itfollows that

lrrrl -w¡,-,ç ,.r¡l < cur,

Í

r,

f

, l-rl< I ;

lr ø - w,n-,(,f ,,r¡l < cro¡ Jt+ t
n *rt't l"l< t .

I'l< I

From Theorem 4.2, we see that if fx) is l-onvex, then this is also true for
Wn,-r(.f , -r) . Since Wn,_r(l,x) = I and Wr,,_, are positive linear operators, by
Lemrna 4.4we have that Wrn_r(Í',x) also is l-convex, E
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if it is non-negative. Beatson [4, Theorem l] proved the following lemma, which
is essential for our purposes,

LeuuR 4.1. Let g(z)e C[-1, l] and j be anon-negative integer.The cone
of j-convex function,s is invariant under the operator Gff)=f *S ,ff g(z) is
j-convex.

we denote the operators from (l.l) based upon the trigonometric kernels
Dr, -, (v) by W ,, _ .,. Our next assertion is the theorem of Lorentz and, Zellet 126l
for the operators Wrn _ r.

THEoREM 4.2. Let ne N and s22. Thenforf e Cl-|, l) and -l ( x ( l,

ll<t¡ -w,n-,(f ,x)l< cor, I

n2
t,

In addition, if f is I -convex, then W,,,_,(f .) is also I -convex,

Proo.f. We take h(¿) 1= Drn_r(arccos z), (z = cos v, -l < z < 1).

Then å(cosv) = D*,_r(v). By Lemma 3.4, we have

å'(cosv)(-sinv)=$o,,-"1u¡.0, 0 < v <æ;

hence å'(cosv)>0, i.e. h'(z)>0, -l (¿< l.
Thus h(¿) is an increasing function of z on -l < z S l. Using Lemma 4,1, it is
clear that ifflx) is a l-convex function, then flzr, -,(f, x) is also l-convex. For the
Matsuoka kernels Krn _ .,(v), we have ([ I 7, p. g l J).

j-pr.,,-,=o[{), ,>2.
\n')

From (3. I ), (3.2) and Lemma 3.3 (i) for the associated kernels en,_" (v), we find

t -Àr,,,-" = ol+1, s> 2.
\n' )

Theorem 4.2 now follows from Lemm aL.l. E
The following two auxiliary resurts will be needed to show that the map-

pings l{u"}-, =L@wrr-, preserve monotonicity (while also satisfying a Telya-
kovskií-type inequality).

Lst'ttrln 4,3. (cao and Gonska [14, Lemma 2.1]) lßt A be a po,sitive op-
erator mapping C[a, b] into itself, and such that A(lI x) - L L"t f e C[a, b) be
iticrcasi;ig, a;id



| ÍQ)-wì,-,(.f ,x¡l<c0,2ít,úTl, I'l< r.I n )"
From Theorem 4.5, we know that ifl(x) is l_convex, then lfz.i_.(./,r) is also
I -convex.

' [n the remainder of this section, we investigate the operators
4T,-" = w.,r-r@L and show in particular how these inherjt shape-preservation
and quantitative properties from the underrying operator w,u, _,r. The next lemma
deals with the preservation of r-convexity by.or.'g"n"rrt operators
A"=A@L,

LEMMA 4.7. kt A be a linear ope I into C[a, bl wittt
A(1, x) = l, x € [a, b]. Suppose that h(x) ,sing on fa, bl, and
let' ihe cone of I -convex junctions be in raþr A. Then the
cone of 1-convexfunctions is invariant under the operator A* = A@ L .

Proof, Let.(.r) e C[a, à] be increasing on [a, bl, and let L be given as
above, i.e.,

r3 Approxirnatiorr by Boolean Surns

L(.f , x) =
b (a)

(x - a) +- f(a)-a

49

As noted above, we have

(4.1) A*(f, ,) = A(f - LJ', x) + L(f, x) = A(f, x) - A(Lf, x) + L(f, x).
Since A(1, ¡) =,1,

A(Lf,x)-L(f,x)=

- Jþ)- f (a) 
A(t, x)*l -'(f rø)-!øt) 

+ f ro¡htt,*¡-lþ)-.f (a) 
r nb-u "" t b-a I b_a

*a(f(b)- f(a)) _ (, ^\ _ f(b)- f(a, b-.a r\u)- 
-*tA(t,x)-x).Thus

(4.2) A. (f , x) = A(f , a * rcþp- þ - A(t, x )) = A(,f , ù + Í!!)_Jg) . ¡ çr¡.

