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ON THE HIGH CONVERGENCE ORDERS
OF THE NEWTON-GMBACK METHODS∗

EMIL CĂTINAŞ

Abstract. The high convergence orders of the Newton-GMBACK methods can
be characterized applying three different existing results. In this note we show
by some direct computations that these characterizations are equivalent.
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1. INTRODUCTION

The GMBACK method introduced by Kasenally [11], and which we shall
describe in the following section, is a Krylov method for solving large linear
systems. When it is used in a Newton method, the convergence orders of the
resulted iterations may be characterized applying three existing results.

The first result was given by Dennis and Moré in [7], but before enouncing
it we review the common setting. Given F : D ⊆ RN → RN , the local
convergence of different Newton-type methods is usually studied under the
following standard assumptions:

(C1) there exists y∗ ∈ D such that F (y∗) = 0;
(C2) the mapping F is differentiable in a neighborhood of y∗, with the

derivative F ′ continuous at y∗;
(C3) the Jacobian F ′ (y∗) is nonsingular: ∃F ′ (y∗)−1 ∈ RN×N .

We shall denote hereafter by ‖·‖ an arbitrary fixed norm on RN or its
induced operator norm. The symbol ‖·‖2 stands for the euclidean norm and
‖·‖F denotes the Frobenius norm. For definitions and results concerning the
convergence orders we refer to [15, ch.9] (see also [19], [18]).

Theorem 1.1. [7]. Let F : D → RN be differentiable in the open convex
set D ⊆ RN and assume that for some y∗ ∈ D the mapping F satisfies (C2)
and (C3). Let (Bk)k≥0 ⊂ RN×N be a sequence of nonsingular matrices and
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suppose that for some y0 ∈ D the quasi-Newton iterates given by

yk+1 = yk −B−1
k F (yk) , k = 0, 1, . . .

remain in D and converge to y∗. Then (yk)k≥0 converges q-superlinearly to y∗

and F (y∗) = 0 if and only if

lim
k→∞

‖(Bk − F ′ (y∗)) (yk+1 − yk)‖
‖yk+1 − yk‖

= 0.

The second result was obtained by Dembo, Eisenstat and Steihaug in [6].

Theorem 1.2. [6]. Assume the mapping F satisfies the standard assump-
tions and suppose that for some y0 ∈ D the sequence of the inexact Newton
iterates given by

F ′ (yk) sk = −F (yk) + rk

yk+1 = yk + sk, k = 0, 1, . . .

remains in D and converges to y∗. Then (yk)k≥0 converges q-superlinearly if
and only if the residuals rk satisfy

‖rk‖ = o (‖F (yk)‖) , as k →∞.

Martinez, Parada and Tapia [14] obtained some results for the sequences of
damped and perturbed quasi-Newton methods

yk+1 = yk − αkB−1
k (F (yk) + rk) ,

where 0 < αk ≤ 1, rk ∈ RN , k = 0, 1, . . . and y0 ∈ RN . Though, those results
do not fully characterize the convergence orders of the above sequences. On
the other hand, we shall see that if we want to fit in a direct manner the
Newton-GMBACK iterates in this frame, we must reduce the above iterations
either to the classical quasi-Newton or to the IN ones.

We have recently extended Theorem 1.2.

Theorem 1.3. [5]. Assume the mapping F satisfies the standard assump-
tions and consider the following elements: (∆k)k≥0 ⊂ RN×N (perturbations in
the Jacobians), (δk)k≥0 ⊂ RN (perturbations in the function evaluations) and
(r̂k)k≥0 ⊂ RN (residuals of the approximate solutions sk to the perturbed linear
systems (F ′ (yk) + ∆k) s = −F (yk) + δk). If for some y0 ∈ D the sequence of
the inexact perturbed Newton iterates given by(

F ′ (yk) + ∆k

)
sk = (−F (yk) + δk) + r̂k

yk+1 = yk + sk, k = 0, 1, . . .
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is well defined (i.e. the matrices F ′ (yk) + ∆k are nonsingular and the iterates
yk remain in D) and converges to y∗, then the convergence is q-superlinear if
and only if

∥∥∆k

(
F ′ (yk)+∆k

)−1
F (yk)+

(
I−∆k

(
F ′ (yk)+∆k

)−1 )(δk+r̂k)
∥∥=o (‖F (yk)‖) ,

as k →∞.

