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MULTIDIMENSIONAL CROS SOVER
IN GENETIC ALGORITHMS

MÁRToN.ERNÖ BALÁZSI

.INTRODUCTION

Most of the genetic algorithms (GA's) used in practice work on linear
chromosomes (e.g, binary strings or sequences of some other types of symbols).
However, some results have been published revealing that for certain problems

, multidimensional encoding and crossover may give better results that the one
dimensional (linear) ones ill-t31. While some theoretical results have been ob-
tained, no clear criteria are known for deciding the suitable dimensionality of the
encoding to be,used for a give problem,
: : In this paper we consider a class of problems tor which we define a
multidimensional encoding and a corresponding genetic operator. We show that
tor a GA using this encoding and operator we can obtãin theoretical results
similar to (under certain conditions even' better that) those known for linear en-
.coding.

Finally we demonstrate these theoretical results using a set of test
examples. j, )l .

2, MUI,TIDIMENSIONAL ENCODING AND CROSSOVER

In this section we first define what we mean by a multidimensional (search)
problem. we then briefly present the classical (one dimensional) encoding used
in solving such problems using GA's, followed by our proposal for a multidi-
mensional encoding. Next we defìne a crossover operator on multidimensional
codes and prove a schema Theorem-like result for a GA using it. Finally we
show that for certain types of problems multidimensional encodirrg, and the de-
fìned crossover operator may give better results than the linear ones,

' Presently at Worcester Polytechnic lnsritLrte. Deparrment of Contputer Science, 100 Insti-
rure Rd., Worcesrer, MA 01609, USA.
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2. I. MUL'TIDIMENSIONAL PROBLEMS

Our definition of multidimensional problems is based on the lbllowing
definitioll of rr-ary relations:

DenNttto¡l 2.1 .1 , Let At, Az,...,A,,be sets. Att tt-an; relution p over these

sets is a sel

PCAlxArx...xAr.
In the followings we shall only consider relations defined over finite sets.

The set of all relations over the sets 41, A1..,., 4,, will be denoted by

R(Aþ A2,.... At).

Let us note here that an n.aty relation p over Ar A2,..,, A,, can be repre-

sented by an n-dimensional matrix M(p)=(m¡,.¡... .,¡.,) over {0, I } as follows:
l!;r'::

Intuitivel.v the draw.back of these approaches is that they don,t take intoconsideration the dimensionarity of the pråbt.,n, i,e. they donlt try ro preserve
sub-relations of same arity of the origina! relations Il l, t3i.

2.3. rr _DIMENSTONAL ENCODINC AND CROSSOVER

In this section we propose another approach to using GA,s for solving
rnultidimensionar search problems. simirar approaches havã been proposed ii
il l' [2], [3] and [7]. our approach is based on it 

" 
ur. of murtidimensionar matri-

ces for encoding and a crossover operator specific to this encoding, This wasfirst defined in I I ] and is similar ro rhe encoding used by argorithm Rr in [3].To make our discussion clear we first present our resurts for two dimen_
sional problems, the generarization to n:dimensionar ones being discnssed in a
separate subsection.

-l2 Mul tidimcnsi<tnal Crossovel. t'0()

Let, A¡'={a} . 0? ,, ..,
'', ,l:ii,:'

of' ) r"r' i.= I, n .Thqn

if ol; ,...,o!;)e p
il\i,..,i,

.,.i,.

DEFINITToN 2.,1 .2. Git,en t/re (finite) sels $ r, Az,. . ., A,, bv an y,dintensional

(searc'h) problem a.ttat:hed to.u predicttte P dif¡netl ovcr R = R (A t, A2,'.-, A,,) we

meon the problem of finding at't n-atj- relatiott p* e fr(A,, A?...., A,,) such that

P(p*) is true.

Our goal in the following is to study some aspects of using genetìc algo-

rithms for solving n-dimensional problems. To be able to do this we assume that

for every l-dimensional search problem considered there is a .fitness .fmtction

.f :rR-+ ,oß+ , which l'neasures the "quality" of any given relation. For our pur-

poses the nature of this f'unction is irrelevant. :

2,2, THE COMMON APPROACH

ln using GA's to solve problems of the above mentioned type the current

practice is to choose a (binary) coding for each of the dimensions of a relation

and concatenate them. One-point crossover of two relations then means choosing

a crossover point, cutting both of the codes in that point and exchanging their
"tails", producing two offsprings. Other, multi-point crossover operations, have

been also defined [4], [5 j, however none of them is able to plovide the type of
improvement we are looking for.

,'wo-dimcnsionar Encoding and one -point crossover
LetA = lar a2,.... a,,,) and B = {bt, b2,..., br) be finite sets, and let us

consider the two dimensìonar search probrem attachetr to a given predicate p
over R(4, .B). To solve this problem using a genetic algorithm ie have to choose
a representation for the relations in p. {e propose that the representation of a
relation p e R(4, B) be rhe corresponding M(p) matrix as defined in Subsection2.l.ln this case a two dimensional matrii representing a reration wiil be a chro_
mosome processed by the genetic argorithm. Let us now define a crossover op_
erator for a GA using the above considered enconding.

