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Abstract. In this paper there are investigated new approximation properties of a Bernstein
type operator, depending on two real parameters ¢ and o (0 < ¢ < of), introduced in 1969 by the first
author [19]. '

A basic result consists in finding the raximum value (2.3) of the mean square error (2.1)-(2.2)
of this operator. By using it, is constructed a best quadrature formula, which can be obtained also by
means of the polynomial S, /. defined at (3.5).

Lo the last part of the paper there are established quantitative estimations of approximation
in terms of first and second order moduli of smoothness.

L INTRODUCTION

L.1. It is known that polynomial approximation represents one of the most
beautiful and important part of the constructive theory of functions.

The Lagrange interpolating polynomials have a great practical interest in
numerical analysis and approximation theory. Unfortunately they do not always
provide uniform convergent sequences of approximation for any continuous
function on a compact interval [a, b] of the real axis, no matter how the nodes
are prescribed (see, e.g., E. W. Cheney [11]).

In 1905 E. Borel [9] proposed that for the approximation of a function
f€Cl0,1] to construct a polynomial having an expression similar with the
Lagrange interpolating polynomial, corresponding to m + 1 nodes from [0, 1].
Namely, in the case of the equally spaced nodes, it has to be of the form

m

(@ )= Y g ite) £ ().
k=0

m
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M
where g, , are appropriate polynomials of degree m, which permit that Q,, f to

achieve a prescribed accuracy in the process of approximation of the function f
Following the Borel ideas, S. N. Bernstein [7] has the merit to select, in
1912, for g,, , the basic polynomials

(1. prrv.k(x)z(r:)xk(l~x)ln—k'

It should be mentioned that he was inspired by, the binomial probability
distribution and that he has investigated the convergence of the polynomials

m k
(12 (8 )00 =By (703x)= Yo a1 (£
by using the weak Bernoulli law of large numbers.

1.2. In 1969 the first author has introduced in [19] the following
generalization of the Bernstein polynomials . |

m+d

(1.3) f’,fl("d) (f; )= (P’Lc.d)f)(x) e ipm.k(x)f( ktc )’
k=0

where ¢ and d are real parameters, independently of m, satisfying the relations:
0<c<d.

This polynomial is characterized by the fact that it uses equally spaced

: _ 1 ; o _ ¢
nodes, with the step h= T d and the starting point x, = i If O<c#d

then it does not coincide at any node with the function Siife=0and d # ¢ then it

coincides with fat xo =0, while if 0 < ¢ = d then it coincides with f at I

For ¢ = d = 0 we obtain the classical Bernstein polynomial B,, f, which
coincides with fat x, =0 and x,, =1.

In the monograph of F. Altomare and M. Campiti [3] the operator defined
at (1.3) was called: ,,the operator of Bernstein-Stancu” (pag. 117 and 220).

In the paper [19] of the author there was established the followiﬂg
representation of (1.3) in terms of finite differences

(1.4) (A1) =,§;[ ';’J( A f](mi d)xj :

m+d

as well as an expression by means of divided differences

(cd) 4 :m Ul ¢ ¢+l ctj. (x )’
(P”’ f)(x) Zom I:m+a"m+d""’m+d’_f m+d]’

J=
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where ml/l=m(m—1)...(m-j+1), the brackets representing the symbol of
divided differences.

L3. For the monomials ¢;,e, and ey, Where e (t)=1/(j20), where
te [0, 1], we have

Pty Ly (f’,f,("d)el )(x) =x +<odx
_ m+d
(1.5)

(e,d) R 1 _ . 3
(A 62)(1)——)( +m[mx(l X) 4+ (¢ ~dx)(2mx +dx +¢)].

Because for these , test functions” we have

lim BV, e, (=0,1,2),

m—ca 1

uniformly on the interval [0, 1], accordin g to the Bohman-Korovkin convergence
criterion there was possible to state the following result: if fe C[0,1] then the

sequence of polynomials (E,(,C'd) f ) converges uniformly to the function f on the

interval [0, 1].

1.4. We mention also that for the eigenvalues of the operator P we
have obtained the following expressions

A (P = el (-5 a)
N (m+d) m ml m \m+d]”’

where 7 = 0, 1,..., m. One can see that these quantities do not depend on the
value of the parameter c.

In the case of Bernstein operator (¢ = d = 0) the point spectrum was first
found in [10]. In [6] it has been given a characterization of B, by using the

eigenvalue A, , =\, ,(B,).
Because in our case
-2
¢,d) 1 d |
}‘m.2 (f)lil ):(l_z)(l'}"Z) SA’IH,z(Bm)Zl_E’
by using a theorem given in [6], we conclude that the best result can be achieved
when ¢ = d =0, that is in the case of Bernstein operator B,, . ;

1.5. The Bleimann, Butzer, Hahn (BBH) rational operator [8], given by

: ‘ m ’m ‘
(L"'-’)(-”:Z(kj(l T f(m +/;—k) e

k=0
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can be obtained from the operator P,,(,U‘” (see [15], [1], (5] and |2]) using the
rational transformation t=1—f— (x=20). By means of this transformation the
X
. d .
operator (1.3) leads to a BBH type operator having the nodes: x{% =(k +¢)/