Since .Affi x) and h(x) are borh increasing on la, bl, u"t fJf{eù>g, rhe

function A.(f ,x) also increases on this interval. E

LEMMA 4.8. Let K,n(nív)>0, ancl let the c,one of l_cottvexfunctit¡ns be
invariant under rhe operator Gnt(n).Then the cone of I -c,onvex.functions is itt-
varianl under lhe lperator Gïrrr¡.

48
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For operators 4,1_, based upon Jackson kernels of order .ç > 3, we also

have the following estimate of DeVore -Gopengauz'tvpe (see DeVore and Yu

[18] for the first assertion of this type)'

THEoREM 4.6. Let n) 2, s > 3, and f e C[-l' ll' Then

lrt"r- w|,-,(r"r)l<cor2[t O=)' I'l<r 
'

tf .f(x) ß I -convex, then so is Wr+,-,(f 
' 
x) ' E

Proof. From (3,4), we have that Matsuoka's kernel has the form

K",,-, (v) = j n I oo, .,,-,, cos kv.
k=l

Formulas (3.1) and (3.2) show that the kernel of the operator w*,,--,, is given by

D,,,-. (v) = å 
* Ï 

^0, 
,n-. cos kv,

,( =l

À0,,,-,' =frsinffo*,,u, .,, I -< 
ft < sn - s

If s 2 2, then (see [17])

1-Pr,.r,,-, ="(#\

From K.r-r(v) > 0, we have (see [9])

o < I -p2,,,-, < ¿(t -p,,,,,-,)

If s ) 3, then (see [9])

where

Using Lemma 3.3, we obtain

and

Lemma 2.3 then imPlies

ï-r0,.*,-, +|Qr,,^-, = o(n-a)

I
7

, * irr,u-, = o(n-4), s ) 3.

o

I -À¡..,,-" = O
I
)n' , s)2,

-tt 2Lt

I
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G),,,G; r) = G 
^¡¡(B; 

rl + sQ ï(- 
t) 

. (r - G,,,,,,,1t ; r )) = G,r,,(B ; l) =
= G,,1n¡(l - t2;l) = G,n(nt(l - (l - û) +l -2t;l) =

= t-(+-2'Pt,nt(n)*|'or,^rr)+l-2,pr,,,r(,) = @f . t9), t22l)

= t(, - p r.,,,t, r ) = *, !l_ *r,,,,,,(r )d¡ - *, I" 
^"or 

r., . K,,1,,(t)dt =

= *l!^o- cos2r) 'K,n,n,(t)dt > o'

of course' this means that a Devore-Gopengauz-type inequality also can_
not hold. El

5.GLOBAL SMOOTHNESS PRESERVATION

THSoRBÀ4 ttin and Gonska [], Theorem 4]). I¿tI=fa,bi,a<b, and H: C(t) -+ C(l),H *0, be a linear
operator satisfyi ons;

(5.1) The operator norm of H is bounded, i.e., ll7ll< *,
H maps Ct(l) into Ct(t), and

(s.2) llfr1sl]<..lls]l forau s e ct7).

Then for all f e C(l) and t > 0,

at(Hr;rr s ll¡rll t 
[t' äOä)

Here, dl, is the least concave majorant of the modulus ro, with respect to
the va¡iable ¡.

Remark 5.2, Readers not familiar with the concept of the least concave
majorant of a function / are referred to the monograph [z+, p, 46 ff .] where this
concept is discussed in detail. It will be crucial rór átl conslàerations which fol-
low in this section.

