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ON THE APPROXIMATE SOLUTION OF THE EXCLUSIVE
CASE OF SINGULAR INTEGRAL EQUATIONS WITH
COMPLEX CONJUGATION VALUES ON THE UNKNOWN
FUNCTION ON THE CLOSED LIAPUNOV CONTOUR

V. ZOLOTAREVSCHI and I. SPINEI

1. The formulation of the problem. Let T be a closed Liapunov curve, that
limits the simple connected D* on the complex. plane. Let us consider that the
peint z = 0 belongs to D*.

We examine the singular integral equation (SIE) with conjugation on the
contour I

(RO =)c (D o) +d, (f)%}[%drfcé (t)fp(t) +d; (’);tl—[}[%df i
)

+2+u_fh1 (t,7) (li(r) dr +2Lm‘{|:h' (t,o(t)dr=f(t), reT,
r

where ¢, (1), d, (1), h (1,7), k=1,2 and f(t) are given function on I" and ()
is unknown function.

Let us suppose, that equation (1) is one of non elliptic type, id est the
function

def - .
AW = o)+ d0)[E 1O ~d (0] [e0+dy )] G0 - dy ()]

has zeroes of integer order on I,
The last condition is equivalent to that
det [C(f) = D(n] has zeroes of integer order on I, where

o) (1) d, (1) —dz(t):]
= cptoe D(r) = lorb e pe 2l
“n [Eg(t)amJ ) [dzm ~T(1)

The publications [1-5] are dedicated to the approximate solution of
equation (1) either in elliptic and non elliptic cases. In all these works the
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theoretical foundation of approximate methods was obtained for the case, when
equations are given on the unit circle [y of complex plane. But the case of more
g.eneral contours such as Liapunov contour, wasn't studied in the scientific
hteratu.re. This work has the PUrpose to cover this lack. There are elaborated and
theoretically founded collocation and quadrature methods for SIE of nonelliptic

type.'given on an arbitrary Liapunov contour T and examined in Holder func-
tions spaces.

.2. The computing schemes of the méthods. Let us iﬁtroduce new unknown
functions @ (1) =0(t) and P2(1)=Q(r) . Then, from the representation

SO() = ~(STN1) + (1)
and

-
!

Tmi ht, ) () dr ==L ]f h(t, () (Y(0)) dr,

where S is the singular operator on I" »and 7T is the singular integral operator
08 (o,s) .
do

with the kémel

» O=arg(t-1), T=10) (o€ [0, 1), [ is length of ) is

the contour I” equation, o is the arch’s absciss, the equation (1) is reduced to the
equivalent SIE system without conjugation

(M® =) C(1) D(r) + D (1)L f L) 4oy
(2) fi] " T~1t
+2¢me0$) O(t)dr= F(t), teT,
r

where C(r) and D(t) are determined above, H(t, T) is the matrixﬁfullctidn of
second order, F (1) and ®(1) are the vector-functions of the second order-

hy(6,7) ~hy (¢, T)(7') 20
L T) =hy(1,7)(7) Y2y (52

—_—
*

h(6,T) ~hy (1, t)(v) + 2d, (r)gg-

Q1) ={0,(), 0,0}, F(r)= {ro fm).
In the system (2) the vector-function O(1)={o, (1), ®2()} is unknown.

According to [1, p. aniti 2 _00(o,s) )
& 1o [1. p. 38]. the function n(o,s)= 55 s given in the form
K(o,s)

lo—s* Ososside (-, M is the exponent of contour's T

no,s)=
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smoothness, and K(o, s) satisfies the Holder condition for both variables with

exponent .
The equation (1) and the system (2) are equivalent in the sense (see [1]D

that for every solution @(t) of equation (1) there is a corresponding solution
CI>={(p(t), @(r)} ~of the system (2) expressed by the function ¢(t), and
conversely, if (D(-t)={(p,(t),(p2(t)} is the solution of system (2), then the
corresponding solution of equation (1) can be found by the formula:

3) 9() =3[0, +5,()].