Remark. Modest additional continuity conditions imposed on the deriva-
tive F ′ allow the characterizations of the q-convergence orders 1 + p, p ∈ (0, 1]
of the three methods considered above. For these extensions we refer the
reader to [8], [6] and resp. [5]. �

In Section 2 we briefly describe the GMBACK method and we deduce some
results, while in Section 3 we show that when applying the above three theo-
rems for the characterization of the q-superlinear convergence of the Newton-
GMBACK method we are led to some equivalent results.

2. THE GMBACK METHOD

Consider the linear nonsingular system

Ax = b,

with A ∈ RN×N and b ∈ RN . The GMBACK algorithm introduced by Kase-
nally in [11] belongs to the class of Krylov methods for solving such systems
when the dimension N is large. Given the initial approximation x0 ∈ RN

of the true solution x∗ and a number m ∈ {1, . . . , N} , by a modified Gram-
Schmidt procedure there is constructed an orthonormal basis {v1, . . . , vm} in
the Krylov subspace Km = Km (A, r0) = span

{
r0, Ar0, . . . , A

m−1r0
}
, where

r0 = b − Ax0 is the residual of the initial approximation. Finally, GMBACK
determines an approximation xGBm ∈ x0 +Km which solves the following min-
imization problem:

min
xm∈x0+Km

‖∆A‖F subject to (A−∆A)xm = b.

The following steps are performed for determining xGBm :
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Arnoldi

• Let r0 = b−Ax0, β = ‖r0‖2 and v1 = 1
β r0;

• For j = 1, . . . ,m do
hij = (Avj , vi) , i = 1, . . . , j

v̂j+1 = Av̂j −
i∑

j=1
hijvi

hj+1,j = ‖v̂j+1‖2
vj+1 = 1

hj+1,j
v̂j+1

• Form the Hessenberg matrix H̄m ∈ R(m+1)×m with the (possible)
nonzero elements hij computed above and the matrix Vm ∈ RN×m

having on columns the vectors vj : Vm = [v1 . . . vm];

GMBACK

• Let Ĥm =
[
−βe1 H̄m

]
∈ R(m+1)×(m+1), Ĝm = [x0 Vm] ∈ RN×(m+1)

P = Ĥt
mĤm ∈ R(m+1)×(m+1) and Q = ĜtmĜm ∈ R(m+1)×(m+1);

• Determine an eigenvector um+1 corresponding to the smallest eigen-
value λGBm+1 of the generalized eigenproblem Pu = λQu;
• If the first component u(1)

m+1 is nonzero, compute the vector yGBm ∈ Rm

by scaling um+1 such that[ 1
yGB

m

]
= 1

u
(1)
m+1

um+1;

• Set xGBm = x0 + Vmy
GB
m .

This algorithm may lead to two possible breakdowns, either in the Arnoldi
method or in the scaling of um+1. The first one is as for GMRES a happy
breakdown, because the solution may be determined exactly using H̄m and Vm.
The second one appears when all the eigenvectors associated to λGBm+1 have the
first component zero, the inevitable divisions by zero leading to uncircumven-
tible breakdowns. In such a case either m is increased or the algorithm is
restarted with a different initial approximation x0. We shall assume in the
following analysis that xGBm exist.

It is worth noting that the algorithm may be used in the restarted version,
by taking after the m steps the computed solution xGBm as the new initial
approximation.

We shall prove the following result:

Proposition 2.1. Consider some arbitrary elements x0 ∈ RN and m ∈
{1, . . . , N}. If there exists a GMBACK solution xGBm , then its corresponding
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backward error ∆GB
A,m ∈ RN×N satisfies∥∥∥∆GB

A,m · xGBm
∥∥∥

2
=
∥∥∥rGBm ∥∥∥

2
.

Proof. Kasenally [11] proved that the backward error ∆GB
A,m corresponding

to xGBm is given by

(2.1) ∆GB
A,m = Vm+1

(
H̄my

GB
m − βe1

) (xGBm )t
‖xGBm ‖

2
2
.

