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APPROXIMATION BY BOOLEAN SUMS OF POSITIVE
LINEAR OPERATORS VI: MONOTONE APPROXIMATION
AND GLOBAL SMOOTHNESS PRESERVATION

HEINZ H. GONSKA and JIA-DING CAO

0. INTRODUCTION

In a series of recent papers the present authors investigated the degree of
approximation by Boolean sums of certain linear operators from various points
of view (see, e.g., [5] and the references cited there). One of the subjects consid-
ered was the preservation of higher order convexity including monotonicity
({14]). In the present note we shall again deal with the preservation of mono-
tonicity in combination with pointwise estimates for algebraic polynomial ap-
proximation, using a different point of view from that in [14]. Pioneering work
in this direction was done by Lorentz and Zeller [26]; see also the excellent sur-
vey paper by Chalmers and Metcalf [15]. More recent contributions along these
lines are papers by DeVore and Yu [18] and Leviatan [25].

Our approach will be simpler and more constructive than those in the latter
papers, in the sense that we will not use intermediate spline approximants, but
directly approximate the function f€ C|_, | using an algebraic convolution-type
operator with appropriate properties. Furthermore, we will investigate the pres-
ervation of global smoothness of f as expressed by its modulus of continuity. ;

While several of the results below are quite general, we shall focus here 6n
the investigation of the quantitative behavior of certain convolution-type opera-
tors W, _, (being special instances of more general convolution-type operators
G,yny and their Boolean sum modifications to be defined below. The mappings
W,, _ , are defined constructively using appropriate trigonometric kernels D,
which are obtained using a technique employed eatlier by Beatson. For all our
considerations, the concept of bell-shapedness ot the kernels D, _ ; will be cru-
cial. It will be shown that the original operators W,,, . satisfy Timan-type inequa-
lities, while for their modifications we have Telyakovskii-, DeVore-Gopengauz-,
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Dzjadyk-type inequalities. These names were derived from their historical
andtext. it will be made clear below at each occurence what exactly is meant by
con ’

them-The following notation will be used in this paper. By N={1,2,3,...}] we

denote the set of natural numbers. For ne N, I1, will be the set of algebraic
eno ;
omials of degree < n. The symbol C[-1, 1] will denote the space of
Poil)”;alued continuos functions defined on the compact interval [-1; 1]; Cy, will
al- i . :

¢ 4 for its trigonometric counterpart. For a continuous function £, ||| will al-
stan . 1

¢ denote ifs sup norm. Furthermore, for k € {1, 2}, wy(f, -) will be the first
waj»qecond order modulus of continuity, respectively. Throughout this paper, c,
an .il] mean absolute positive constants independent of f, x, and n. The constants
¢ wd ¢ may be different at different occurrences, even on the same line.
¢an

1. GENERAL CONCEPTS

The classical method of proving Jackson’s theorem for f € C[-1, 1] uses

Onvolution operators of the form
C

G(f,x)= (f *g)x) =%J‘fnf(cost)g[cos(e—t)]dt, x=cosB e -1, 1].

Here & € C[-1, 1] is a fixed function. Clearly, G : C[-1, 1] = C[-1, 1]. Due to
th:, fact that f ©c0S, goCOSE Cy and that gocos is even, one also has the rep-

1.esentations
(L) G(f,x)= %J._nnf(cos(e —1))-g(cost)dt = %J.fnf(cos('e +1)) -g((_:ost)dt.

If g=8n€ I1,, is givenin its Cebysev form
- b1

m

12) gn(D= 20 Ti(2) @ €R, T, (2)=cos(k-arccosz),
! k=0

then G = G attains the form
1 ™ m |
Gm(f,x)=E'J‘_nf(Cost) Z(:)ak -cos(k(8-1)) Ldr =

= ,Z;)ak {% ‘ f:f(cost) . cosktdt}-Tk (x).

Thus, G ° (-1, 1} = 1, 1t K, is an even trigonometric kernels of the form
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m(n)

1 ;
Ky (v) =§+ 2 Pk, m(n) *COskv, vER,
k=
then

(1.3) &mny(2) = K, (arccos z) N

b f—

m{n)
+Z pk.m(n) 'Tk (Z)
k=l
is of the form (1.2).We thus have the representations

Gy (f3 %)= %J.fnf(cost)Km(n)[arccos(cos(e —t)]dt =

W L("
-1 j_n f€ost)K g (arccos x — e = L j_n f(cos(arccosx + 1)K i (V) =

=l'|.nf(cost)dt + ’g)p -{Q-J.nf(cost)-cosktdt}T (x)
o o k.m(n) m Jo k i

If Ky(ny 2 0, then g,,,,(2) 2 0, z € [-1, 1], so that Gy 1s  positive linear
operator. In the sequel we shall exclusively discuss the case where Emn) 1S given
as in (1.3) with K,y 2 0.

Sometimes suitable modifications of the operators Gn(ny Where used in or-
der to guarantee side conditions to be satisfied. To be more specific, we recall
the definition of the Boolean sum of two linear operators P and @, which is
givenby P®Q:=P+Q~Po(Q (subject to compatible domains and ranges of P
and ). Note that @ is an associative operation, but is, in general, non-com-
mutative. The use of Boolean sum modifications of operators Gy as introduced

above is motivated by the following version of a theorem by Barnhill and Gregory
(cf., e.g., [10, Theorem 2.1]).

