REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

 Tome 28, N^{o} 1, 1999, pp. 73-77
SET-VALUED SOLUTIONS FOR AN EQUATION OF JENSEN TYPE

DORIAN POPA

1. INTRODUCTION

Let X be a vector space. We denote by $\mathscr{P}_{0}(X)$ the collection of all nonempty subsets of X. For $A, B \in \mathscr{P}_{0}(X)$ and $\lambda \in \mathbb{R}$ we define the sets $A+B$ and λA by

$$
\begin{align*}
& A+B=\{x \mid x \in X, x=a+b, a \in A, b \in B\} \tag{1}\\
& \lambda A=\{x \mid x \in X, x=\lambda a, a \in A\} .
\end{align*}
$$

The following properties ([4]) will be often used in the sequel. For every A, $B \in \mathscr{P}_{0}(X)$ and every $\lambda, \mu \in \mathbb{R}$ we have:

$$
\begin{align*}
& \lambda(A+B)=\lambda A+\lambda B \tag{2}\\
& (\lambda+\mu) A \subseteq \lambda A+\mu A .
\end{align*}
$$

If A is a convex set and $\lambda \mu \geq 0$ then

$$
\begin{equation*}
(\lambda+\mu) A=\lambda A+\mu A . \tag{3}
\end{equation*}
$$

A set $K \subseteq X$ is said to be a convex cone if $K+K \subseteq K$ and $\lambda K \subseteq K$ for all $\lambda>0$. If the zero vector from X, denoted by 0_{X}, belongs to K we say that K is a cone with zero in X.

Let Y be a topological vector space satisfying the T_{0} separation axiom (in this paper we suppose that all topological vector spaces satisfy this axiom). We denote by $C(Y)$ and $C C(Y)$ the families of all compact, respectively of all compact convex sets of $\mathscr{F}_{0}(Y)$. For a set $A \subseteq Y$ the closure of A will be denoted by clA.

Let p be a real number, $0<p<1, X, Y$ be real vector spaces and K a convex cone in X. In this paper we are looking for solutions $F: K \rightarrow \mathscr{Y}_{0}(Y)$ of the equation

$$
\begin{equation*}
F((1-p) x+p y)=(1-p) F(x)+p F(y) . \tag{4}
\end{equation*}
$$

1991 AMS Subject Clasification: 47 H 04.

For $p=\frac{1}{2}$ the equation (4) becomes Jensen equation. It is best known that real valued functions that satisfy Jensen equation are of the form $f=a+k$, where a is an additive function and k is a real number ([2]). Z. Fifer [1] prove that an analogous representation holds for set-valued functions when $K=[0,+\infty)$ and Y is a real Banach space. K. Nikodem ([3], [4]) give a characterization of the solutions of Jensen equation for set-valued functions with compact convex values in a real topological vector space. In this paper we prove that an analogous characterization holds for the equation (4).

2. CHARACTERIZATION FOR SET-VALUED SOLUTIONS OF EQUATION (4)

We start by proving an auxiliary lemma.

Lemma 2.1. Let X, Y be real vector spaces and K a convex cone with zero in X. If the set-valued function $F: K \rightarrow \mathscr{P}_{0}(Y)$ satisfies the equation (4) then

$$
\begin{equation*}
F(x+y)+F\left(0_{X}\right)=F(x)+F(y) \tag{5}
\end{equation*}
$$

for every $x, y \in K$.
Proof. For $x=y=0_{X}$ in (4) we have

$$
\begin{equation*}
F\left(0_{X}\right)=(1-p) F\left(0_{X}\right)+p F\left(0_{X}\right), \tag{6}
\end{equation*}
$$

and for $x=0_{X}$, respectively $y=0_{X}$ in (4) we have

$$
\begin{array}{ll}
F((1-p) x)=(1-p) F(x)+p F\left(0_{X}\right), & x \in K \\
F(p y)=(1-p) F\left(0_{X}\right)+p F(y), & y \in K . \tag{7}
\end{array}
$$

Now let $u, v \in K$. We have from (4)

$$
\begin{equation*}
F(u+v)=F\left((1-p) \frac{u}{1-p}+p \frac{v}{p}\right)=(1-p) F\left(\frac{u}{1-p}\right)+p F\left(\frac{v}{p}\right) \tag{8}
\end{equation*}
$$

and taking account of the relations (6) and (8) we have

$$
F(u+v)+F\left(0_{X}\right)=(1-p) F\left(\frac{u}{1-p}\right)+p F\left(0_{X}\right)+p F\left(\frac{v}{p}\right)+(1-p) F\left(0_{X}\right)
$$

and using the relations (7) it results

$$
F(u+v)+F\left(0_{X}\right)=F(u)+F(v)
$$

and the lemma is proved.
For the proofs of the theorems that follows we will use some results concerning the convergence of sequences of subsets of a topological vector space.

