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AN ALGORITHM FOR MULTICRITERIA
TRANSPORTATION PROBLEMS

LIANA LUPSA, EUGENIA DUCA and DOREL I. DUCA

"1. PRELIMINARIES

It is known that mdny applications of linear programmmg in managing
economic processes come, to, the solving some transportation problems A such
model was presented for instance’in [8]. :

A transportation problem, (of the cost type) is.a linear programming prob-
lem of the following type

© o mny" Z,l i

subject to

as usually represented in a table of the following type

€1y e It
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Any feasible solution of the problem (C) is called a transport plan. A chain
1s any system of cells of the type
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such that any pair of two adjacent cells are situated either in the same row or in
the same column and any system formed by three cells from the chaml is not
situated in the same row or in the same column. If tbe last cell of the chain 1$ in
the same row or column with the first cell, the chain is called a cy;_!c.

A transport plan X = (x;) is acyclic if the cells that correspond to x; > 0 do

i cyclel ' ‘
" C(;rtltiznllcr?(r)]\?vn){hat, if a transportation problem admits a transport plan, then it
i st an cyclic transport plan. .

mmltlsf,a illfaan acyglic transpgrt le)an X = (x;), the number of elcments x;>01is
m+ n — 1, then the plan is called nondegenerated. If this number is smaller than
m + n — 1, then the transport plan is called degenerated. If the transport plan
X =(x;)is degenerated, it will be convenient to add to the set

(G )€ {1, om) X {1, ey n): x> O},

some elements (k, k) € (1, oo, m} X {1,000 1} such that the new set has m + n 5
1 elements and the cells that correspond to it do not forml'.a’ cycle; such a set is
called a selection set generated by X. Obviously, in genefal, we can generate
more selection sets. The family of the selection sets generated by the plan X will
be denoted by Sel(X). : . . ;
The ac;//clic transport plan X = (x;) is called potential with respect to a se-

| lection set A € Sel(X), if there exist the real numbers

Uy oovs Upps Vis o0 vy

which satisfy the conditions

(n vi—u; S cforall () € {1y mpx Ly &
and v I
(2) - =cforall () € A

If the real numbers uy, ..., Uy Vis o> Vn satisfy (1)=(2), then the (m + n)-tuple
(Ups oovr Upgs V1o -, V) 18 called 2 potential system for A.

THEOREM 1.1. (see, for example {11]). The_ transport plan X is an optim'al
plan if and only if there is a set A € Sel(X) such that X is a potential plan with
respect to/A. :

2. MULTICRITERIA TRANSPORTATION PROBLEMS

In the following we call a multicriteria transportatiop problem of. the cgst
type, denoted by (MTP), a multicriteria linear programming problem in which

d g - , mxn P oy
the objective function is a vector function f=(fi. .-».[p) R™7 5 R”,.given by
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MmN

f/\"(X):ZZC'{;XU‘ ke fl.....ph,

i=l j=l
forall X = (xU ye R™ and the constraints are

i

n \ i
ijl'rii =a;, ief{l....,m}

m h )
‘ Zf:le =bj> qg (Lo}

xij 20, (L el ..omix{l, ... n)

By analogy with the scalar case, a multicriteria transportation probfcrri (M:1“i5)
will be represented by '

U P 1 )
ClLs o0 Gl T AIRET S i W) T ¢

8| N B 5 T 2
Cols vees € | g Chii a{,,_

b, b

n

The set of the feasible.so]ution of the problem (MTP) will be denoted'by §. A
transport plan X € § is called Pareto (or min-efficient) if there is no ¥ e § such that

RS [(X), ke {1, ..., p).

at least one of the inequalities being strict. Because any Pareto transport plan is a
Parete solution of a multicriteria linear programming problem, some interesting
properties of the Pareto transport plan set can be found for instance in [7]. On the
other hands, for the determination of a Pareto transport plan,'we can use any algo- -
rithms given in [2], [9], [10] etc. If, in addition, e (A7) M0 S AR X {1,..n)
must be integer, the algorithin given in [7] allows us to determine all.the equi-
valence classes of the Pareto transport plans. Note that we can also solve a mul-
ticriteria transportation problem using the r-balance points [6]. ¢ .

The particular form of the multicriteria linear programming problem which
corresponds to the multicriteria transportation problem (MTP) allows us to
elaborate specific algorithms, as we can see below. £

In the following we ‘will denote by (T,) (k € {1: ..., p}) the scalar trans-

portation problem
K m n .I\'
ia 2,‘:) 2j:| CiXij

subject to
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2’;_].\’1]- =dj, i€ {.l,,,.,m}‘
. =b;y JE s ..0n)

U_O (i, j)E{] m}x{l el

Let X = (x;) be an acyclic transport plan and let A € Sel(X Foreach ke {1,

pllet (uf,....ub, v, .., vk) bea solution of the system
vk 2uf =k, (G, eA.