THEOREM 1.1. Let P and Q be linear operators mapping a function space _ -
G into a subspace H of G. Let Gy be a subset of G, and let $= (¢} be a set of
linear functionals defined on H.
(1) Lett(PH=¢(f)forall te Landallfe H.
Then ¢ [(P® Q)] =¢(f)forall te Landallfe H.
(i) Let Qf=fforall fe G,.
Then (P®Q)f = f for all fe G,
(iii) Let fand Qf be in the set of all functions g such that Pg = g.
Then (POQ)f = f.

(iv) Let (ld-Q)f, Po(ld-Q)f€ ker ¢, the kernel of (. Then
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Proof. The proofs of (i) through (iii) were given in [10].
(iv) We have ¢ [((P@®Q)f1=¢ (PH+ (O - ¢ ((PoQ)f) =
=4 (Po(Id-Q)f )+ (Qf-N+¢(H=0+0+¢f=¢(H.0

In the present note we will again consider special Boolean sums of ap-
proximation operators A (which we usually envision as being members of a par-
ticular sequence of such operators) with a fixed linear interpolation operator L.

For a compact interval [a, b] and a function f defined on it, we denote by
Lf the linear function interpolating f at a and b, ie.,

_[G-a+ f@G-0 ooy
b-a
Let A : C[a, b] = Cla, b] be a tinear operator. For f € Cla,blanda<x < b,
we introduce its modifications

A+(f,0)=(L®ANS, x)=(L+A~LoA)f.x)=

(1.4) L{f.,x):

(1.5) , .
=A(f, )+ (b-a){x~a)-[f(B)-A(f,B)]+ (b -x)-[f@)-A(f,a)l},

and

(1.6) A*(f,x):=(ABLXf, x) = A(f —Lf . x)+L(f,x).

As a consequence of Theorem 1.1, for the special situation at hand one has

COROLLARY 1.2. (Cao and Gonska [10, Corollary 2.2]) The operator
At =L@ A as given above has the following properties:

(i) A*(f;¢)=f(c) forallfe€ Cla, bl and c =a orc=1b;

(i) AQ1)CTL;, then A*f=f forall fell;.

For the operators A* introduced above, Theorem 1.1 gives

COROLLARY 1.3. For the operator A" =A® L , we have the following:

(i) A(f —Lf;c)=0 forc=aorc=b, then A"(f;¢)= f(c).

(i) A"f=f forall feTl,.

Proof.

(i) Let /= €, be the point evaluation functional at ¢, and P := A, Q := L. We

verify that the sufficient conditions from Theorem 1.1 (iv) are satisfied. Note
first that
e.((Id —L)f)=f(c)~L(fic)=f(c) = f(c) =0.
Secondly,
e (Ao(ld—L)f)=A(d —L)f;¢) = A(f = Lf ¢) =0,

so that A*(f; ¢) = f(c) immediately follows.
(ii) This is a direct consequence of Theorem 1.1 (i1).:
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‘Remark 1.4, The Boolean sum approach to imposing interpolatory side
conditions at the end-points of [a, b] has the disadvantage that the positivity of
the operator A might be lost when passing to A* or A*. For an example, see
[13, Example 2.5]. A different and quite interesting approach to imposing such
interpolations conditions without the loss of positivity was recently presented by
I. Gavrea [19, 20]. It appears to be of interest to investigate a blend of Gavrea’s
technique with the Boolean sum approach.

2. PREVIOUS RESULTS

In the following lemmas we collect some of our earlier results concerning the
quantitative behavior of the operators G,y and their Boolean sum modifications.

An important tool for proving Timan-type inequalities is

LEMMA 2.1. (Cao [7], [8, Theorem 1]) Let K,,,, be a non-negative kernel
as given above. Then for -1 <x <1 and fe C[-1, 1],

|f(x)'_;G._”i(">(f’ »[< 20, [f’ (=P, m(u )X+ V2 1=y V1= 42 ]

The following assertion gives some sufficient conditions under which
polynomial Boolean sum operators A satisfy Telyakovskii-type inequalities.

LEMMA 22 (Cao and Gonska [12, Theorem 3]) Let n 2 1 and m(n)e
€ NU{0} with cn<m(n)<cén,nz 2, for some constants ¢, ¢. Let A,: C[-1, 1] —
— Iy be a sequence of linear algebraic polynomial operators. Suppose that
for A, we have the Timan-type estimate

|A,,(f,X)—f(x)|Scwl(f, l—xz +‘L], |x|$].

n nz

Then for A}, the Telyakovskii-type estimate

n e
. [i_ 2
’A,J{(f,x)—f(x)| <cw, [f,l—”it——), |x| <1, holds true.
The assertion below states under which conditions one has inequalities of
the DeVore-Gopengauz-type.