/(m +d-k—c). where 0<c<d.If wechoose c=aandd=a+] (a>0). then

we obtain a BBH type operator investigated recently by O. Agratini [5):
Lo m k k+a )
(o) = X .
(Lo f)(x)—Z[k ](1”)", f(m+l—k

k=0
1.6. Concerning the remainder of the approximation formula
(1.6) FO= (P oo+ (R 0o,

in the paper [19] there was established the following representation, in terms of
first and second order divided differences:

(¢,d) _dx—c\ kte. }_
(Rm f)(x)“m/;)pm,k(x)[x' m+d'f

—1 .
mid-0)Ny 0kt ktctl ]
ey P BT ST |

In the case ¢ = d = 0, when (1.3) becomes the Bernstein polynomial B, f ,
it reduces’to an expression obtained already in 1964 by the first author [18]:

24

x—1 k k+1.
(Rmf)(x)ZX(tn )];)pm_l_k(/\')[.’(,*‘ ’f:l

m’ m

In a recent paper O. Agratini [4] studied the monotonicity properties of the
sequence of polynomials (1.3). o . ‘

In order to investigate the simultaneous approximation properties of the
operator (1.3) there was established in [20] the following formula

m) " . m-r ) ' . j+c
(Pf)" ) =m! lzp'"-r-/()‘)[A_L_f](m+d)‘

j=0 m+d

where 0<r<m. By using it, there was proved the following result: if
fe C0, 1] then we have

) (r)
Pn(: .d)f) u f<r) s

lim (
T m—3o0

uniformly on the interval [0, 1].
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2. THE MEAN SQUARE ERROR OF THE OPERATOR Pley

2.1. Since the rate of convergence of the operators (1.3) is characterized by
the value of the mean square error - ,

(2.1) ¢k (x;c,d) = PLd (-7 x),

we next make an examination of it.
It is obvious that we can write

d .
eh(x;c,d)=pPlD (12 x) - 2x pled (rx)+x?,

m

According to (1.5) we have

22) &2 (xic,dy = (L= x) + (dx = ¢)?
M (m+d)>

The variance of the operator P{““ is defined by

; R 12

> g 2
n(eed) =P (e =Rl e, ) (0= (Pl "’ez)(‘)‘[(”“"”ﬁ) o

m

[t we take into consideration the identities (1.5) we obtain

mx(l—x)
(m+d)?

and one observes that it does not depend on the parameter ¢

Vy (55e,d) =

2.2.In order to see how well a function f € C[0,1] can be approximated by

the polynomial (1.3), we need to find the maximum value of (2.2) on the interval
[0, 1].

We shall now present a basic result of this paper.

THEOREM 2.1. If m > d> » then the maximum value on [0, 1] of the mean
square error (2.2) can be represented under the form

(2.3) M,(,:“‘I) - nLl =] gy (d —2(-33 .
d(m+d)* m—d?

Proof: 1t is known that if we have a polynomial of second degree, with real
coefficients: Py(x)=Ax?+Bx+C and A < 0, then the maximum value of this
B
24
have A=d*>-m, B=m-2cd, C=¢>. Consequently, we find that this
maximum value is given by

polynomial is given by P, (~ ): —ﬁ, where A=B-4AC. In our case we
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(d) . _m*~dcd-cymn g (d - 2¢)?
M, = o 1 — |
dm+d)2(m-d?)  d(m+d)? m—d?

Now it is clear that we can formulate an important consequence of this
theorem.

COROLLARY 2.1. The least maximum value (2.2) is attained for d = 2 ¢
(¢20) and it is

V=M = L )
()= My, 4(m+2c)> " 4m n()

In this case we have the approximating polynomials

2.4) (B2 )0 =(8507 )00 = 3 p s o)f () @20,
k=0

which are important in numerical integration of functions.

3.A BEST QUADRATURE FORMULA

3.1. By using the approximation formula (1.6) we can obtain the following
numerical quadrature procedure

m+d

1 m
G3.1) [room=la Y plkre), o)
0 k=0

because

' MLtk + ODm—k+1) |
-([p'"'k(x)dx=(kJ [(m+2) Tmel

For the monomials ¢, € € the remainder of (3.1) takes the values

cd c, ' —
r,f, ()(80)=0' ":En d)(‘?l)z?.(dTEZ)’

(c,d) m+6¢ (m+c)—2d(2m +d)
Fn (62)=—- =
6(m+d)?

Itis easy to see that if we choose o = 2¢ then the degree of exactness of the

corresponding quadrature formula is N = 1, although the operator P29 o
not reproduce the linear functions.
This can be written under the following form
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H

1
(3.2) { foode=—L_ %" ( ke )+ K ()f"(8),

m C
k=0

where 0 <& <1 and
m -2¢(m+c) _Q2c-1Dm +2¢2

K, ()= iv
m () 12(m + 2(‘)2 12(m + 20)2

In the special case ¢ = 0 formula (3.2) will be

1 m
Lyl L2 T
(33) (f)f(x)dx-mﬂé)f(m) /@)
and it corresponds to the approximation of the function S/ by the Bernstein
polynomial B, f.

