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MULTIDIMENSIONAL CROSSOVER
IN GENETIC ALGORITHMS

MARTON-ERNO BALAZS'

1. INTRODUCTION

Most of the genetic algorithms (GA’s) used in practice work on linear
chromosomes (e.g. binary strings or sequences of some other types of symbols).
However, some results have been published revealing that for certain problems
multidimensional encoding and crossover may give better results that the one
dimensional (linear) ones [1]- [3] While some theoretical results have been ob-
tained, no clear criteria are known for deciding the suitable dimensionality of the
encoding to be used for a give problem.

In this paper we consider a class of problems for Whlch we define a
multidimensional encoding and a corresponding genetic operator. We show that
tor a GA using this encoding and operator we ‘can’ obtain-theoretical results
similar to (under certain condltlons even better that) those known for linear en-
.coding. ' ;

Finally we demonstrate these theoretical results usmg a set of test
-examples i "

2, MULTIDIMENSIONAL _ENCODING AND CROSSOVER

In this section we first define what we mean by a multidimensional (search)
problem. We then briefly present the classical (one dimensional) encoding used
in solving such problems using GA’s, followed by our proposal for a multidi-
mensional encoding. Next we define a crossover operator on multidimensional
codes and prove a Schema Theorem-like result for a GA using it. Finally we
show that for certain types of problems multidimensional encoding and the de-
fined crossover operator may give better results than the linear ones.
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2.1. MULTIDIMENSIONAL PROBLEMS

Our definition of multidimensional problems is based on the following
definition of n-ary relations:

DEFINITION 2.1.1. Let A, A,,...,A, be sets. An n-ary relation p over these

sets is a set
PCA XA X... XA,

In the followings we shall only consider relations defined over finite sets.
The set of all relations over the sets A, A,...., A, will be denoted by

R(A(, Ay, A)).
Let us note here that an n:ary relation p over A;. A,,..., A, can be repre-
sented by an n-dimensional matrix M(p)= (m,-ii. iz-;--,i,,) over {0, l} af.fol.lows:

Let-dy={al a?r.a} for i=Tn. Then
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0 otherwise
For the two-dimensional case this corresponds to the adjacency matrix gssot:aled
with the graph corresponding to the relation. ‘
DEFINITIONZ]?. Given the (finite) sels A A, A, by an n -dimensional
(search) pr()blem“qt'tached to?aj, predicate P defined over R = R (A}, A,,.... A;) we
mean the problem of finding an n-ary relation 0* € R(A}, Ay,.... A)) such that
P(p*) is true. ; . ol s L
Our goal in the following is to study some aspects of using genetic algo-
rithms for solving n-dimensional problems. To be able to do‘ this we assume tbat
for every n-dimensional search problem considelred there is a fitness function

f:R— @, which measures the “quality” of any given relation. For our pur-
poses the nature of this function is irrelevant.

2.2. THE COMMON APPROACH

In using GA’s to solve problems of the above men.tioned. type the curr'ent
practice is to choose a (binary) coding for each of the.dlmens‘.lons of a relagon
and concatenate them.: One-point crossover of two relatlf)ns then means c‘hoosm‘g
a crossover point, cutting both of the codes in th‘at point and exchan'gm‘g tf'lexr
“tails”, producing two offsprings. Other, multi-po;pt crossover operatlons. hdvq
been also defined {4], [5], however none of them is able to provide the type of
improvement we are looking for.
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Intuitively the drawback of these approaches is that they don’t take into
consideration the dimensionality of the problem, i.c. they don’t try to preserve
sub-relations of same arity of the original relations [1], [3].

2.3. n -DIMENSIONAL ENCODING AND CROSSOVER

In this section we propose another approach to using GA’s for solving
multidimensional search problems. Similar approaches have been proposed in
[1], [2], [3]) and [7]. Our approach is based on the use of multidimensional matri-
ces for encoding and a crossover operator specific to this encoding. This was
first defined in (1] and is similar to the encoding used by algorithm R1 in [3].

To make our discussion clear we first present our results for two dimen-

sional problems, the generalization to n*dimensional ones being discussed in a
separate subsection. '

Two-dimensional Encoding and One -Point Crossover

Let A = {ay, ay,..., @,)} and B = {b1:by,..., b} be finite sets, and let us
consider the two dimensional search problem attached to a given predicate P
over R(A, B). To solve this problem using a genetic algorithm we have to choose
a representation for the relations in P. We propose that the representation of a
relation p € R(A, B) be the corresponding M(p) matrix as defined in Subsection
2.1. In this case a two dimensional matrix representing a relation will be a chro-
mosome processed by the genetic algorithm. Let us now define 2 crossover op-
erator for a GA using the above considered enconding.