LEMMA 2.3. (Boss, Cao and Gonska (5, Corollary 11) Let m(n) 2 2, K,,,5(v)
20,0<e,<1,and let

(1) 1—pl.m(n) =0[8121]*
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A ‘ 3 1 Gl where
(”) | 5_2pl<m(n) +5p2,_llf(l_l) i 0[8;1]' ;
_n . kn :
Thenforfe C[—l, 1], ; '. : (32) Kk.m(n) = HSIHTpk,m(n)v 1<k< m(”)
|Grtiny (s )= £ (x)| <C (f;e,, V1-x 2) [xj<t. LEMMA 3.3. Let m(n)e N If, for 1 < k < m(n), we define Ay, as
Here the constant C is independent of f, x, and n . - above, then the following hold:
The following lemma states the conditions under which one has . ) :
Dzjadyk-type inequalities. (1) If 1P ey =0(n—2), then 14, . =0(—2—),
)
LEMMA 2.4. (Cao and Gonska [9]) Let ne N and K, (v)20, -1 <x<1.
Then for f€ Cl-1, 1], (ii) If 1=Pp i =0(HL2J, =03 mim =0(nl2), and

£ = Gy ()| €03 (1 T=P1 i )

3. NOTES ON GENERALIZED BEATSON KERNELS

1 (1), 1
2 "2pl.m(n) +§p2.m(n) _0( n J then = 2 _“}‘l ym(n) +5 }‘2 mn) ~— 0(71_4)

Proof. We have A min) =7 %einZ pl m(,,),le -2, m(,,)—l Lgin pl min) =

In this report [3], Beatson used Steklov means of order 1 to construct
so-called bell-shaped trigonometric kernels based upon Jackson kernels of order = (1 —Esin%)+Esin;(l =P, m(ny)-
s€ N . To be more specific, recall

: _Sint _ Ae,2y. sing
DEFINITION 3.1. (Lorentz and Zeller [26}) A continuous function on [T, 7] By Taylor’s formula | t 0(7); furthermore, 0< t sLO<rsm.

is called bell-shaped if it is even and if it decreases on [0, 7).
The following property of bell-shaped functions will be useful below.
LEMMA 3.2. (Beatson [3, Lemma 2]) Let the 2m-periodic function g be ogiiciic)
bell-shaped. Then for all t, x € [0, 1], one has Also, from Ay ) = 2 om= P2 ey, WE have

glt-x)~gt+x)=0.

Beatson’s construction to define bell-shaped kernels can be generalized as
follows. With K., given as above, we construct new trigonometric kernels as

_ 2
the first order Steklov means Since SIRf _ 1. %+ O(t*), we obtain

Thus 1=Ap e, :0[%2)'

3 1 _3 2n.. ' | 2n
(33) 5—2)\-1'”1(”) +E}\«2‘ m(") —5—"#5“1%[)]‘,”(") + 2 (Esln )p2 m ”)

D, (v):=2" jw'"ﬂk (t)dt
m(n) v :=2—n X m(n) t = 2
T —sm——l——+0 and
n 6n? [n J

3

o~

Hn

~

- 1 + n V+1_7: kt df =
qE kZTpk‘lll(il)Jv__% COSkt df = -n—'SinM=l 47E +0(_1_) 1__ +0( )
(3.1) i) 2n n 6n? 4 n? n*

1 - k

=) + ,\i pk m(n) COSKV = From condition (ii), we find that
k=1

1 +m(")l v pl.m(n) :0(1) and pZ.m(n) :O(l)’

:E I(.m(n)COS v,

| from (3.3) and condition (i), we have
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1 L
%— 2}\.|‘,,,(,,) + E}Q min) —

i

poju ofw

n

I
1
roj

Al ), me “141- +o| L |=0[ L
n4]+3n2 (pl-"'(") il p2-’"(")) (n4 n?

I
S
TN

Matsuoka investigated the following Jackson kernels of hi
(17, p. 79 ff.1, [27D).
2s
sin (ﬂ)

_\2)
sin (\21)

T
where ¢, is chosen so that n"J_n K, _.(v)dv=1. Thus,

For se N, let K, _ (V):=c¢,

SH—§

+ )" Pp, gy COSKV.
k=)

B —

(3,4) Kxn—s (v)=

The kernels constructed in (3.1) and based upon K, . will
DJ"—S ‘

In the next lemma it will be shown that the kernels D
(as was already observed by Beatson without proof).

SH—5

LEMMA 3.4. Let n, s€ N, Then for 0 < v < T,

dD.\'H - (V )

<0.
dv

Proof. If 0 < v <, we have by definition

sin(
sin(

(S1R

) 28
de.

)

n (Va
D.\'n—,v(v) =E-|.v—3 Cn,s
n

RO~

Thus,

2 1 2n? 1 _
= —2(] —.61.{7-*-0(”%]]‘)1‘]”(”) +—2_(| —W'*‘O[;‘T]]p?..m(n) .

2 A 2
n 1,1 _m i
—2p],m(n) + a2 Pt mm +0( IJ+Ep2.M(") 3n2 p2.’(!(ll) + O(”d ]

1 2 i Al N
—2p].m(n) +"2‘p2.m(n)}+y(pl,m(m p2,m(n))+0( n4 )_

).m

gher orders (see

be denoted by

are bell--shaped
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i 925
int n cin v -1
dD.\'n—s (V) - ncn,s [Sln 2 (V o ?I) Ii&!ﬂ 2 (V n.)

dv 21
' {sin

. b1
”K_\‘n‘-s (V - ;‘,)

2n[sin%(v oz )]2 {[sin

Since as — b2 = (aZ)x = (b?_ Y= (a2 iyl b’l)[(aZ ).\'—I + (aZ)s—2b2 yhY (bZ)s—l 1,
the quantity a' — b agrees in sign with a? — b2 = (a - b)(a + b).

