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A NOTE ON HOLDER’S TYPE INEQUALITIES
AND CONCAVE FUNCTIONS

J. PECARIC and S. ABRAMOVICH

Abstract. In this note there are some theorems and examples that emphasize the relation
between Holder’s type inequalities and concave or convex function. In many cases, by the same
conditions that are imposed on the sequences (), oo ) ) .ony y,) in order to get bounds for the

Holder’s type sums in'”’y,.”", p+ g =1.p> 1, we get bounds for zy,-f(x,. /y,) when f(x) is

=1 i=1

a concave function.

L. In [1] the following theorem was proved:

THEOREM A. Let f(x)e C’ be a concave function in 0 < a < x and let the
vectors 0 <x, 0 <y, 0 <d satisfy

(1) 3=l
i=1 i=l

Let
) x,/yi.>_di/y,2dj/yj2xj/yj
i=L...m j=m+l,...,n
Then
n n
3) Yl il y)< Y yif il yy).

i=l i=l
If we replace x; by w; x;, y; by w; y; and d, by w; d;, we get the following

theorem:

THEOREM 1. Let f(x)e C’ be a concave function in 0 < a < x and let the
vectors 0 <x,0<y,0<d and 0 <w satisfy
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4 Zw,-x,- = 2 wid;.

Let
x lyi2dily; 2d;ly; 2x;1y;
) i=1...,m j:m+1,...,n
Then
(5) Zw,-y,-f(x,-/y,-)ﬁZwi.\’if(di/)’i)-
i=l i=

We give here a new proof of Theorem 1 in which we shall use the follow-
ing result:

THEOREM 2. Let the vectors a and b with elements from (c, d), and let the
vector w > 0 satisfy

- k
(6) iquzwq k=1,...,n.

Let f(x):(c.d)— R be a concave sectionally smooth decreasing function if the
vector b is decreasihg then
(7) Zwﬂm<2wﬂm

i=l

Furthermore if in addition to (6)
(6a) ' Z 2 w;b;
i=|

holds, then (7) holds if f(x) is concave sectionally smooth function and if f(x) is
concave increasing function, b is increasing and instead of (6) we have

then (7) holds too.

Proof of Theorem 2. For any values u, v € (¢, d) because of the concavity
of f(x)
f@) = fO) = flu)u-v)
so we have
f(b)) = fa;) 2 fi(b)b; —a;)

or
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Zwﬂb) 2»f(a)>2w(b ~a)fi(b) =
i=|
n—=l k

= f{(b, >2w<b —a;)- Zwa D(F i) = L (B)) 20

k=l i=]

The last inequality is a result of (6) and the fact that f(x) is concave decreasing,
or of (6) and (6a) and the concavity of f(x).

Remark. In [6 Th3] G. H. Toader proved the following:
Let the vectors 0 <x, 0 <z be given, and let 0 < ¥y be increasing, then

k k
z 2 k=1,....n
i=l il

implies

forO<p<yq.
It is easy to see that Theorem 2 is an extension of this theorem. We get
Toader’s theorem from Theorem 2 by the substitution x{ = g, vi=b, z

where f(x)=x"'1, 0<plg< 1.

= W;

THEOREM 3. Let f(x) be a concave function for x > 0 and let the vectors
0<x,0<d,0<yand0<w satisfy (4) and

k k
8) Ew,-x,-ZZWidw k=1, n-1
i=1 i=|

if (dilyy, dolyy, ..., doJy,) is decreasing, then (5) is valid,
Proof. Setin Theorem 2 w; = w,y;, a; > x;/y;, b, —d/y;, i=1,... n.

Proof of Theorem 1. We consider a rearrangement of the vectors x, d, Y, w
denoted by x”, d*, y* and w”, such that for each vector, a component (i) before
the rearrangement, maintains its position, say component (j). The rearrangement
is such that {d; /y;,} is decreasing.