Let Y be a real topological vector space. We denote by $A_{n} \rightarrow A$ the convergence of a sequence of sets in $\mathscr{B}_{0}(Y)$ endowed with the Hausdorff topology.

LEmMA 2.2. ([4]) Let Y be a real topological vector space, $\left(A_{n}\right)_{n \geq 1}$, $\left(B_{n}\right)_{n \geq 1}$ two sequences from $\mathscr{P}_{0}(Y)$ and $A \in \mathscr{P}_{0}(Y)$ a bounded set.

1. If $\left(A_{n}\right)_{n \geq 1}$ is a decreasing sequence of closed sets and $\left(B_{n}\right)_{n \geq 1}$ is a decreasing sequence of compact sets, then

$$
\bigcap_{n \geq 1}\left(A_{n}+B_{n}\right)=\bigcap_{n \geq 1} A_{n}+\bigcap_{n \geq 1} B_{n}
$$

2. If $\left(A_{n}\right)_{n \geq 1}$ is a decreasing sequence of compact sets, then $A_{n} \rightarrow \bigcap_{n \geq 1} A_{n}$
3. If $\left(A_{n}\right)_{n \geq 1}$ is an increasing sequence of subsets of a compact set, then $A_{n} \rightarrow \mathrm{cl} \bigcup_{n \geq 1} A_{n}$.
4. If $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then $A_{n}+B_{n} \rightarrow A+B$.
5. If $A_{n} \rightarrow A$ and $B_{n} \rightarrow B$, then $\mathrm{cl} \mid=\mathrm{cl} B$.
6. The set-valued function $G: \mathbb{R} \rightarrow \dot{\mathscr{Y}}_{0}(Y), G(t)=t A, t \in \mathbb{R}$, is continuous on \mathbb{R}.

THEOREM 2.1. Let X be a real vector space, Y a real topological vector space and K a cone with zero in X. If an set-valued function $F: K \rightarrow C C(Y)$ satisfies the equation (4) then there exists an additive set-valued function $A: K \rightarrow$ $\rightarrow C C(Y)$ and a set $B \in C C(Y)$ such that $F(x)=A(x)+B$ for every $x \in K$.

Proof. Assume that F satisfies the equation (4) and let $\alpha \in F\left(0_{X}\right)$. Then the set-valued function $G: K \rightarrow C C(Y), G(x)=F(x)-\alpha, x \in K$, satisfies the equation (4) and $0_{Y} \in G\left(0_{X}\right)$. Then in view of Lemma 2.1

$$
\begin{equation*}
G(x+y)+G\left(0_{X}\right)=G(x)+G(y) \tag{9}
\end{equation*}
$$

for all $x, y \in K$.
It can be easily proved by induction that we have

$$
G(n x)+(n-1) G\left(0_{X}\right)=n G(x)
$$

for all $x \in K$ and all $n \in \mathbb{N}$.
From (9) it results that

$$
\begin{equation*}
\frac{1}{2^{\prime \prime}} G\left(2^{\prime \prime} x\right)+\left(1-\frac{1}{2^{n}}\right) G\left(0_{x}\right)=G(x)^{\prime} \tag{10}
\end{equation*}
$$

for all $n \geq 0$ and all $x \in K$.
Now let $x \in K$ fixed. The sequence $\left(G_{n}(x)\right)_{n \geq 0}$ given by the relation

$$
G_{n}(x)=\frac{1}{2^{n}} G\left(2^{n} x\right), \quad n \geq 0
$$

is decreasing. Indeed, taking account that $0_{Y} \in G\left(0_{X}\right)$ it results that

$$
\begin{aligned}
G_{n+1}(x) & =\frac{1}{2^{n+1}} G\left(2^{n+1} x\right) \subseteq \frac{1}{2^{n+1}}\left(G\left(2^{n+1} x\right)+G\left(0_{X}\right)\right)= \\
& =\frac{1}{2^{n+1}}\left(\dot{G}\left(2 \cdot 2^{n} x\right)+G\left(0_{X}\right)\right)=\frac{1}{2^{n+1}} \cdot 2 G\left(2^{n} x\right)=\frac{1}{2^{n}} G\left(2^{n} x\right)=G_{n}(x)
\end{aligned}
$$