Further we consider, that functions () and dy(r) (k= 1, 2) belong to the
space H{Y(T), h (1, 1)e H(T') by both variables, f(rye HEI(IY, where
g is determined below. Moreover, we consider the following representation to be
true:

@ C(ty+D() =A@)=A()D_(H)R_(t),

C)=D(t) = B(t) = B{(1)D, ()R (),

where det A, (1) det B(1y#0, te T, R, (r) are polynomial matrix-functions by
r*' with constant and nonzero determinants, and the matrix-functions D, (1)

and D_(¢) have the following form:
2

D, ()= {H(f—ﬁk)v‘/'éi,k] )
k=|

Jok=l

(4} 2
Hj
D_(,)z{ﬁ(%_aﬂ 5} s
Jok=1

k=1

where & is the Kroneker symbol, o, k=1,p, B k=1,5 are contour's I
points, p.{"') Zp.(zk) 20, k =f;, vfk’ ng"’ >0, k=1, are natural numbers.
Let us denote
D20 (2
(5) g =max (uf?, uf, vi?, vi2).

For such functions, as c(t) and di(r), & :1,_2 the equation (1) is
degenerated. Further we consider that left particular indexes of matrix-function
B,“ () A/ (1) are equal to zero and the equation (1) has the unique solution.

The approximate solution of the equation (1"_)' are found using the
approximate solutions of the system (2). The approximate solution of the system
(2) is seeking in the form
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(6) G, (1)= Z cpt*, L rely

k=-n

3 (D d B .
where ¢, :{cf,“, c,‘;’ } are unknown vectors of dimension 2. Then, according to

(3). the approximate solution of the equation (1) has the following form

hn
(7) : (P,,(f)=% ¥ (c'{”r" +Ek(2’r_k), teT.
k=-n
a) Collocation method, The approximate solution of the system SIE (2) is
seeking in the form (6), and the unknowns ¢k =—H are determined from
condition of turning into zero of the ‘error (MCD)(r)—f(t) in points 1€ I,
J=02n:

(M®)1;)~ f(t;,)=0, j=0,2n.

It is easy to check, that the Jast conditions turn to the following system of
linear algebraic equations (SLAE):

> A[Au)signk) +B('i,-)}s'iéf5'('—'k>]’f i
k=—n

(8)

+2ni‘f”“.f~f)f‘df = F(t;), j=0,2n;
i

here sign(k) = 1, for k > 0 and sign(k) = 0, k < 0.

b) Quadrature method. Taking into consideration that matrix-function
H(1, T) has an integrational singularity for r = 1, the quadrature method can not be
applied directly to the equation (2). Let us introduce a new system of SIE, closed
to the equation (2), with the regular kernel without singularities. So, the
quadrature method can be applied to the new équation. Let p'be an arb'i"tfa:ry
positive number, We’ll denote by n,(c. $) the function SRS

T

[
Ay,
g

[ n(o.s), When|0~s'2p

(9) i Mp(0.$) p™K(0,s5), when o —s|<p,

i UK £ 18 ;
and by H,(r, 1) the matrix-function that is obtained from. matrix-function H(, 1)
substituting th§: functions -gg'by function UNGAIE

Now let us examine the system ot SIE

n
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(M) =C 2+ EL [ XD g
r
(10)
+2LmJ.Hp(r,r) x(t)ydt=F(), teTl,
A :

and apply the quadrature method. According to this method, the approximate
solution of system of SIE (10) is seeking in the form (6), _and the unknowns ¢y,

k =-n,n are obtained from SLAE (8), where function, H(t, T) is substituted by

i i { = y k=— substituted
LT TNdAT, j=0,2n; k=-n,n are subs
H (1, 1), and integrals 2m,_l[Hp (#;.0 J |

by some quadrature formula. As a quadrature formula, we will chose the
following interpolation quadrature formula

l k :L k-1 d , k= _H ‘
(11) 5] g(r)d’c_zmlU,, [g(nt]t* " dt
-

-

Here U, is the interpolation operator by points 1, j=0,2n:

2n

(U,8)0 = glt,)(1),
r=0
(12) " 2n n | |
'— r v t ¥ o =
/,,(.r)zft—;') : H 5 _: = EAg)z . r=0,2n.
\: k=0k#r " k s=-n 3

Taking into consideration the formulas

0, whenr #-1,
1, whenr=-1,

£ =

27
T

and the definition (12), it is easy to show that the quadrature formula (11) turns

into following:
21 L E

: [ drz= (1 r.A(_’,’, k=-n,n.
(13) 2“"1T 0 dr=d,) 1 AL

So. the SLAE for quadrature method is the following:

3 [ €tk +sign(OD( ik +
k=-n

(14) . | ;

N H, 001, /\(_'L’]ock =f(t,). j=0.2n.