DEFINITION 2.3.1. Let P, P2 € R(A, B) be two relation and M (py) and
M(p,) the C()'rresponding chromosomes. Let us further'consider wo positive [ n-
tegers ky and k, such that 1 <k, <mand 1 < ky < n. The two-dimensional cross-
over of the two chromosomes using crossover point (ky. k) produces two new
chromosomes M, =(m,-'.j) and M, =(m,-2_j) defined by

i W

ol {r,-.j fori<k nj<k,orizk, aj2k,
"4 fori<kynjzk, orizk, aj<k,
2 _{q,.; fori<iky nj<ksori>k aj>k,
|y fori<kynj2ky ori2ki A j<ks

respectively.

Example. Let us consider the following two-dimensional chromosomes:
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10[110 011 10
011 om 111000
00011 10[000
1010 [ 1100
01011 00[01 1

and crossover point (4, 3). Applying thé :tWO dimensional 'crossov_er to the above
chromosomes the newly created chromosomes will be

1oL 100 01110

011000 1110

00000 10011

l1yjoro 11100

001011 0110 11

The Two-Dimensional Schema Theorem
“In’order to give our first result we ‘need some more definitions similar to
those given for the classical Schlerna[['héﬁorem;[4].—[5 ].
DEFINITION 2:3.2. A twa-dimensional schema of size/m X n is a matrix of

dimension im x.n over {0, 1, *}. - ‘)
.. As.in the Schema Theorem "“*”" means “either 0 or 1. We call the positions
having values O or 1 specific positions. = f :
A two-dimensional schema represents a set of matrices. More precisely: a
two-dimensional  schema  with specific positions  S(0) = {(j;, Jji _),(12,12)7,..

.. (i )} defines the following matrix set:

szqﬂﬁﬁwiz@{:q¢V@ﬁeSMﬁ

By analogy with the one-dimensional Schema Theorem we also need the fol-
lowing definitions:

DEFINITION 2.3.3. The defining matrix of a schema © is the smallest
sub-matrix of O that contains all its specific positions (A(0)).

DEFINITION 2.3.4. If the dimensions of A(C) are d| and d, respectively,
then (5;,8;) is the defining size of 6, where 8;=d, ~ 1 and §;=d, ~ 1.

... Example. Let us consider the 5 by § quadratic chromosome:
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® Kk ok k%
* ok ok ok ok
* ko ook ook ok
The defining matrix of this chromosome is the sub-matrix defined by the
positions (3, 3) and (4, 5), while its defining size is (1, 2).

Similar to the Schema Theorem presented in Goldberg’s book and using
the same notations we have the following results:

THEOREM 2.3.1. (two-dimensional Schema-Theorem) If 6 is a two-dimen-
sional schema of size n | X'y then- 2 ; P :

| S [10 8y 8, 0m =85, _
‘dcf+U2n«x0 fﬁ?'t pi Gy ny D »mem}

Proof. In most of its parts the proof of this theorem is.identical 1o that of

.. the one-dimensional Schema Theorem. Thus we will only insist on the single
significant difference which is the estimation of the survival probability of a

schema from one generation to the next one.
It is easy to observe that there are §, - n, +8;:n =88, crossover points

'in an n X m chromosome that disrupt a schema of dimension §(c) = (8,,6j).

o ;. This allows us to state that the survival probability of a schema o of defin-

ing size 5(0)2(8,-,@)_ is given by -

-y +8;n 3, -0,
) )

The remaining part of the proof is identical to the proof of the one-dimensional

Schema Theorem. [

. This theorem only shows that a GA u,s,i‘ﬁg the choser‘l'coding and the above
defined crossover operator behaves in a similar way to the.one using linear cod-
ing and crossover.

ps(0)=

Crossover: Two dimensional vs. One dimensional

In the previous subsection we showed that a genetic algorithm using the
two-dimensional encoding and crossover operator defined earlier behaves the
same way. as one using a linear encoding and single-point crossover,

In‘the followings we shall study in what situations the use of this encoding
and crassover can be advantageous. To do. this let;us consider a schema of di-
mensions (n}, ny) with the defining matrix given by (i}, j,) and (iy, j»), where
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i; < iyand j, <j,. We shall estimate the probability with which this schema will be

disrupted on one hand if the schema is rearranged by rows and a one-point linear
crossover is applied, on the other hand if the two-dimensional crossover is used.
We illustrate our reasoning on the following example. Let us consider

again the schema used earlier:

**0*']
¥ k| ¥

If we rearrange this schema by rows we obtain the following linear schema:

************lo*llw*[]O*J*****

We can note that the defining length of the linear schema is 8(0) =8;n, +8,.