for all $n \geq 0$.
Let $A(x)=\bigcap_{n \geq 0} G_{n}(x)$. Since G has compact and convex values it results that $A(x) \in C C(Y)$. We prove that the set-valued function $A: K \rightarrow C C(Y)$ is additive. Let $x, y \in K$. We have:

$$
\begin{align*}
& G_{n}(x+y)+\frac{1}{2^{n}} G\left(0_{X}\right)=\frac{1}{2^{n}} G\left(2^{n}(x+y)\right)+\frac{1}{2^{n}} G\left(0_{X}\right)= \\
& \quad=\frac{1}{2^{n}}\left(G\left(2^{n} x+2^{n} y\right)+G\left(0_{X}\right)\right)=\frac{1}{2^{n}}\left(G\left(2^{n} x\right)+G\left(2^{n} y\right)\right)= \tag{11}\\
& \quad=\frac{1}{2^{\prime \prime}} G\left(2^{n} x\right)+\frac{1}{2^{n}} G\left(2^{n} y\right)=G_{n}(x)+G_{n}(y)
\end{align*}
$$

In view of Lemma 2.2 we have

$$
\begin{aligned}
& \frac{1}{2^{n}} G\left(0_{X}\right) \rightarrow\left\{0_{Y}\right\} \\
& G_{n}(x) \rightarrow A(x) \\
& G_{n}(y) \rightarrow A(y) \\
& G_{n}(x+y) \rightarrow A(x+y)
\end{aligned}
$$

By Lemma 2.2 and the relation (10) it follows that

$$
\operatorname{cl}\left(A(x+y)+\left\{0_{Y}\right\}\right)=\operatorname{cl}[A(x)+A(y)]
$$

and taking account that A has compact values it results that

$$
A(x+y)=A(x)+A(y)
$$

hence A is an additive set-valued function.
For the sequence $\left(\left(1-\frac{1}{2^{n}}\right) G\left(0_{X}\right)\right)_{n \geq 0}$ we have in view of Lemma 2.2

$$
\left(1-\frac{1}{2^{n}}\right) G\left(0_{X}\right) \rightarrow G\left(0_{X}\right)
$$

Now taking the limit in (10) we have

$$
\mathrm{cl}\left(A(x)+G\left(0_{X}\right)\right)=\operatorname{cl} G(x)
$$

and since the values of G and A are compact it follows that $G(x)=A(x)+G\left(0_{X}\right)$ $x \in K$, and denoting $B=G\left(0_{X}\right)+\alpha \in C C(Y)$ we obtain

$$
F(x)=A(x)+B, x \in K
$$

The converse of Theorem 2.1 holds for $p \in Q$.
Remark. Let X, Y be real vector spaces, $A: X \rightarrow \mathscr{P}_{0}(Y)$ an additive set-valued function with convex values and $B \subseteq Y$ a convex set. Then the set-valued function $F: X \rightarrow \mathscr{P}_{0}(Y), F(x)=A(x)+B$ for all $x \in X$, satisfies the equation (4) with $p \in Q$.

Proof. We have immediately $A(q x)=q A(x)$, for all $x \in X, q \in Q, q>0$, and

$$
\begin{aligned}
& F((1-p) x+p y)=A((1-p) x+p y)+B=A((1-p) x)+A(p y)+B= \\
& \quad=(1-p) A(x)+p A(y)+(1-p) B+p B=(1-p) F(x)+p F(y)
\end{aligned}
$$

for all $x, y \in K$.

REFERENCES

[1] Z. Fifer, Set-valued Jensen functional equation, Rev. Roumaine Math. Pures Appl., 31 (1986), 297-302.
[2] M. Kuczma, An introduction to the theory of functional equations and inequalities, Cauchy's equation and Jensen's inequality, PWN-Universytet Slaski, Warszawa-Krakow-Katowicc: 1985.
[3] K. Nikodem, On Jensen functional equation for set valued functions, Rad. Mat., 3 (1987), 23-33.
[4] K. Nikodem, K-convex and K-concave set valued functions, Zeszyty Naukowe Nr. 599, Lódz, 1989.
[5] H. H. Schaefer, Topological vector spaces, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
Received February 25, 1998
Technical University, Cluj-Napoca Str. C. Daicoviciu, nr. 15,

Romania