2s 25
Hence [sinl(v —E) - sinl(v +£) has the same sign as
2 n 2 n

intlv-Tianl{vs X T P AT |
(3.5) [smz(v n)+sm2(v+n):l><[sm2(v n) sin-

Lorentz and Zeller [26, p. 502] proved that if 0 < o, B < g then

(3.6) sin(o+B) = [sin(a - B)).
Thus
M <0,0<v<n. O
d_v ;

4. DEGREE OF MONOTONE APPROXIMATION

(v+2))

Let j be a natural number. The j-th forward difference of an fe Cl-1, 1]

‘with increment A is then given by

E ; _
ALF(1):= 2(—1)J-k(/ijf(t+kh), 0<h<2jandre [-1,1—jh).
k=0 y

A function f is called j-convex if f € C[-1, 1] and all j-th forward differences

Aj f(1), 0 < h <2/j, are non-negative. Also, the function fis said to be 0-convex
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if it is non-negative. Beatson (4, Theorem 1] proved the following lemma, which
1s essential for our purposes.

LEMMA 4.1. Let g(z) € C[-1, 1] and j be a non-negative integer. The cone
of j-convex functions is invariant under the operator G( f=r*g iff g is
J-convex.,

We denote the operators from (1.1) based upon the trigonometric kernels
Dy, (V) by W,, _,. Our next assertion is the theorem of Lorentz and Zeller [26]
for the operators W, _ .

THEOREM 4.2. Let n€ N and s 2 2. Then for fe C[-1, 1) and -1<x<1,

FO) =Wy (fy ) e | g, =22 4 1|
n

n?

In addition, if fis 1-convex, then W, _ (f,-) is also I-convex.

Proof. We take h(z):=D,,_ (arccosz), (z=cos v, -1 <z<1).
Then h(cosv)=D,,_ (V). By Lemma 3.4, we have

H(cosv)(—sinv)= %Dm_s (v)<0, O<v<m;

hence h'(cosv)=0, ie. h(z)20, -1<z<1.
Thus h(z) is an increasing function of z on -1 < z < 1. Using Lemma 4.1, it is
clear that if f{x) is a 1-convex function, then Wen _ (f, x) is also 1-convex. For the
Matsuoka kernels K, _ (v), we have ([17, p- 81)).
1=y gy = 0[ lz) 5§22,
n

From (3.1), (3.2) and Lemma 3.3 (i) for the associated kernels D, _.(v), we find

T T 0(;12—), $22.

Theorem 4.2 now follows from Lemma 2.1. O

The following two auxiliary results will be needed to show that the map-
pings Wy_ =L@®W,,__ preserve monotonicity (while also satisfying a Telya-
kovskii-type inequality).

LEMMA 4.3. (Cao and Gonska {14, Lemma 2.1]) Let A be a positive op-
erator mapping Cla, b] into itself, and such that A(1; x) = 1. Let f e Cla, b] be

f1acn ot | aud
el CUSULE, Qi
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V0= g - al£8) - A, D))+ b -0 f@) A @]}

Then v is also increasing on [a, b).

LEMMA 4.4. Let A be a positive linear operator mapping Cla, b] into
Cla, b}, with A(1, x) = 1. For je N, let the cone of j-convex functions be invari-

ant under the operator A. Then the cone of j -convex functions is also invariant
under the operator A*.

Proof 1f j=1, and fe Cla, b] is increasing on [a, b], by Lemma 4.3 it fol- -
lows that the linear function v(x) is increasing, i.e. ALv(x)>0, 0<h<b-a,xe

€ la, b — h]. Under the conditions of Lemma 4.4, we have A}A(f,x)=0. Since
A*(f,X)= A(f,0)+V(x), we have ALA*(f,x)= ALACS, x)+ Abv(x) 2 0.
If j > 2, then AJ(ox +B)=0, and thus

ALAY(f, %) = AACE, x)+ AJV(x) = ALA(CF, x).
Hence, if A{; Sf(x)20, from the assumption of Lemma 4.4 we have that
AA(f. x)=ALA*(f,x)20. O
The Telyakovskii-type estimate for the operators Wi _, is next.

THEOREM 4.5. Let ne N and s > 2. Then for fe C[-1,1],

|FOO =W, (f 0| s coy [f, Lo J <1

Rn

in addition, if f(x) is 1-convex, then so is W _(f, x).

Proof. From Theorem 4.2, we have the Timan-type estimate

J1-x2 41
n

'f(x)_W\'n—s(f’x)lscwl[f’ ;f]' IAISI ‘

Using Lemma 2.2, it follows that

f1— .2
If(x)—W.‘.:_s(f,x)]Scwl[f. . J <1,

n

From Theorem 4.2, we see that if Sfix) is l-onvex, then this is also true for
Wn-s(f, x). Since W,, (I, x)=1 and W, __ are positive linear operators, by

-8
Lemma 4.4 we have that W,

n—s (f» x) also is 1-convex. O
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For operators W,_ based upon Jackson kernels of order s > 3, we also
have the following estimate of DeVore-Gopengauz-type (see DeVore and Yu
[18] for the first assertion of this type).