=)




102
V. Zolotarevschi and I. Spinei 6

THEORE .
O<(x<] ) M 1. Let Ck(t) and dk(f), k = ]’ 2 belong to space H((;]-H)(I‘)
— Ay g ’ - )
- (1, 1), k=1, 2, (e HET), the number g is determined by
nection (5) and representations (4) are true. If det A (0% 0, det By(1) # O
reT, th icular i - b qrens ! i
he left particulay indexes of the matrix-functions B{(r) A1) are equal

solutions ©,(8) from (7 ), con ]
s . ! verge in the space Hy(T). 0
solution @(t) of the equation (1) with the rate it ' < iy

N

(15) - |
fo=0.}y =0

where § = mj ]
In (0L, W), W is the exponent of the contour’s I° SMoothness

THEOR pdir )
Be (0;v) VEZ n?ilnéi-t a.lll conditions of theorem | be fulfilled and moreover.
N _“‘) The”, for Suﬂidently large values Qf n an(}

5 O p, t]le SLAE ]4

The a ] oluti
PProximate solutions ©,,,0(2) obtained by the formulq

B 1 n _,
.0 =3 Z (c,fff’t" +Ek(g’, k),

k=-n

conve, ] ]
T8¢ in space Hy(T') to the exqet solution (1) of the equation (1) so that

(16) lim lim lo—¢, ﬂﬁ =0.

fi—oa n—3()

The fo ing estimati,
following estimations for the convergence rate gre trye-

(17) ﬂcp~<p,,_,,ﬂ5 =o[f‘u—z_gj+oqm. ¥=min (u, | -p).

The proof of these the i
orems 4 . :
il 442-444) ang 3, Chapter 0 1S made according to results of [2] (Chapter

The proof of theorem |
‘ 0 - It easy t
method is equivalent to operatoria] eqt)llati(;; ek that SLAE ) of eolloegog

e
(U,,MU,,(I)" S)U, (AP + BQ+ KU,®, =y F
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examined as an equation in a limit-dimensional space U,[Hg(I'}]5, concerning
the unknown two-dimensional vector-function ®,(f); K is integrational operator

with kernel H(t, 7).
Do to the representations (4), the equation (18) is equivalent to the

operatorial equation (in the same space)

(19) u,{(Pc.+ocit)v +TV +K,|U,®, =U,F,

where matrix-functions  C,(t), C_(t) are the coefficients of left canonical
factorization of matrix-function B YOVAOE
BIl' (AN =C,(t)C_(1), teT,
V=PD_RI1+QD.,R.I, T=QC_P+PC;Q,

K =C{'B['K+C_OD_R_P+C;'PD,R,Q, F =C;'B/'F,

where P and Q are Riesz projectors P = %(1 +8), O9=I1-P.
Following [2, p. 442-443] let us introduce the space

Xy ={z(t)e [Hy(D)] 5 (voye [Hé‘f’(r)L(EZ)}.
The norm of this space is _
=l = S, sl
i=0

This space become a Banach space, Zc X, . It is easy to check, that
kerV= 0. That’s why the contraction \7=V/XV is one-to-one continuous
mapping Xy on Z. Let further E:X, —[Hg(I")], be the embedding operator.
Then, for the contraction M of the operator M on the space Xy we obtain
representation M =M, +Ty, where My =(PC_+QC'W, T, =(T + K, )E.

As the operator PC_+QC; :[Hg(I)], &> Z is continuously inversible,
then the operator M, : X, — Z is also continuously inversible and the operator

TO:XV—>[H§4+“]Z is continuously inversible. Let denote by U, the

contraction U, on Xy .
Repeating now the reasoning from {3, §10], we obtain that for sufficiently

large values of numbers n 2> n, the operator U,M,U, U, Xy = U,Z s

inversible, and moreover:
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lw,m,0,)7| =00

Then, due to the total continuity of Ty : X, —[H™(I)], . the operator

U,(My+T, )U,, :U,Xy = U,Z is also inversible for n > 1, (2 n;), and moreover

Fr

(20) v, (v, + 70,17 | = 001

Consequently, both operatorial equation (19) and equation (18) have
unique solutions. This is the proof of the uniqueness of the solution of SLAE (8).

Let us determine the estimation of the convergence (15) to approximate
solution of the exact solution of equation (1), In accordance with (20) and with
estimation.

;
e~ Uusly =0[ 185 )

that take place according to the chosen interpolation kernel [3, §6], it is easy to
obtain that

Inn
fo, -, =0 % |
Remains to use the formulas (3) and (7).
Theorem 1 is proved.
Theorem 2 is proved in accordance with results that are obtained while
proving the theorem 1, and that are used for the general theory of direct, but not
projection methods determined in [3, §1], and using the accuracy of quadrature

formula (11) obtained in [3, §8).
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