Generally ‘we can state that the probability’ p,(c) that a two-dimensional
schema o of dimension (n,, n,) and defining size (3,.8,) is disrupted by a sin-
gle point crossover applied to its linear encoding satisfiés the following double

inequality: .
6,’”2 + 6,-
n o, —1°

O;ny —9;
d b B B <
ny iy =1 SPu(Q)%
On the other hand we have already seen that the probability that the same
schema is disrupted by a two-dimensional crossover is given by
6,’ '112 +6, .’l_] —6’ '6/

n -ny =1

In [2] we showed that for ‘certain schemata (e.g. column’ ones) the disruptidn
probability is smaller when using two-dimensional encoding and crossover than
when using the one-dimensional ones. This leads us to the conclusion that for
arbitrary two-dimensional problems the use of two-dimensional encoding and
crossover should be preferred to the one-dimensional ones.

2.4. MULTIDIMENSIONAL ENCODING AND CROSSOVER

In this section we'only present the results obtained for the n-dimensional
case. The reasoning behind these results is similar to'the two-dimensional case,
the difference consisting only in the complexity of the computations needed.

"To give an intuitive idea of how crossover is defined in the n-dimensional
case we illustrate it graphically in figure for the three-dimensional case (see Fig. 1).
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Fig. 1.

It is easy to show that the disruption probability for n-dimensional case is

_ -given by _ .

E 10y .. -'5;‘.—1.-‘?'55:1;1 2. By ~(n— l)H _?;1 3;

. Based on this the n-dimensional Sches i
.. Based on this th mensional-Schema Theorem (using similar defini-
fions and notations as above) can be formulated as follows: 5o B

- THEOREM 2.4.1. If & is an n-dimensional schema of size dy X:dy .. X d,, then
.n(of, hd; 1')2 ﬂ(ﬁ, t) ‘%l[l =P, "Pg— 03(5)_1’:»1 ]

2 The cgmpgftson to one-dimensional encoding and crossover presented in
€ previous section can be easily extended to the n-dimensional case | &

3. EXPERIMENTAL RESULTS
;I‘o d_e-monstr:gte_ out theoretical results we performed a set of ;:xpeﬂments
l(:y e ected t-wo~damens!opal problems. All of these problems required to find
: ;moggneous binary relations, that is relations P C A XA, where A is a finite set
é = {ay, ay,..., a,)). The relations to be found were chosen such that reorderiﬁg
y rows or columns of the adjacency matrix doesn’ ide an adya
e v y o't provide an a@vantage to lin-
s For_the exper‘iment_sf_w used a steady-state. GA with a 'pdﬁu;lation size of
Vs crossover rate of 0.6 and mutation rate of 0:001. The fitess function was
;m;_p?y ca}cui_ated by counting the positions in a chromosome that matched the
positions in the target chromosome. ' o ..
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In all the problems we considered the GA using two-dimensional encoding
and crossover gave better results than the GA using one-dimensional encoding
and crossover, both in the convergence rate of the fitness of best individual and
in the quality of the solution.

Below we present the graphs comparing the performarces of the two-di-
mensiona) case to the one-dimensional case for four of the problems considered.. -
These problems are (we consider the set A ordered by the indices given above):

1. First-Diagonal: py,, ={(a.@)a¢ A}

2. Second-Diagonal Pz, = {'(‘-‘i »Diei+! )___‘i :: ﬁ}
3. Cross: p,, = {(af aq)i= LrfU{@aa; i= L}
4.X: p, =Pra UPona

4, CONCLUSIONS AND FUTURE WORK

, In this paper we introduced a multi-dimensional crossover operator and
“proved a Schema-Theorem type of results for the genetic algorithm using it. We 3
also showed that in certain situations using this operator is more advantageous '
that using the classical, one-dimensional one. Finally we demonstrated this theo- .
_retical results.on a-set of examples.
In the fu’ture we shall concentrate on trying to apply the operator defined
here in real examples and compare the results obtained with results produced
using other types of encoding and crossover operators.
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