3.2. One observes that the least value of K, (c) is .obtained for (.'=%.
when formula (3.2) becomes

I Lid
: - ! 2k +1 ) 1 e
3. =
(3.4) {f(x)dx mHg;)f(Zm+2 o )
which represent the well known composite midpoint or rectangular quadrature
formula.
Therefore by using the Bernstein type polynomial

l = © m
(3.5) - [ P(z")f J(x)=(Smf )= Py (0) f (22,:%12) :
k=0

we obtain the best quadrature formula having the form (3.1), namely formula
(3.4).
In this case the least maximum value of the mean square error is

)
"\27 4m+1)?

4. QUANTITATIVE ESTIMATIONS OF APPROXIMATION

4.1. Now we establish some estimates of the order of approximation of a
function fe C[0, 1] by means of the polynomials (1.3).

Since the constants are reproduced by the operator defined at (1.3),
according to a known result (see, e.g., [17] or [12]), we can write
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Jreo=(B oo <[rev2p - ) jan(fi),

where w; represents the first order modulus of continuity and y > 0.
If we take into account (2.1) and (2.2), we obtain

(4.1) flx)- ( Bl s )

m(’( ¢ (/):](J), (f Y).

Now we can state the following important result.

THEOREM 4.1. If m > d? | then in the Sup norm we can write the inequality

_ pled (d=2¢c)?
I R 3 e P o)

Proof. The idea here is to take into consideration the fact that the maximum
value of (2.2) is given at (2.3) and then to choose y = l/\/m +d .

In the special case of the operator S{ | delined at (2.4), we obtain the
inequality

[ - st

I_[ 4(m+2c)J (fﬁ]

It can be written also under the following form

(4.3) |- S‘,‘,Vfﬂ—[4 WJ [fr‘lmJ

For ¢ = 0 it reduces to the inequality of Popoviciu-Lorentz ([161. [14]):

(4.4) £ =B t]= 30, [ fioke ]

In the case of the polynomial St . defined at (3.5), we find the following
inequality

| _Sn SC” B l
17 -S,.f] ,w,[.f m)

!
where C,, :Z(S_ m{H)A

It we replace in (4.1) y =« d. (o, 8€ R, ),-we obtain

4-“'” pledy (\)‘ I+(ou3) el (xic ) Jm, (f; ad).
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In the case ¢ = d = 0, by selecting = % we get

,f(r) mf (t)’ (]+_)O‘)l[f o ‘(;—X]-

This inequality permits to see that, indeed, the Bernstein polynomials are
interpolatory inx =0 and x = 1.

Because on [0, 1] we have x(1 - x) <Z by choosing o = 2, we arrive at the
classical inequality (4.4).

4.2. Now let us use the second order modulus of smoothness

Oy (f3 V) =sup{|f(x —h) -2 f(x) + f(x + B)|: x, x 2 hea, bl,0<h<vy},

where 0 S'YS%(b—a).

By using both moduli ®; and w, one can find estimates of the approxi-

mation of the function f by means of the operator (1.3).
For this purpose we can use an inequality of H. H. Gonska and R. K. Kova-

cheva [13], included in

LEMMA 4.1. If K = {a. b] is a compact interval of the real axis and
K'={d’,b') is a subinterval of it, and if we assume that L : C(K) — B(K') is a

positive operator, such that L(1;x)=1 and 0<y< %(b ~a), then we have
£ - L(f);x)| 2|L<t x| @y (f:9) +
3,3 oy 3 2., ;
+[§ +2—Y|L([ =005 .X)I “f‘ZFL ((t —)C) X ):,(,Uz(f, Y) 5
If we take into account the relations (1.5) and (2.2) we obtain the inequality

[reo-(piy f)w]<2 2' ' o (f3)+

{Li.k““h%ez (x;c, d)}m(f Y).

This implies the following

por s o
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3 3d 3m. g (d520)% |k _
+{2 i 28(m +d) * 4m +d)2 8?2 l:] +—m}}w2(f, Y).
If we choose y = 1/\/m +d , then we get

st

. ]
Nm+d l[f,v‘m+d)+
3. .3d 3m (d~2c)? el
+{2+2Jm+4<m+d)[]+ m—d? J}‘”Z(f’ m+d]' :

P(c. 2¢)

m

For the operator S = we obtain

4c

—¢le) [ ol T . 1
|-t fﬂsm")'(f’mJ*
3l ¢ m Ll
M [2 +\/m+2c : 4(m+2C)Jw2(f' Vm+2¢ )

In the case ¢ = 0 we get the estimation: ” f=B,f ” < 26)'2 Ui allp
i Jm

But if we replace in (4.5) y=0ad (o,8e R,), inthecase ¢ = d = 0, we find

I-
|f(x)—(B,,,f)(X)lS%(ZvLaly]wz fia )x(m x) |

Selecting the parameter such that we have o max Jx(I=x)=1 on [0, 1},
we find that we have to take o = 2 and we arrive at the important inequality

I - Bufl< o, (f; ﬁ)

Where C = %g- =1.6875.

This inequality was first given in 1994 in the work [13].
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