-We next investigate under which conditions operators Ci,,,1,,¡ whicir are
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Proof. We have (see [22]) the equalities

Gr,.,)(1, x) = l, G,n1n¡(t,.r) = pt,,(r)r,

I - Pl, rr(n) =

t450

(4.3)

and

Thus I --frG,,,r,,r{t,x)=l-Pl,,r(rr)>0, so that .x-G,,,1,,¡(f'x) increases' An

application of Lemma 4.7 then implies Lemma 4.8. tr
Our result on the degree of approximation by the monotonicity preseruing

mappings Wj,-, is the D4iadyk-type inequality in

Tunonstø 4.9. For neN and s22,Iet Win-, be given us above. Thenfor

.f e CI-I, ll we have

llr-wJ,-,rll."',

where c = c(s) js independent of f andn. Furthermore, if f is I -convex, then the

same is ftue of W.,i,-r,f .

Proof.Note first that from Lemma 3.3 we have

I -À1,r,,-, = O("-')'

provided this is true for l-p',.,,,-.,. However, the latter fact was already used in

*l-,.,t - cos v)Kn',n¡(v)dv > o'

(r,*)'

the proof of Theorem 4.2, so that the inequality in terms of ro, 1

nf; immedi-

ately follows from Lemma 2.4. Furthermore, in Theorem 4.2 it was also shown

that, for s 2 2, the cone of l-convex functions is invariant under Wr,,-r, n€ N.

Lemma 4.8 then implies the full statement of Theorem 4.9.

Remark 4.10. The reader noted that the inequalities of Theorem 4.6 (for

operators W.;-., ) and of Theorem 4.9 (for Wå-, ) are different, in the sense that

the former is a pointwise estimate while the latter is uniform. Indeed, it is not

possible to prove a Telyakovskii-type inequality for the more general operators

Gin(,1=G,r(r)@ L where G,n1,,¡ is given in Section I and is based upon the posi-

üve kernel Krnln¡. To see this, consider the function 8(/) = 1 - P, I e [-1, 1]. If we

had a TelyakovskiÏ-type estimate as in Theorem 4.5, then this would mean that g

is inrerpoÌared by G,],1,,¡ ar +i, say. We have (see (4.2)) the representation



lfte r.ro cos, arccos,.l/..,4- =

It thus remains to give a reþresentation of

n-rJ"sin r.lrfe - s) _ ir.(o + s)lds.

.r*.,råiiïing 
thar K is bell_shaped, by Lemma 3.2 thelarrer quantity can be

n-rJ"sin 
" 
.lr¡o - s¡ _ K(0 + s)lo.s. =

= #.Jlrt" s.tK(o - s) _ K(0 + s)lds =

= + {-Ësin(' -,î)'K(s)di -J-sin(s - 0).K(i)d.í

= * ü-ttin(' - s) - sin(s - 0)l',((r)dsÌ=

=f /]'i"fo-s).K(s)ds=

= *. Jl,r'" 0. coss - òos0. sin sJ. K(s)ds =

= *frt" e.Jn .orr. K(s;)ds -cos0.Jn rin s. K(s)<rs

t7
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Jn .urr.K(s)ds =

LKl.

Ïïffï,_i ïi::"tv 
0 < n-r 

J"sin s rrle - s) - K(0 + s)r ú = sin 0 pr r,<l

= 1'sin0
n

0 Plsln

l$crr; Ðl.lt-f -
= ltc-ff o cos, arccos r)l ú - r, < ll.r,ll sin 0. p, [Kl,

or

based upon kernels Krn(n¡ preserve global smoothtless of a function. For the mo-

ment, we assume only that we are dealing with an operator G of the form

(5.3) ' G(f;x)=n-tJn /l"orr)'K(arccos.r-s)ds,

where the kernel Kis in Ll and is positive and even. Clearly, one can also write

this as

G(f'; x) = n-t l" n,f 
kos(arccosx -t)).K(t)dt.

lgcu'"1 Writing 8:=.f o cos,

G(f ; x) = n-t f nslG 
- t)' K (t)dt =: G(g; 0).