THEOREM 4.6. Letn 22,5 2 3,and fe C[-1, 1], Then

L ] x{s1;

|f(x)—w";~s(f’x)' SC(,O2[f,

if flx) is 1-convex, then so is Wi _(f,x). 0
| Proof. From (3.4), we have that Matsuoka’s kernel has the form

sn—y

K.\‘n—x(v) B % + 2 pk, sn—s COS kv.
k=1

n—s

D, (V)= —é—+ 2 Ay sn-s COSKV,

sn—s
k=1

where
_n o kn PP
}”k,‘\'n—.\' ——E‘SIH n Pk sn—s 1 S k<sn—s
If s > 2, then (see [17])
1-p = 0(_1_)
1.sn—s I12

From K,,_;(v)20, we have (see {9])
1
0<1- P2,sn-s < 4(1 _pl,.\'n—.v ) = 0(;7)
If s > 3, then (see [9]) 1
%_ 2pl.sn—.\' + §p2..vn—.\' = 0(71_4)-

Using Lemma 3.3, we obtain

1
1 —)\'l..\"l—.“ = O(n_z), K 2,

and 1 -
i %_ 2N s + 5}\'2,.\11—.\- =0(n™), s2 3.

Lemma 2.3 then implies
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x| <.

/1 1—7
o -We_ (£, 0| o, Lf. vl ] I

From Theorem 4.5, we know that if f(x) is I-convex, then Wi (f.x) is also
l-convex.

In the remainder of this section, we investigate the operators
W, . =W,

si-s = Wy ® L and show in particular how these inherit shape-preservation
and quantitative properties from the underlying operator W,, .. The next lemma
deals with the preservation of I-convexity by more general

operators
AT=A®L.

LEMMA 4.7. Let A be a linear operator mapping C [a, b] into Cla, b) with
A(l,x)=1,xe [a, b]. Suppose that h(x) := x — A(1, X) is increasing on [a, b), and
let the cone of I-convex functions be invariant under the operator A. Then the
cone of I-convex functions is invariant under the operator A" =A@ .

Proof. Let fix) € Cla, b] be increasing on [a, b], and let L be given as
above, i.e.,

L(f,xy = LOZI@ 1y iy,
As noted above, we have
4.1) CANG D) = A - L, x) + L x) = A(f, x) = A(LS, x) + L(f, x).
Since A(1, x) =1,

AL, x)~L(f, x) = _
_f®)-f@),, _a(f(b) - f(a)
—TA([,)C)+,: b\

—da

+.f(a)}A(1,x)_f(bg+.(f:(a)x+
LAl ®)- f@)
i) i)

a

- f@) = LEL@ (1, 1y )
Thus

(4.2) A*(f‘x)=A(f,X)+f(b%£(a)(x~A(I,X))=A(f,X)+f(bz+§(a)-h(x).

Since A(f, x) and h(x) are both increasing on [a, b, and f(b%f:(“)zo, the

function A*(f,x) also increases on this interval, O]

LEMMA 4.8. Let Kpniny(V) 20, and let the cone of 1-convex Sfunctions be

invariant under the operator G ny- Then the cone of 1-convex functions is in-

. *
variant under the operator G,,,,,.
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Proof. We have (see [22]) the equalities
(4 3) Gm(n)(l’ X) = 1’ Gm(n)(r’ x) = pl.m(n)x*

and

n
1 Promny = %J.—n(l —COS V)K",(")(V)dV >0.

- i ses. A
Thus 1—%Gm(")(z‘,x)=,1—pl'm(")>0, so that x Gm(,,)(t,x) increases. An

application of Lemma 4.7 then implies Lemma 4.8. O N '
Our result on the degree of approximation by the monotonicity preserving

mappings W, _, is the Dzjadyk-type inequality in

THEOREM 4.9. For n€ N and s > 2, let W,,_, be given as above. Then for
fe Cl-1, 1] we have

“f ~Wosf]|<c o (f i 711-)

where ¢ = c(s) is independent of f and n. Furthermore, if f is 1 -convex, then the
*
same is true of Wg,_.f .

Proof. Note first that from Lemma 3.3 we have
-2
l—xl,sn—s = O(I‘L )-
provided this is true for 1-p, ,_,. However, the latter fact was already used in

. g iz .
the proof of Theorem 4.2, so that the inequality in terms of ®, ( V' 71-) immedi-

ately follows from Lemma 2.4. Furthermore, in Theorem 4.2 it was also shown
that, for s = 2, the cone of 1-convex functions is invariant under W,, _,, ne N.
Lemma 4.8 then implies the full statement of Theorem 4.9.

Remark 4.10. The reader noted that the inequalities of Theorem 4.6 (for
operators Wg,_,) and of Theorem 4.9 (for W, _,) are different, in the sense that

the former is a pointwise estimate while the latter is uniform. Indeed, it is not
possible to prove a Telyakovskii-type inequality for the more general operators

o o) = Grminy ® L where G, is given in Section 1 and is based upon the posi-
mn

tive kernel K,,,y. To see this, consider the function g(f) =1 - 12, t € [-1, 1]. If we

had a Telyakovskii-type estimate as in Theorem 4.5, then this would mean that g

* « ey 4 ‘. 2 me 4 3 .
is 1 iated by (r ‘ ¥ : see (4.2)) the representation
is interpoiated by (r,,,y at +i, say. We have (see (4.2)) P |
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* ] —g(-1 : ;
G (& 1) =G (85 1)+g()§23(_).(1 =G (; l)):Gm(n)(g; D=
=Gy (1= 1) = Gy (1= (1= 12) +1 =21, 1) =
3
=1~ (5 -2 'pl.m(n) +%'p2,m(n)) +1-2 'pl,m(n) = (Cf [9]’ [22])
1 b1 T
= %(1 _pZ.m(n) ) = ﬁ-‘.—n Km(,,)(t)dt - ‘2_17“5'"_1[ cos2¢- Km(n)(t)dt .
1 14
= EE.I.-T:(I —€0828) - K,y (1)dt > 0.
Of course, this means that a DeVore-Gopengauz-type inequality also can-
not hold. O