We denote by

FRIIE B b,
CX.U —Vj U; C’./

foreach (i, j) € {1, ...,m} x {1, ...,n}and k€ {1, ..., p}. The following result
gives a sufficient condition for the Pareto-efficiency:

THEOREM 2.1. Let -k € {1, ..., p}. If X is a potential plan of the problem
(T,), with respect to A€ Sel(X) and if

for each i (5 o
Gy e (L wumpx {1, .., 6} NA

where

is a solution of the, system
(LpeA

then X isa Pareto tramport plan for the mulucrzrerta transportatlon problem
(MTP). 1w .

Proof If X is-a ‘potential plan for the problem (7}); then it is'an optimal plan
for the problem (7}). From (3), it follows that X is the umque opnmd] transport
plan for (7}). Hence X is a Pareto Lranwport plan for thc ‘multicriteria tramporta-

tion ploblem (MTP) o
Let X = (x;) be a potential plan for the problem (T) and let Ae Sel(X) For

eachke {1,....p} let (uf,....ut, v,",..., vk} be asolution of the system
(4) venk=ck, (i,j)e A

We denote by 4 ‘ oy :

(5) OL,‘j=V'j —u; —cj;
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for each (i, j) e {1, s m] XL, L n)and k e {1
forall (iyj) € AY:= {1, ... myx (1, ... n). Let

» - ). Obviously af; <0,

={(i, )e A} 10 =0) .

We presume that 0‘5 <0, for all (i, )€ Ay, and we denote by

={G.))€ Ay 10} =0}

We continue in the same way: if there isk e {1,..,, p — 1}, for which (x,-ﬁ'- <0 for

all (i, j))e A%, we denote by
A% =1, e Af ok =0).

A necessary condition for the Pareto-efficiency is given by the following result.

THEOREM 2.2. If there exists g€l ...,p=1} such that

,j_o forall (i, e AL and k € (1 v gl

and if there exists (r, s) € Al ={(, j)e AL ' j =0}, with 04t >0, then there
isa rranaport plan Y havmg the property that

S5 fX) foreachke (1, . q)
and

f;,'+l (Y) < fq+l (X)’
which means that X is not Pareto-efficient .

Proof. We introduce the cell (7, 5) in the transport plan X = (1.J,) This will
have a cycle # We travel through this cycle, starting from ‘the cell (r. s) and we
assign to its cells the sign + and —, 2 alternatively, starting with the cell (r, s) which
gets the + sign. The cells of the cycle denoted by + form a semichain L*, and the
cells of the cycle denoted by — form a semichain -, We analyse the elements X
of the transport plan X situated in the semichain L~ and we define

6—m1n{x,j (i,pe L},

which is attained, for example, in the cell (u, 7). From the elements Xij which cor-
respond to the semichain L- we substract the number 6, and to the elemcnts Xyj

corresponding to the semichain L+ we add the number 9. The other elements

which are not in the cycle 7, remain the same. We obtain a new tfransport plan Y
to which we attach the set
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(6) ke B=Av{(r.s)} \{(u,1)}.

Let us denote by M Ithe set of the cells which are not in the cycle ¢ Then, for
eachke {1, ..., q}, we have |
H0= E(i.j)éMébyU i z(i.j)eL‘ cjyy + Z(,-.,-EL»— cgyy =
= 2(,~|j’e;” chx;t Z(’_'j)eb ek, +0)+ Z(‘,_JH_‘ chix; —0)=
= fe(X) = B0, = fi (X).

Calculating f,,(¥), we obtain

|
g+l g+l . ’ cg_+. V. =
fq+1(Y):2(,-‘j)EMCij y'j+2(i,j)e[;c'j Yij Z(i.J)eb g Vi
| q+l B '.q.+l N ___e -
Zza j)eMCg+ x"ffzw.j)eu ¢ (% +6)+2(i.j>e..Lj"f (x,‘f, . )
=fq+1(x)_eai‘lx-‘-] <fq+1(X)'

Hence, the transport plan X is not,a Pareto one. [

3.THE ALGORITHM

Using theorems 2.1 and 2.2, we can state the following algorithm for the
determinagon of a Pareto transport plan for multicriteria transportation problems.

Algorithm
= = X {1, ..., n}.
1. Weputk=1and A {1, ...,m} ;
2. One determines an cyclic optimal transport plan X = (x;) for the problem (7))

and we attach to it a set A € Sel(X).
3. We determine a potential system .

(u{‘,...,u,‘,’,, v,k,...,v,’f)'
given by _ | e
) vi—u =c, (L)) € A.

4. We consider

k — ok _k _ ok
OL,-jfvj A CU

for each (i, j)e Ak
5. We compare toizero each of the numbers

“ak, (i )e AT \A.
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a) If off <0, foreach (i. j)e AL N A, then X is a Pareto transport plan for
the multicriteria transportation pr_ob.lerﬁ ( MTP) and the zllgbrilh;ﬁ Stops.
b) If there is, (#, s)e A§™' \'A so that ok, >0, then we go to step 10,
¢) If there is. (r, )€ ALINA sich that af =0. and of >0, for each
(i, ))e AY" N A , then'we go to step 6,

6. We compare  to p.

a) If k = p, then X is a Pareto tranSpoz;t plan for the multicriteria transporta-
tion problem (MTP) and the algorithm/stops.
b) If k < p, then we go to step 7.