In fact with respect to (2) we shall have a rearrangement between the first m
components of the vectors and between the rest of the n-m components. Also,
such rearrangement keep condition (2), so we have

X1yl =d 1y i=1...m.
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Multiplication by w;y; and addition give
©) YwixizYwidl,  k=l..m

Also we have

therefore we get
(10) YwixisYwid;  j=m+lin.
Of course, we have
(1 z":wfxf =iw}kdf.
(10) and (11) give
iwfx??_iwfd?, k=m+1,...,n-1,

So, x*, d*, y* and w* satisfy the conditions of Theorem 3, therefore we have

n ' n
YWy f i 1y < Yy (1Y),
j=l j=1
which is with respect to our kin'd- of rearrangement the same as (5): This con-

cludes the proof of Theorem 1.
It is easy to realize by both proofs of Theorem 1 and Theorem 2 that we get

the following result:
THEOREM 4. Let f(x)€ C’ be a concave decreasing function and let the
vectors 0<x,0<y,0<dand0<w satisfy:

n n

(12) ¥ wixi 2 Y wid;.
i=l i=l

If (2) is valid, then

k k
(13) 2w,-y,-f(x,-/y,-)§Zwiy,-f(di/y,-), Kzl et

i=l i=l

COROLLARY 1. Let f(x) be a concave decreasing function and let x > 0,

ws N AN s Y cntichi (D) amd (A4V TE s 3o Aornvancinn
LR I IR L A L R e A L L O R T B L B L Y]

J

thon
aen
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LT k '
ZW,-y,-f(x,-/y,-)SEw,-y,-f(d,-/y,-), k=1,..,n.
i=I i=l -
Proof of Corollary 1. 1t is easy to verify that if w > 0 is decreasing and
k k
YxzYd, k=1,..n,
= S
Then , o

k k
Ewixizzwidi’ k=1,...,n
i=| i=l

(see also [4], proof of 16.A.2a,

age 405). H i isfi
lary follows from Theoremn 4. pags ). Hence (12) is satisfied and the Corol-

DE =
FINITION. For an X = (x|, ..., Xn), X1, ..., X, real numbers, let <. <

< x(n) denote the components of X in in i
. creasing order,
denote the decreasing rearrangement of (x, g) and let (x(1), ..., x(n))
2ty e

COROL/LARY 2. Let 0< f(x)eC’ bea concave decreasing function, and let
0<g(v)eC’ bea decreasing function. Let

D, x(m)), O, o ym), (L), ..., d(n)

Z the increasing rearrangement of x>0,y>0,d>0 respectively
t y.

(1) ix,-zzk:di

and
(14) X(i)/y(i)Zd(i)/y(i)Zd(}')/y(j)?-X(j)/y(i),
. i=1L..,m, J=m+l,... n

en

(15) E;yfg@,-)f (130 € PyDROOI O/ ye) < Y y0s6EN @i iy
1= i=| l‘=| k)
and

X k
;y(i)g(y(i))f(x(i)/ YOS YO @Oy6), k=1, i,

i=1

Proof of Corollary 2. Let us define

(16) Glx y) = yg(0)f(x/y).
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It is easy to see that 0G/dx is increasing in y. Hence it is a L-superadditive
function and therefore [4, p. 156] satisfies

(17 N Gy < Y Glx(@), i)

i=1 i=l
(17) is the left side inequality in (15). The right side inequality follows from
Corollary | as (g(_v(l)), ...,g(y(n))) is decreasing.

2. By very similar considerations as in the proof of theorem A in [1] we get
the following additional results

THEOREM 5. Let 0< f(x)€C’ be a concave decreasing function and let
S(x)e C” be a concave increasing function. Let the vectors x > 0,y > 0 and
d > 0, satisfy (1) and (14), then

(18) is()’;f(»\fz /y:))< ZS(y(i)f(x(i)/y(i))) < 25 (O d@/y@)))
i=I i=l =l

and
k k
(19) N S (Y@ @y S DS (YO @DIYEN). k=Ln.
i=l i=l
Examples. Lety >0 be a given vector satisfying
(20) <d,  Yy=1
i=l

suppose that the set A of vectors x > 0 satisfying

n

@1 wyzd, Y x=1

i=1
then, there is a vector 0 <d =(d,. ..., d,) in A such that
(22) di=d, i=1,...,m,
(23) di=ky(i), i=m+1,...,n,

when m and k satisfy

i=l

(24) d/v(im)>(l -md)/(l = Zy(f)]: k=d/yim+1)

and for this d, Corollary 2 and Theorem 5 hold.
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In [2, Theorem 8] it was proved that such d cxists and it was proved that

n b
DAy Y A Py, g =1 Upairg -1,
i=1

i=]

This inequality may be considered as special case of corollary 2 for gy =1,
Flxy=x1.