Note that G(g;0) is defined tbr all g € Cznand 0e IlR. Frotn [6, Prop. l.l.l5l,
we have

$ce; o) = n-r J]r{#rrt-r;}.r1r;or.
Here
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We first give a general estimate for

0:= arccosx, G attains the form

Hence,

/'(cos s) . ,((e - s) ds =

ló

d0 =--L. so ttrat $dx 
'!l - .*' 

'

*c(f ocos, arccos.r ¡''[l - rz - --{G(/ o cos, 0) =

= -n-t I-n#f,."r(O-r)) 
.K(t)dt =

= n*r Jn 
sin(O- t)'/'(cos(0-/))' K(t)dr =

= n-'Juîtins'/'(coss)''K(o - s)ds =

= n-' 
Jut]" 

ti" s' /'(coss)''((0 - s)ds =

sin s. /'(coss)' r((0 - s)ds =

J-J'sin r./'(coss).t/r(e - s) - K(g + s)ldr

Thus,
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The inequality of Theorem 5.4 then foilow directly from Theorem 5.3. tr
Remark 5.5
By the example of the function e,, it can be seen that the constant l figur_

ing in front of ó¡(/; gt,m(n).ô) is best possible. E

conollenv 5.6. (cf. Anastassiou and Gonska [2, coro'ary 4,3)) underthe above assumptions on Kr,1r¡,it can be easily verified that, in ad,ition to
0 S pl,,n(n), one als;o has pt,m(n) < L From this it follows that

a1(G,n1n¡f i ô) < e (f; ô) < 2.ro, Cf ; ô). tr
Remark 5.7. The left inequality of cororary 5.6 shows that the Lipschitz

classes Lipa(a; [-1, l l), 0 < q, < l , are invariant under the operator G*ç¡.8
For the kernels

4,-, (v)' = h f:;,K,u-., (V + ttdt =å * Ï^0,,,,_" . cos kv
k=l

it follows from Lemma 3.4 that these are beil-shaped. Recalling further that
À,.rn-., =L'sin|.Pt,*-r, our conclusion for the operators G based upon
Beatson's kernels Drn_r, which we denote by Wn,_r, is as follows:

THEOREM 5.8. Let Wrn_, be the convolurion_type operaîor based upon
Drn-r, where Drn-, denotes Bearson's modification of the Jackson kernel
K,n_,,s>LThenforullf e C[-1, l] andall0<ô<2,

at(W,n_,f i ô) < Õr (f ;It,,n_,.ô) < Õr (,f ; ò),
and also

at(w,n_,f ;õ) < õr (f iL¡r,_,,.ô) < (l rÀr,,n_,) . oíf ;ô) s 2. ror Cf; ô).

Remark 5'9' Expricit representations for the convergence factors pr.,r,_r,
sà l, can be found in [21,p.37f.) and in [27].Fromthese rhe corresponding
À,,rr-, of 4r_, can be easily derivãd.

5.1. GLOBAL SMOOTHNESS PRESERVATION By OPERATORS W,;_"

In the present section we wilr show that the Boolean sum mocrifications
Wj-" of the opeiatorsW,rr_.,: C[-1, l] -+ fI,.,,_., also preserve global smooth_

ness in a certain sense, This fact is a consequence of the folowing more generar
statement concerning mappings of the type A+ = L@ A, where r is given as in
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(s.4)

l$cu' "l < or lrl'lll'll

Recalling further that for operators G of the form (5.3) one has

llCll = n-' . 
llJ(llr,r_n, 

^t 
, the above can be summarized as follows.

THEoREM 5.3. (cf. Anastassiou and Gonska [2, Theorem 4.1]) Let G be a

convolution-type operator of the form (5.3) which is based upon the bell-shaped

kernel K+O.Then p1[K]20, andforall/ e Ct-l,ll andall0<ô(2,onehas

.,t(Gr ;8) < 
+ilKil. r_n,n1 

Õ, 
f r, r{iffiïl =
\ " |Ltl-fE,'tl 

)

. ("-' .llKll.,r-n,nr +p,tKl).0r,(/;ô). tr

We now specialize K further by assuming that

K(t) = K^r,,r(t) =
nr(n)

) P*,'r,,'coskr

G^1n¡(f i Ð = n-'1" 
nf 

(cos(0 - t)).K 
^r,,r(t)dt.

2
+

k=l

is a non-negative and bell-shaped trigonometric polynomial of degree ! m(n).
'Ihe operators G based upon these kernels will be denoted by Gn(nt. We thus

have

H. H. Gonska and J.-D. Ca¡.r t8

THEoREM 5.4. (cf. Anastassiou and Gonska [2, Theorem 4.2]) Let G^6¡be

a convolution-type operator as in (5,4). Thenfor allf e C[-1, l] and all0 < ô <
2, one has

tuo1(Go4,,¡f ; õ) < ór(f ; pr,,(u) .ô) < (1r pr,,(,1).orCf ; ô).