The matrices Vm+1 and H̄m computed in the Arnoldi algorithm satisfy the
following known relation (see for example [22]):

AVm = Vm+1H̄m,

which shows that∥∥∥Vm+1
(
H̄my

GB
m − βe1

)∥∥∥
2

=
∥∥∥AVmyGBm − r0

∥∥∥
2

=
∥∥∥AVmyGBm +Ax0 − b

∥∥∥
2

=
∥∥∥AxGBm − b

∥∥∥
2

=
∥∥∥rGBm ∥∥∥

2
.

Taking into account (2.1), we are led to the stated result. �

3. THE SUPERLINEAR CONVERGENCE OF THE NEWTON-GMBACK METHOD

The Newton-GMBACK iterates may be written in two equivalent ways(
F ′ (yk)−∆GB

Ak

)
sGBk = −F (yk)(3.1)

F ′ (yk) sGBk = −F (yk) + rGBk , k = 0, 1, . . . ,(3.2)

where for the first writting we have considered the linear systems Aks = bk

with Ak = F ′ (yk) and bk = −F (yk).
Applying Theorem 1.1 of Dennis and Moré for the first writing of the iterates

we get

Theorem 3.1. Assume the standard conditions hold and that for a given
element y0 ∈ D, the sequence of Newton-GMBACK iterates is well defined and
converges to y∗. Then the convergence is q-superlinear if and only if∥∥∥rGBk ∥∥∥

2
= o

(∥∥∥sGBk ∥∥∥
2

)
, as k →∞.
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Proof. We first observe that under the notations of formula (3.1), Bk =
F ′ (yk)−∆GB

Ak
such that Bk−F ′ (yk) = −∆GB

Ak
. Next, Theorem 1.1 and Propo-

sition 2.1 lead to the stated affirmation. �

Theorem 1.2 of Dembo, Eisenstat and Steihaug applied to the writting (3.2)
yields

Theorem 3.2. Under the same assumptions of Theorem 3.1, the conver-
gence of the Newton-GMBACK iterates is q-superlinear if and only if∥∥∥rGBk ∥∥∥ = o (‖F (yk)‖) , as k →∞.

One can see that the damped and perturbed quasi-Newton method of Mar-
tinez, Parada and Tapia must be reduced either to the quasi-Newton or to the
IN method if we want to fit the Newton-GMBACK iterates in this frame.

Regarding the Newton-GMBACK iterates as IPN iterates we get

Theorem 3.3. Under the same assumptions of Theorem 3.1, the conver-
gence of the Newton-GMBACK iterates is q-superlinear if and only if∥∥∥rGBk ∥∥∥ = o (‖F (yk)‖) , as k →∞.

Proof. Taking ∆k = −∆GB
Ak
, δk = 0 and r̂k = 0, k = 0, 1, . . . in Theorem

3.3 we are led by the writting (3.1) and by Proposition 2.1 to the stated
affirmation. �

Remark. Since the proofs from our IPN model relied on the IN one, The-
orems 3.2 and 3.3 were expected to yield the same results. �

In order to complete our initial assertion we see that it suffices to show that
(‖F (yk)‖)k≥0 and (‖sk‖)k≥0 have the same rate of convergence. This is true
by the following considerations.

Walker proved for an arbitrary sequence (yk)k≥0 ⊂ RN that it converges
q-superlinearly only at the same time with (yk+1 − yk)k≥0 .

Lemma 3.4. [24]. Let (yk)k≥0 ⊂ RN be a convergent sequence and denote
sk = yk+1−yk, k = 0, 1, . . . Then (yk)k≥0 converges q-superlinearly if and only
if (sk)k≥0 converges q-superlinearly.

The fact that (yk)k≥0 and (sk)k≥0 have precisely the same rate when con-
verging q-superlinearly is known for a longer time, by a result of Dennis and
Moré.
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Lemma 3.5. [7]. In the hypotheses of the above Lemma, if (yk)k≥0 converges
q-superlinearly at y∗, then

lim
k→∞

‖y∗ − yk‖
‖yk+1 − yk‖

= 1.

The connection between the rates of ‖y∗ − yk‖ and ‖F (yk)‖ is expressed by
the following result obtained by Dembo, Eisenstat and Steihaug:

Lemma 3.6. [6]. Under the standard assumptions on F there exists ε, β > 0
such that

1
β ‖y

∗ − y‖ ≤ ‖F (y)‖ ≤ β ‖y∗ − y‖ for all ‖y − y∗‖ ≤ ε.

The equivalence of the characterizations is now completed.
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