5. GLOBAL SMOOTHNESS PRESERVATION

Recently, the preservation of global smoothness of functions (as measured
by a modulus of continuity or by K-functionals of various kinds) under certain
linear operators was investigated quite intensively (see [16] for some recent re-
sults and numerous references). A central result concerning this question is the

following
THEOREM 5.1. (Anastassiou, Cottin and Gonska [1, Theorem 4]). Let

I'={a, b, a < b, be a compact interval, and H - C) - C(I), H # 0, be a linear

operator satisfying the following conditions:

(5.1) The operator norm of H is bounded, ie., ”H ” < oo,

H maps C\(I) into C\(I), and
(5.2) lHgY| < c-|lg] forall g € i),
Then forallfe C(I)and t >0,

oy (Hf; ) < |H]-, ( f; ﬁ}
Here, @ is the least concave majorant of the modulus w; with respect to
the variable r.

Remark 5.2. Readers not familiar with the concept of the least concave
majorant of a function f are referred to the monograph [24, p. 46 ff.] where this
concept is discussed in detail. It will be crucial for all considerations which fol-
low in this section.

We next investigate under which conditions operators (., which are
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based upon kernels K, preserve global smoothness of a function. For the mo-
as ! ] . ;
ment, we assume only that we are dealing with an operator G of the form

. 7 | x = s)a8
(5.3) : G(f; ".C) =1 J:nf(_coss) K (arccosx —s) '
here the kernel K is in L, and is positive and even. Clearly, one can also write
W !

this as I
G(f;x)= n"J. f(cos(arccosx —t))- K(t)dr.
%G(f; x)|. Writing g:= focos,

We first give a general estimate for

§:=arccosx, G attains the form

G0 ="' g(0-1)-K()dr =:Glg; 0)

Note that G(g;8) is defined for all g € C,, and 6€ R . From [6, Prop. 1.1.15],

we have ]
i(_}(g; 0)=n" f {aeg(e t)} K(t)dr.
do
Here <
d0__ 1 o that % ——“id';*
dx 1_x2
Hence,

LG(f ocos, arceos x) -1 x% ==L G(f o cos, 6) =
- —n*ljfng—e Flcos(@~1)-K(t)dt =

= r'j_“ sin(0—1)- f(cos(0—1))- K(1)dt =
=n~‘je+" sins- f'(coss) K(0—s)ds =

sm f'(coss) - K(O-s)ds =

II
t_,'—,

51115 f(coss) - K(B-s)ds =

=T

l[ ]sms f(coss) - K(©-s)ds =

T
:lj"sins-f(coss)-[K(e—s)—K(e+s)]ds

nJo

Thus,
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rewritten as

or

Assuming that X is bell-sha

Note here that the inequality 0 <~ f
implies p)[K]20. Thus,

d i
’dx G(f ocos, arccos x)

.,/1_x2 =

-,l;-f:sin $- fcoss) [K(0-s5)~ K(0+9)]ds| <

|1 —-f sins[K(0~s)~ K (8 +5)[ds.

It thus remains to give a representation of

n-‘fonsins-]K(e—s)—K(e+s)|ds.

n—'f“sins-]K(e-s)—K(e+s)[ds =

i
T—
L2

!

¥l s{l~ Sl

p—’%

]
I~

]

_sins-[K(0~5)- K(6+ 5)]ds =
f;”sin(e—&)_«(&)d&— L_"sin(s—e).l((f)dﬁ}:
" [sin(8~s) - sin(s -0y Kds)=
: f_nsin(e—s)-K(s)ds =
fnn[sine-coss%éésﬂ-sins}l((s)ds -

T n
[sm&.[ coss-l(_(a:)ds—cose-f sins-K(s)dst
-n - -

i
i,

T
=Hls

s

1

=y smef coss- K(s)ds =

=:sinf.p,[K].

Al-x2 =

= ‘%é(f © COS, arccos x)

L 6(r:x)

sins«|[K(0-5)— K(0+s)|ds =sinB- -pIK]

NI=3Z < |7 -sin0-p (K1,

53

ped, by Lemma 3.2 the latter quantity can be
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<pilK1|17)-

\%G(f;X)

Recalling further that for operators G of the form (5.3) one has
IGl=n"|K]|, |_n.n» the above can be summarized as follows.