Proof. We note first that llf,,,,ll.,,_" ,nf= 
n,so that llG,,,.,ll = t.

Furlhermore,

p¡[K,,1u1J=1.Jn.orr.

=f'Jn.orr.

I

K,n1n,(s)ds =

+.
m(n) \

) Pr,,,rnr cosks lds =k=r )

.)"l.oi^
4 "^^^

J

^ [l ".¡' tn nt I .1" 'L.

I
1Í

I
n

cos2 s .p¡,r¡1r,¡(s)ds =

rtl| -^I y I,mtntJ-Î



From the equalities Ael¡ = eç¡ and Aey = þt .et, it fbllows that this is equal to

H p - p,b + p,a - aI =llf,¡¡. rr - 0,,,

nrom ll(As)'ll< r.lls'll, s e Ct[ø, b], wefinally have

l*o.,t, ")l 
< rilf]l*rl -pr)ll/,ll = (c * I -p,) ll/11

(Note at this point that c + I - p, 2 0.)
An application of rheorem 5.1, with the constant c there replacecl byc'+l-p,,gives

@t(A* l;r) < 3. A,( ¡t(c 
+ l- Pr )r 

),
\5)'

an inequality then implying the remaining claims of Theorem 5.10. tr
Remark 5.l l .

(i) since the operator A+ reproduces linear functions, the example of the
function e, shows thar in the inequality ot,(A+f;r)<3.,n,(f,å), equatity oc_

curs in a nontrivial case,
(ii) The inequality from (i) shows, furthermore, that the Lipschitz crassesLip¡(l; [-l' l]) are invariant underA+. we do not know whether this is also true

for the classes Lip¡(a; [-1, l]), 0 < o < l. El

For the operators !V.T__, we get

CoRoLLeny 5.12. Let 4r_r, s > l, be the positive linear operators intro_
duced above. Thenfor att f e Ct-I, ll and all I ) 0, one has
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5 2. GLOBAL SMOOTHNESS PRESERVATION By OPERATORS W,;-_

Global smoothness is also preserved in a certain sense by operators A*
given by A* := A@ L, where, more explicitly,

(5.5) A*(f, *) = A(f - Lf,.r) + L(f, x),

with L again defined as above. For mappings of this type, we have the tbllowing
general statement.

51

ror(tf.,*_,.f ;r) < 3.a,, (f, i) < 4 u,(Í
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( L4) and A satisfies some mild additional assumptions. In the sequcl,

e¡(x)'.=x', i€ Ns.

THeoRel\4 5.10. Suppose that A is a positive lineur operator mapping
C[a,b] into itself, with Ae¡= €ç, A€1=Pt.et. I¿t Lbe given as above.

Suppose,.furthennore, that A : Ctla, bl -> Ctfa, bl such that

ll(¿s)'ll<.,'lls'll ror all s e ctLa, bl.

Then lbr all f in C[a, b] and all t > 0,

or(A*,f ; ,) < 3'cùr f r' [' 
+ I : pr ]'r I . ,l 

' 
* c + l-- Pr 'l'

| '' -,,lt'[t+f)'''(r"''
For c = py this inequaliq, reduces to

ru, (A*,f; r) s 3.Õ, (t, å). +. a,(J'; t).

Proof. We verify the conditions of Theorem 5.1 for the operators

A+ = L @ A subject to the additional assumptions expressed in Theorem 5.10,

Inordertoverifytheboundednessof A+,notettrut lle.ll=llr+ A-Loall<llrll+
+flall+ll¿ll llell=3. To verify (5.2) forA+, note that one has, for-r e fa, bf,the
representahon

A* (f ; x) = A(f ; x) + *. { (x - a ) . (f (b) - A (f ; b)) + (b - x). (f (a) - A (f ; a))l

Thus,

* o, rr,.r¡ = $ ag ; Ð + *{Lr þ) - A(f ; b)l - v @) - A (f ; a)l).