From Corollary 2 fory, x, d, satisfying (20)~(24) we get the following ine-
quality

D vicos((mx) M(Ly;)) < Y M) cos (e (Ly())) <
i=]

i=}

SZ)’(i)cos((nd)/(Ly(i)))+( 2 y(i)]cos(n(l—md)/L[ i 'y;]]

=l i=m+l i=m+l

when L is large enough so that

0<(me)(Ly;), (i) I(Ly(i)), (rd(i))(Ly(i) < 1/2,

i=1, .., n
For M large enough so that

M = (x(i)/ y(i))?, M—(xi/y,.)z, M—(d,/y(i))z 20 i=1,...n, r>1,

we get

n n
2D = <y VD My -2y ) <
i=|

i=l

=l

m ' . (1/r=1) ‘
SEy(’-)(l/l'~l)(My(i)"—d’)l/"+[ 2 y(,)] (M(V(l))r—(l—md)')”’ -

i=m+l

3. As we saw in Chapters 1 and 2 the function fx)=x"7, p>1 for which
y,-f(x,-/y,-):y;/"x,.””, leads to Holder’s type inequalities may be extended in

many cases by replacing it with a concave function. Here we show additional

examples of results that may be extended to general concave (or convex func-
tion).

In [2, Theorem 5] it was proved that if x is an increasing vector and y > 0 is
a decreasing vector and :

i=l i=l
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then X 2,,: y
Waxlle < (1/m)a Y 517,
y xS

(26) 2,: A

Using the proof of Theorem A, (26) may be extended as follows

f)y,-ﬂx,-/..v,-)s Y Un)f (nxy),

i= sl

[ i i i ¢ .‘ a decreasing
i \ d 1S an Incre Smg nd y > 0 1
S a concave functl()n ana x a a a
Where f 1 S

atisfying (25). . .
vectoirf (3 "lz,heorem 1] the following was proven:

> 0 and b 2 0 be given increasing vectors. Among all increasing vectors
Leta 2 s
d > 0 which satisfy

n
] ini “a;)? is attained
' j t for which the minimum of ) d'(a;)* isa
there exists a unique vector t fi ,§=|:
atd = t. This t satisfies
ti/a,-St,-H/a,-H, i=1,...,n—1
and if

k k
tk /ak StkH /akH, then 2[,— = Zb, .

i=1 i=l

This theorem is extended if we recognize that
" n n .
Ed’.—la‘? = Z:ci,-(a,-/di)2 = zd.'f (a;/d;),
=1 i=1 =l

hen we replace f(x)= x% by any convex function, the proof is the same as in
W

3, Theorem 1}. . . N

[ Here is another example for a possible extension from f(x)=x!"" to a
eneral concave function. The following was proved in 5, Theorem 2]:
guppose thata, b, ¢, x;, y;20,i=1, ..., n. Let p and q satisfy

]/p+]/q=], p>1.
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Ti
Then for

4= (a/b)’//”y,-,

n n
b+(‘2x}.”py:“f b+.:-Ez:"J"‘yﬂ.m-‘|
i=1 < A

n tp~ = i Hp
a+(:2x,- a+c2z,-
Sl i=|

equality holds if and onlyifz,=x,i=1, ... n.

By replacing f(x)=x!/p
lowing generalization:
Suppose that f(xX)>0 and concave, a, b, ¢, x
2 =yi/(g"(b/a)), where g
then

with a positive concave function we get the fol-
b y’ > 0, [ = ], very N

XY is the inverse function to g(x)=xf(1/x),

n n
b+cY yf(x: /) b+eY vif @ ly;)
=1

i=l
n
a+ L’Ex,-
=l

a+cizi
fl === f =

. n n
ag”'(bla)+c Yy, ag™'(b/a)+c Yy,
=1

i=]
If f(x) is strictly concave then equality holds if and only
We get this inequality by a straight forward use of the property of concave func-

tion. For instance, if Fx)=xIn(1/x), 0<x< 1, then g(x) = In(x) and glx)y=ex - |
and so we get the following inequality:

l_.fx,'=Z,',l‘=l, P (N

b+cY xIn(y;/x))

i=l

<
n 1 n =)
[a+c2x,~] In(ae(b/")+cz_v,- —ln(aﬂ'zx,-]
i=1 i=1 i=]

bted zln(y /x,)
< i=l

. n n n I
[a + cz Z J[ln(ae(b/”) + cZyiJ— ln(a +cZz,- H
i= i=1 par
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