DEFINTTION 2.3.1. Let er gz e R(A, B) be tw,o relatiott ancl M(p1) aucl
M(Qù the correspottding chromosornes. Izr us further c'¡nsitlcr two positive i rt-
tegers k¡ and k2such that I < k1 < m antl I < kz< n.The two-clintensir¡,al cross-
over of the two chromosotnes u,sing crossover point (k1. k2) produc,es, rwo trcw,
chrotnosomes M, =(rnl..,) and Mz =(m?..¡) definect bv

m],¡
r,.., fori <ft¡ n j<krori>\nj2k2
4i.¡ fori <k¡ n j>kzeri>\nj<k.

4i.¡ for i <k¡ n j < k", or i2k¡ n j > k1

r,,, for i</<¡ n j>krori>k1n j <k,

respec'lively-.

E-rcunple. Let us consider the f'oilowing two-dimellsional chromosomes

m?,¡
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l0 tl0 0l ll0
0l l0l ll

011 l0
010 ll
0ll 00

ll0 0l
000 ll
000 l0
010 ll
0tt 0l

4 5 Multidimensional Crossover

*****
++**{<
**0*l
x*l0r<
*****

ill

and crossover point (4, 3). Applying the two dimensional ctossover to the above

chromosomes the newly created cllromosomes will be

The defining matrix of this chromosome is the sub-matrix defined by the
positions (3, 3) and (4, 5), while its defining size is (1, 2).

Similar to the Schema Theorem presented in Goldberg's book and using
the same notations we have the following results:

THEoREM 2.3.1. (two-dimensional schema-Theorern) 1f o i,s a two-clitnen-
sional schema of size n 1x nj; then.' ,/i ;,r:.;.¡,

00
ll
0l

l0
0l
00

000
000
100
0l I

t.l 0

l0r
0ll
100
0lt

tl T, ''

lr- o,
t.,

00
ô, '. n, + ô, .n, - ô, .ô,

(q 'n2 - l)

,'E¡ .nz + ô, .n, - ô, .ô

- w(6)p 
^ J

T he Tw o - D imens ionul Schema The o re m

In ortler to give our first result we need some nlore definitions similar to
those given fbr the classical Schenla.'['heorem.,[4]-[5].

Pruof' In tttosf t-rf its parts the proof of this theorem is identical to that of
the one-dimensional Schema Theorem. Thus we will only insist on the single
significant difference which is the esrimation of rhe survival probability oi a
Schéma from one generation to the next one.

It is easy to observe that there are ô,'n2+E¡'¿r -ô¡.õ, crossover points
' in an n x n chromosome that disrupt a schema of dimension ô1o¡ = (ô, , ôi ).

,,'this allgyg us to state that the survival probabirity of a sche¡na o of defin-
ing size ô1o¡ = (õi,ôj) is given by 

,

DEFINITIoN 2'3.2. A lwe.dimensional schema of size m x n is a matrix of
dimension m x n over {0, l, *).

,, As in the Schema Theorem "*" means "either 0 or 1", We call the positions

having valtres 0 or I specific' positions.
A two-dimensional schema represents a set of matrices, More precisely: a

two-dimensional schema with specific positions S(o) = {(i¡,.i),G2,i),...
,..,(it, jt))defines the following matrix set:

o ={{o,.r),=- .¡=¡1o,.¡ =oi,./'V(i, j¡e S(o)}

By analogy with the one-dimensional Schema Theorem we also need the fol-
, lowing definitions:

' ' ! DEFINITIoN 2.3.3. The defining matrix of a schema o is the smallest

,, , sub-nrutrix of. õ lhat contains all its specific positiotts (A(o)),

DEFINITToN 2.3.4. If the dimensions of L,(o) ore dy and d2 respectivelt',

rirern (ô¡,ô¡) i.sthedefinirtgsiz.eof o,where ô¡=dl - I andõ¡=dz-1.

(.ri,.ir ., :r:i,.,,,, : ErunpLc. Let us consider the 5 by 5 quadratic chromosome:

The remaining part of the proof is identical to the proof of the one-dirnensional
Schema Theorern. fl

This theorem only shows that a GA using the chosen coding and the above
defined crossover operator behaves in a similar way to thg one uãing linear cod_
ing and crossover.

Crossr¡ve.r: Two dimensional vs, One dimensionol

In the previous subsection we showed that a genetic algorithm using the
'two-dimensional encoding and crossover operator defined,earlier behaves the

p,(o') =
n2 -1
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ll:3

i¡ < 12 and jt < jz. We shall estimate the probability with which this schema will be

disrupted on one hand if the schema is rearranged by lows and a one-point linear
crossover is applied, on the other hand if the two-dimensional crossover is used.