Hence,

l¿
E

Since A is a positive linear operator with Aes = es, the second term of the latter

sum can be rewritten as

A*(f ,x)= toff,,,l-;n t f @- Aç;b) - f (a)-A(f ;ùI

* {lor, (b); b) - A(f : Ðl-ll(f (a); a) - A(Í ;, )l } <

. *{rï .A(,, -al; a)+ll¡'ll .e("1-al;")}=

= ffi{oro - e y;b) + A(e, - a: Q}.



Combining (5.8) and (5.9) we obtain

l;|o.,t,,rl< (" +lr -p,l).ll/'ll,
which then, in view of (5.7), gives the ínequality of Theorem 5.13. EIIf we choose A = Gmh) as give' abóve, ihen the assumptiors of rheorem
5'13 are satisfied with p¡ =pt,,(r). For the parlicular operators lVrl,_, consid_
ered here, we have the following result concerning their preservation of global
smoothness.

CORolLeRy 5.14. Let Wr,r_r,,r à l, be given as above. Then for all
f e C[-1, ll and all t > O, we hqve

ro, (w,|-,/; r) s 3. Õ, (rt ¡) = 
4, ut(.f ; t).

Proof. As was mentioned earlier, the I/",,-' are positive linear operators
satisfying W",,-r(eg) =€6 âDd Wrn-r(e)=Àl,rr_, ,er. lt was also shown above
ttrat ll(il/,,-,g)1l<Àr."n-",lls'll ro. ail g e Cr[-1, l]. Recall (see Corollary 5.6)
that 0 s Àr,"n--" < I ' These facts then give the inequalities of corollary 5.14. tr

Remark 5.15.
since the operators wj-" reproduce rinear functions (cf. Theorem 4.9), a

statement analogous to that of Remark 5.1 I (Ð holds. Furthermore, the first ine_
quality of corollary 5,14 arso expresses the fact that the crasses Lipa(l; [-r, r])
are invariant under wi,-,, we do not know if this is also the case for
Lip¿(a; [-1, l]),0 < a <1. E

Open Problems

can the global smoothness preservation statements for A+ (see Theorem
5'10) and A* (c.f ., Theorem 5.13) be improved with respect to the constants
figuring rhere?
what can be said about global smoothness preservation by discretery de-
fined operators as introduced in our eariier paper Il lJ?

23

Thus,

(5.e)

Approximation by Boolean Sums 59

l$,o - r,t)(Lr; Ðl=l )- a) (pr-l <lll'll'¡t -0,¡.-a

2

3
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THEoREM 5.13. Suppose that A is a bounded linear operator mapping

C[a,b) into itself, with llAll=1, and let Lbe g,iven as above. Assume,further-

more, Íhat
(5.6) Aes = es, Ae1= p1.e1

and that A : Ct[a, b|--> Ctla, b] such that

llt¿sl'll <' 'lls'll for alt 6 e ctla, bl.

Then for all f in Cla, bl and all t > 0,

at(A. f;t) 33. 
^,( 

r,(' 
+ll:prl)r l. rl, + 

c+ll--prl 
l.oì(/; r).(. - J-'['' 3

Proof. It is again easy to show that the conditions of Theorem 5, I are satis-

fied for A* as defined above. In order to verify the boundedness of A*, simply
note that

(57) llo.ll=ll,q-¡"1+L|<llall+llall llrll+llrll=r.

In order to verify (5.2) of Theorem 5.1, note first thatA* maps Cl(Ð into itself.
Fuftlrennore, from (5,5) we have for all/in Cla,b) and all xinfa, ål that

A*(f, x) = A(f - Lf, x) + L(f, x) = A(Í', x) - (A - Id)(Lf, x).

Thus, for/e Ctla, bf, we get

with c given as above. From the assumptions Aeg = es, Aet =pt'€¡, wê arrive at

(A- Id)(Lf ; x) =

= (A_ Id)

= (A_ Id)

= (A_ Id)

(*'{r<ø¡rt a)+ f (a)(b-r)};")=

(* {rø¡ t-r@) '};')=
(ry,'')=

b( ) f(a
b-a

D-a
b)- a)

,(A- Id)(eú x) =

(o, - l)¡ accordins to (5.6)
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