THEOREM 5.3. (cf. Anastaésiou and Gonska [2, Theorem 4.1]) Let G be a
convolution-type operator of the form (5.3) which is based upon the bell-shaped
kernel K # 0. Then p;[K]120, and forall f € C[-1, 1] and all 0 < & <2, one has

Lt elE b Tomee
w;(Gf; 8) SE"K”L.[—ﬂﬁ] wl{f, n! “K"L (-7 i

5 (n—l '"K"L,l-n.nl +p,[K])~(1),(f; Q5112

We now specialize K further by assuming that
1 m(n) |
Kt =Kp(®) =5+ kET Dkm(ny  COSKE

is a non-negative and bell-shaped trigonometric polynomial of degree < m(n).
The operators G based upon these kernels will be denoted by G,,,. We thus

have
iy PR ~0)) K. o (t)dt.
(5.4) Gy (f3 X) =T f_ﬂf(cos(e ) Kiny ()

THEOREM 5.4. (cf. Anastassiou and Gonska [2, Theorem 4.2]) Let G, be

a convolution-type operator as in (5.4). Then for all f € C[-1, 1l and all 0 <5 <
2, one has

O (G f38) SO (f3 01 miny " D) S A+Py i) O (f5 D).
=1.

Proof. We note first that "Km(,,)" =1, so that ”Gm(,,)

L|[—1§.1T]
Furthermore,
n
pl[Km(n)] = %J.— COSs - Km(n)(s)d‘s =
| n 1 m(n)
=E.J._ncoss- 5t Z Pi.m(m) COSKs. |ds =
k=1
:l-J.n €05 8Py () (5)ds =
o I,m(n}
4
H'l"pl.mm)' l5+—l--gin2$ _pl.m(m'
T [27 " 4 Jn

19 Approximation by Boolean Sums 55

The inequality of Theorem 5.4 then follow directly from Theorem 5.3. [

Remark 5.5.
By the example of the function e I+ it can be seen that the constant | figur-
ing in front of &, (f; Pimny *0) is best possible. O

COROLLARY 5.6. (cf. Anastassiou and Gonska [2, Corollary 4.3]) Under
the above assumptions on Konny» it can be easily verified that, in addition to

0 <Py n(ny> one also has Pronny S 1. From this it follows that
(Dl (Gm(n)f; 8) < GJI (f, 8) £2. w] (f, 8) a

Remark 5.7. The left inequality of Corollary 5.6 shows that the Lipschitz
classes Lipa(a; [-1, 11), 0 < 0. < 1, are invariant under the operator G,,,,,. O
For the kernels

aln sh—s
= _1
D.s'n—.s-(v) = 7’1& E -[—n/n Kxn—.s'(v +6dr = 5 + ,; }"k,sn—s *COSkV

it follows from Lemma 3.4 that these are bell-shaped. Recalling further that
?»,.s,,_l\,=%-sin—g-pl'm_x, our conclusion for the operators G based upon

Beatson’s kernels D,,_, which we denote by W,,_, is as follows:

THEOREM 5.8. Let W,, . be the convolution-type operator based upon
Dy, . where D, . denotes Beatson’s modification of the Jackson kernel
Ko o s2 1. Then for all fe C[-1, 1] and all 0< § < 5

('Ol (W\'n—sf; 8) < 6‘)1 (f* )\'],.\‘n—s 5) = G)l (f? 8)1
and also
a ("Vsn—.\'f; 5) < (I)I (f’ }"l,sn—s 6) < +)"1,sn—x) " (f’ 8) =7r (] (f’ 8)
Remark 5.9. Explicit representations for the convergence factors py .,

s2 |, can be found in (21, p. 37f.] and in [27]. From these the corresponding
Al gues Of Dy, can be easily derived.

5.1. GLOBAL SMOOTHNESS PRESERVATION BY OPERATORS W*

SH—8

In the present section we will show that the Boolean sum modifications
W, of the operators Wy, s Cl-1, 1] = I, _, also preserve global smooth-
ness in a certain sense. This fact is a consequence of the following more general
statement concerning mappings of the type A* =L@ A. where L is given as in
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(1.4) and A satisfies some mild additional assumptions. In the sequel,
ei(x):=xf, i€ Ny.

THEOREM 5.10. Suppose that A is a positive linear operator mapping
Cla, b] into itself, with Aey = ey, Ae; =P, -e. Let L be given as above.

Suppose, furthermore, that A : C'la, b] — C![a, b] such that
l(Ag)| < c-||g]f for all g € C'[a, b].

Then for all fin Cla, b) and all t 20,

= o l— :
w.<A+f;z>s3-cbl(f;[i“qL‘]’)s3(1+%J.w,(f;,),

For ¢ = py, this inequality reduces to

O (AT f;1) <30, (f;%)swwl(f;t)-

Proof. We verify the conditions of Theorem 5.1 for the operators

A* =L@ A subject to the additional assumptions expressed in Theorem 5.10.
In order to verify the boundedness of A*, note that ”A"“ =|L+A-LoA|<|L|+

+|AJ+||L]|-JAll= 3. To verify (5.2) for A*, note that one has, for x € [a, b], the

representation
AT = A0+ =) (FB) - AU b) + & =) (f (@)~ A(f 1)),

Thus,
d ,+ _d . i 1 RV - ) ]
SA 0 = LAF )+ O - AL @ - A @)

Hence,

<

‘%A*(f,x)

—(%—A(f;x)A+'b—f;-{|f(b)~A(f;b)|—\f(a).—A(~f;a)| )

Since A is a positive linear operator with Ae; =¢, the second term of the latter

sum can be rewritten as

_1_a.{|A(f(b);b)—A(f;b)l—lA(f(a):a)—A(f;a)l}S

b .
<5l Al )44 ey - )} =

i blfT’a{A(b - é, ib)+ Al —aia)}.
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From the equalities Ae, = €o and Ae; =p, -¢, it follows that this is equal to

WL to-pvora-ay=it-a-op

From “(Ag)'” <c-|g), g€ C'a, b, we finally have

£

K41, = (c+1-p)-f].