We illustrate our reasoning on the following example. Let us consider
again the schema usecl earlier:

+**x*
*:&***
*{,0*l
)ß*10+
,lX*+*

If we rearrange this schema by rows we obtain the following linear schema:

>k**;ß**>1.***** 0*l {:* l0* :k*+*+
Fig. L

We can note that the defìning length of the linear schema is ô(o) = ô¡nr + ô, ,

Generally we can state that the probability p¿(o) that a two-dimensional

schema o of dimension (n¡, n2) anddefining size (ð¡,ôr) is disrupted by a sin-

gle point crossover applied to its linear encoding satisfies the following double

inequality:
ô,rr. - ô' ô,n. * ò,

1i#< P't(o)tii;i
On the other hand we have already seen that the probability that the same

schema is disrupted by a two-dimensional crossover is given by

ð,.nr +ö¡'n, -8,'ð¡

It is e¿sy t. show that the disruption probabitity for n-dimensional case isgìven b¡

Pd-
ð,r ...ôo *,1n-

årô¡

lqd¡

rt1 'n1 -1

In [2] we showed that tbr certain schemata (e.g. column ones) the disruption

probability is smaller when using two-dimensional encoding and crossover than

when using the one-dimensional ones. This leads us to the conclusion that for
arbitrary two-dimensional problems the use of two-dimensional encoding and

crossover should be preferred to the one-dimensional ones.

Bæed on this :the r¿-dfuncnsionar sche¡na Theorçm (using similar defini-tia*s and flgtations t¡s above) can be formulatc¡C as f,ollows;

TæOREM 2.4.L. If a is an n.dimensional schenw af síze d , x,¿, , . .x dn, then
,n(o,t +l) I n(o,,1.{9S['r _ p,.p¿_ ro(o)p,,,.1.f1l '''"

îhe comparison to ne-dimçnsional encoding and crossovar pre$ented inthe previous section cau be eas,ily extnnd*¿ tr rt, n-dirnensional case.

2.4. MULTIDIMENSIONAL ENCODING AND CROSSOVER

3.IXPERIMENTAL RE$ULTS :

To demonsffate out theoretical re,sults we per,formed a sel of expe¡lments
ernc. A.ll 

"r 
riç*. erà¡l#J.eq"treo to fînd

is rel
to be

by rows or columns of the adjacency m
e&f erossover.

ady-state GA with a Þopulation siz.e of
rate of ,0:001. The fimess function was
ons in a chromosome that rnatched the

In this section we only present the results obtained for the n-dimensional

case. The reasoning behind these results is similãr to the two-dimensional case.

the difference consisting only in the complexity of the computations needed.
'io give an intuitive idea oi how crossovèr is defined- in the n-dimensional

case we illustrate it graphically in fìgure for the threé-dinrensional case (see Fig. l)
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In all the problems we consideled thc GA using two.dimensionai encoding

ancl ctoSsover gtve bctter tesuli$ thân thÊ ÛA using one-dime¡sional enco'ding

!|ä il;.""r, ioth in the convergence rate cjf the fitnçss of best individual and

irr the quali¡Y of the $olution'

Þclow we Present the graPhs compar

iffi:ü':
1. FirstÐiagonal: P1,u ={(a,a)lae A}

2, Second-Diagonal Pzoa *{(ai,au*,*,)li =ü}
3. cross; p,,, ={(a¡,a,,,r)lt = ñiU{ça,2,alll = t;}
4. X: p, - Prr, Ugzr¿

4, CONCLT]SIONS ÀND F'UTURE WOR'K

I,n this i-<limensional ffossover operator a,nd

; 
proved a Sch for the ge¡letic a]Uqrithm using,it' W'e ', ,

äi; showecl ;ing this opeiator is more advantageoui

th;;ìrg the cla,ssical, one*dínrensional one' Finally we d¿monstrâted this theo-

. retical rqsults on a set of exarnples'

In the firrlure we shall concentrate on trying.to êtp]y lle operåtor defined

here in real cxamples and coflpare thç re$ults obtained with results produced

using other fypes of encoding and ct'ossover operators'
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ABOUT SOME INTERPOLATION FORMULAS OVER, TRIANGLES

ONN BÃRSOSU ANd IOANA ZELINA

I. PRELIMINARIES

Beginning with the paper by Barnhill, Birkhoff and Gordon Il]. the inter-
polation problem to boundáry data on a triangle was largely studied, cånsidering
the standard triangle 4, = {(x;-r') e R, lr > 0, .y > 0, .r +.u < /r} with the vertices
V¡ = (å,0), V2 = (0, /¡), V3 = (0,0) and the opposite sides denoted by E¡, E2, E.3

(fig. l), in Ul there are constructed some interpolant.s which match a given finc-
tion / :T¡, -+ R on the sides of the triangìe !, .

vr

(rrh-rt)
Fig. I

( úr,l)
I. .lr----*

(¡ç:)i
I

(h-:,1)

VJ ,o) V{

The ideas from [.1] will be shortly presented. Let be (,,r,,.v) e intT¡, andlel
be Li , ¿Ì the tinear operators along the parallel ro the side E2, respecrively to
the side E¡, i.e.

( I .1) ti (./X.r,.r) = A.r I B Li (/X r,.r,) = c), + D.

where the coefficients A B, C, D are deternlined from the conditions

¡991 AMS Subject Classification: .11-00.41410, 4l/i2S.
Kcy words: hlending interpolant. bo<ilcan iunr operator.
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