7. Weput A§ ={(i, j)e A rof = 0j.
8. We compare A% \ A tothe empty set.

a) If Afv' NA=(, then X is a Pareto transpott plan for the multicriteria
transportation problem (MTP) and the algorithm stops.
b) If A% \ A #@, then we g0 to step 9: ;
9. kincrease with 1 and we go back to step 3. i
10. We introduce the cell (r, s) in the transport plan X. This will have a cycle
@ We travel through this cycle; starting from the cell (rls) ‘and we assign
to its cells by the sign + and — alternatively, starting with the cell (r, §)
which gets the + 'xign-.' The cells of the cycle denoted by'+ form a semi-
chain L*, and the cells of the cycle denoted by — form a semichain L-. We
analyse the elements :\',-j- of the transport plan X situated in the semichain L-
and we define i

' 6=min{x,-j:(i,j)€ L‘},
which is attained, for examﬁle, in the geil (u £). From th‘e:c]e'm‘ents X;; which
correspond to the semichain /- we substract the number 0, and to the ele-
ments x;; corresponding to the semichain L* we'add the number 0. The other

elements, which are not in the cycle %, remain the same. We obtain a new
transport plan X to which we attach the set

A=AU{(r, )} \N{(u.1)).
We go back to step'3. ool

In order to illustrate the above algorithm we conclude with' the following
numerical example.

Example. Let us consider the (MTP) problem given by Table e )
In this case we have p = 3, m = 3, n = 4. We putk=1and AY ={1.2. 3} x
1.2, 3,4}, An acyclic optimal transport plan X for the problem (77) is
p p i
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Table' 1
3 I (8 0 Fimadeio 8 no il el 2B 40102
g 2, by 2 2 I 4 5, B.[.136
) b3 4 3 58 6 7 9 8 11172
151 122 83 54
48 0 0.54)
X =[103:33: 0 0/
08983 0]
We have

= {(1, D (1.4, 2, 1), 2 2) (A2 40} 3)}

A solution of the system (N'is
(Mx’uv,“z-n,w vivl)= (0 2.0 4 3, s, ?)

Since_there is (1, 2) €Ax\A such that O"ﬂ 0 and o} <0 for each
i, J)EAX\A dndk<p.wego to step 7. Wehdve P
{(1 l) (1, 2), (1 4) (2, 1) (2, 2) (2,4, (3, 1) (3, 2)}

Since A}(\A L @ wéput k= 2(1nd we go to step 3. A solutlon of the system
(7 is

@}, 3,03, vi v vivd) = (0 -1,-3,3, ,-,8)
Since there is (2, 4) € Ay \ A such that 04 —4>0 we gp to‘ step 10. We have
L2, l) @ 4)}andL"—{(2 1),(1 4].0= s4and e
A= {(], l) 2,1, (7 2),(2, 4) (3 1) (3 2 ( ).

A solutionof the system (7)is |
W, 18,13, vE V3 v vD =(0.-1,-3,3, 1,3, 4),
Since there is (3, 1) € Ak \ A so that o) =4>0, we go to step 10, We have L*
= {(2~ 2)- (3‘~ l)}s L= {(2s 1)- (3, 2)} and O = 49. The new A is
=1L D@D, (7 2),(2,4).3,1),(3,2.3.3).
A 5olunon of the system (7) is ' Sl = i

PR (”l ”') “" 3 \'r~ V%,‘"_‘%.-;v% ) T (0- 3;' ls 3* 5! 73 8)
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* Since' there is'(1,2) € A} WA so that OLI7 =0 and oc,j <0 'for each (i, j) €

ALY\ A and k <p, we go'to step 7. We have
_ A% =11 1), (1,2), (1,4), 2, 2), (2, 4), (3,._ 1),(3,2), (3., 3}
Since A} \AzQ we.putkz 3.and go to step 3. A solution of the system (7) is
(u,,uz,uz,vf,v,,vg,v‘t) 0,5,4,5,7, 11, 13).
There is (1 4) € AX \ A ‘such that aj, =9 >0. Then we go to step 10. We have
L*={(1,4),(2,2), 3, D} L= {(1, 1), (2,4), (3,2)},

8 = 40,
= {0, 1), (1,4),(2,2), (2.4), 3, 1), (3, 3)).
and
62 0 040
(8) . X=| 0120 014
89 0123 0

A solution of the system (7) is
(uf,ug,u:;, v?, v%, v;, v3)=(0, —4,4,5,-2,11, 4).

Since o <0, for all (i, j) € A} \ A, we have that X given by (8) is a Pareto
transport plan for the multicriteria transportation problem given by Table 1.
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