<cff+a-p))

(Note at this point that ¢ + 1 — p;=0.)

An application of Theorem 5.1, with the constant ¢ there replaced by
c+1-p),gives

(A" f31) 53-(1)1(f;(c++p‘)'}

an inequality then implying the remaining claims of Theorem 5.10. O

Remark 5.11.

(i) Since the operator A+ reproduces linear functions, the example of the
function e, shows thar in the inequality (A*f;1)<3-6, (f%) equality oc-

curs in a nontrivial case.

(ii) The inequality from (i) shows, furthermore, that the Lipschitz classes
Lip,(1; [~1, 1]) are invariant under A*. We do not know whether this is also true
for the classes Lipy(a; [—1, 1]), 0 <ot < 1. OO

For the operators W,_ | we get

COROLLARY 5.12. Let W.
duced above. Then for all f € C[-1, 1] and all t > 0, one has

o (Wi f1) <3G, (f;%)s4-w1(f;r).

5.2. GLOBAL SMOOTHNESS PRESERVATION BY OPERATORS w!

Global smoothness is also preserved in a certain sense by operators A*
given by A”:= A® L, where, more explicitly,
(5.5) A*(f, x) = A(f— Lf, %) + L(f, x),

with L again defined as above. For mappings of this type, we have the following
general statement,

sn-s» § 2 1, be the positive linear operators intro- -
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THEOREM '5.13. Suppose that A is a bounded linear operator mapping
Cla, b] into itself, with |A]|=1, and let L be given as above. Assume, furthe r-

more, that
(56) Aeo =¢€y, Ael =p] €
and that A : C'[a, b] = C![a, b] such that
l(Ag)| < c-||¢’| forall g € C'{a, b).

Then for all fin Cla, b] and all t 2 (),
c+|l- t ¢c+|1-p )

Proof. 1t is again easy to show that the conditions of Theorem 5.1 are satis-

fied for A* as defined above. In order to verify the boundedness of A*, simply
note that
(5.7) |

AT\=lA~AoL+L]<|al+]Al-Li+ L] =3.

In order to verify (5.2) of Theorem 5.1, note first that A* maps C!({) into itself.
Furthermore, from (5.5) we have for all fin C[a, b] and all x in [a, b] that

AYf, x)=A(f-Lf, x) + L(f, x) = A(f, x) — (A - Id)(Lf, x).
Thus, for fe C'{a, b}, we get
d i»
\EA (f,x)

<c I+ a-myas,

<

<[ av.x

+]£—_(A —1d)(Lf, x)
(5.8)

with ¢ given as above. From the assumptions Ae, =¢,, Ae, =p,-¢,, We arrive at

(A-Id)(Lf; x)

bl '{f(b)(t—a)+f(a)(b—t)};x)=

(
=(A—ld)(bl .{f(b)-z—f(a)-t};x)—_-

i [ -f@ . \_
—(A—Id)('—ﬁ-— f,.z\)

= LO=1@) (4 1ay(e,; ) =

(A-1d)

S

= M(p. ~Dx according to (5.6).
—==(p,
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Thus,
59) A= tag 0] =[FOZLD o i -y
Combining (5.8) and (5.9) we obtain

[ o[ (e+h-n ) 111

which then, in view of (5.7), gives the inequality of Theorem 5.13. O
If we choose A = Gmny as given above, then the assumptions of Theorem

5.13 are satisfied with p, =Pymen) - For the particular operators W

m—s consid-

ered here, we have the following result concerning their preservation of global
smoothness.

COROLLARY 5.14. Let Wo_w 5 2 1, be given as above. Then Jor all
f€ Cl-1, 1] and all t 2 0, we have

Wi f:0 <38 (£ 5) <40 (f10),

Proof. As was mentioned earlier, the Wi - are positive linear operators
satisfying W, (e;)=e, and Wo—s(e) =X s €. Tt was also shown above
that |(W,,_ )| <A s -|&| for all g € C'[-1, 1]. Recall (see Corollary 5.6)
that 0<A, ,,_; <1. These facts then give the inequalities of Corollary 5.14. O

Remark 5.18.
Since the operators W, _ reproduce linear functions (cf. Theorem 4.9), a

statement analogous to that of Remark 5.11 (1) holds. Furthermore, the first ine-
quality of Corollary 5.14 also expresses the fact that the classes Lip,(1; [-1, 1])

are invariant under W, _ . We do not know if this is also the case for -
Lipy(a; [-1, 1)), 0<a <1. O '

Open Problems

1. Can the preservation of monotonicity be combined with that of positivity
(while still having the Telyakovskii-type estimate)? We refer to Problem #
I in [23] in regard to this question. Gavrea has recently done some inter-
esting work in this direction [20]. :

2, Can the global smoothness preservation statements for A* (see Theorem
5.10) and A" (c.f., Theorem 5.13) be improved with respect to the constants
figuring there? '

3. What can be said about global smoothness preservation by discretely de-

nined operators as introduced in our eariier paper |11]?
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