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ON A POSSSIBLE DETERMINATION OF THE FRAME BOUNDS

DANIELA CATINAS

Abstract. We give conditions which ensure that the subset {z,,,n € N*} of a separable
real Hilbert space M is a frame, and we obtain formulas for the frame bounds in terms of
the eigenvalues of the Gram matrices of the finite subsets.

1. INTRODUCTION

In a separable Hilbert space H, a subset {e,,n € N} is called a frame
if there exists A,B, B > 0, A < oo (called the frame bounds) such that
Blz|* < Z [(z,ex)]* < Alz|?, for every £ € H. For such a sequence,

neN
we can find the set {&,,n € N} (called the dual frame) having the bounds

A~1,B~! and allowing the reconstruction = Z(x,en)én = Z(m,én)en,

neN neN
for every € H (see [2]). The advantage of the frames over the orthonormal

and complete bases (which allow the Fourier expansion z = Z(m,en)en,
neN
Vo € H) is that the set {e;,n € N} need be neither orthonormal nor linearly
independent. Moreover, if A = B (tight frame), than that frame allows the
unique expansion £ = A" Z (z,en)en, Vo € H, similarly to the Fourier one.
neN

2. PRELIMINARIES

In this section we remind some known relations which we shall use in the
following.

Let {zy,n € N*} be a subset of the separable real Hilbert space (H, (-, -)),
z € H and (-,-) the standard Euclidean product in R™. The Gram matrices
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associated to {z,n € N*}, defined by

<.’131,$1> <$l)$2> (1131,33”)

(z9,31) (T2,%2) ... (®2,%n) e N,
Gn:G(wla-"awn): . y

(T, T1) (Tn,T2) - (T, Tn)

he following properties: . ' -

- ;’L All thegeigenvalues of the matrices G, are n(.)nnegatlve numbe‘rs., if

the set {:El Ty} 18 linearly independent, then these eigenvalues are positive.
1 o ag

P2: The system

CT'(-’E] ;:El) - (‘3‘('})1,‘]’,2) +...+ C?’L<.T1,$n> = <CU1)$>
(2.1)

My 1) + G {@ny B2) 4 -+ Ci{ETns Tn) = (zn, z)

' i x € H, since if a row of
with the unknowns cf,ch, ... ,Cn 18 solvabl‘e foF every th, o
the matrix of coefficients is a linear combination of the other ,
saﬁle thing happens in the augmented matrix. TN
If rank G, = p = p(n), (for example Ty (1),- . Zr(p) axa. inearly
endent, where 7, is a permutation of the set 5 0 N ) 2.3..!_1(1 an(erl]),‘;_.O.I;
I; @ a;e linear combinations of them), then we will consider the soluty
Tt

(Rl LErE ,cn) with (C¢H(1)’ e C'Trbn(p)) as the solution of the linear system
CTIL (an (1)» iE)
(2.2) GTn(p) = :
Cg <$Tn (p)> m)
4 _ ...=¢" ., =0.(We have denoted Gr(p) = G(Tr(1)s - -+ » Tr(p))-
and €7 (p41) = *+* = Cra(n)

Denoting by AP and AJ#* the smallest, respective the largest eigenvalue
i 'ri’ L S . - -« . -
of the Gram matrix G, then the following mequa,htlesnhold.

P3: )\:{lin (W y)e < <G:"a'.‘hy)e < /\?a}{(yar!r{z;, vy e R v -

Pa: NGy, he < (G Gute < A (Gny Y)er VY €

_ 2 _{ymax 7 = G’%_
Proof. (Gny,Gny>e—/\§?aX(Gny,y>e—<Gnyay>e (An™ Gy, yhe = ((

AEMGR?F ; E{)); ‘eaqily proved that if A is a symmetric matriX. RRUILE L diagonfﬂ
f Ig Lc‘éliagi? _ (min Amaxy and P is a polynomial, then the matrix
orm B, I e

i i max
P(A) has the diagonal form C, with dl&g(}’ = gP(ﬁ\,Tm;Z,G ..,P(An ))-
Hence the diagonal form of the matrix Gy — Ayl 18

i in _ jymax . max )\max'—Agax :
diag(G2 — AR Gp) = (AT (0" — An ), - e ey A )
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All its eigenvalues are nonpositive numbers, so (G2 = 2maxG Yy, 4, is a
negative definite quadratic form, whence the stated inequality.

In the same way, (Gny, Gry)e — /\?ir.l<Gnyay>e i ((G% T A%‘i“Gn)y,y)e-
The diagonal form of the matrix G2 — AP @G,, is -

diag(G} — AT Gr) = (Apim(Amin — yminy | ymax(ymax _ ymin)

All its eigenvalues are nonnegative numbers, so ((GZ — ARG Yy, y)e is
a positive definite quadratic form, whence the stated inequality. d

We will study the set {z,, : n. € N*}, which may be linearly dependent.

3. PROPERTIES OF THE SUM (z1,2)" +... + (z,,2)%, 2 € H, « #0

Consider in the beginning a fixed n € N*,

<.’I?1,.’,B)
Let Cy = (¢}, cf,...,c") and X, = . The system (2.1) may be
(Tn, )
written as G, Cl = X,,.
If we suppose that Tr, (1) Tz, (p) are linearly independent and Tr, (k) k=

p + 1,n, are linear combinations of them (p = p(n)), the solution of the system
(2.1), considered in P2, may be written as

oy {Cme = G ot
cfn(pﬂ) == cﬁn(n) =0
where
<$Tn(1)’ z)
(3.2) Gpn) = G(Tr, 1)+ -+ Ty () a0 Xy = : ¥
(@7 (v, )

Consider the expression

BE(Xy) =z, 2) + ...+ d{zp, 2) = Cp X
In the case when (c7,...,c"
becomes the quadratic form

BE(Xpm)) = CnXn = (G iy Xpn)s Xp(n) e

) is the solution (3.1) of the system (2.1), it

The eigenvalues of the matrix Gg(ln) are the inverse of the eigenvalues of

Gp(n), (Which are positive numbers), so, taking into account P38, we shall have
that:

1 1
(33)  BXpm) = (G Xotwy Xnter)e < simis (Kot Xt ey



6 Daniela Catinag

AR (1) being the smallest eigenvalue of the matrix Gp(n)-

Remark 1. Instead of the linearly independent elements Zr, (1) - - » T (p)
we may take other linearly independent elements Zs (1),--+sTon(p) w1th On
permutation of {1,2,...,n}, different from 7. Hence, the matrlx Gp(n) 18 1Ot

unique, so it is poss1ble to find more values for AMi?(p). We will choose the

largest of them.

CONSEQUENCES: '
1. Let (?,...,c) be an arbitrary solution of the system (2.1). According
to P4 we obtain:
n n
Sowal? = o,z + .+ dilen))
k=1 =1

k
e (GnCEaGnCr%e < )\,Ta’((GnCE,C;{)e
n
(3.4) = S R (g, 21) + e {mrs )+t Mz, Tn))
k=1

n
T )\fax Z c}rcl <xk7 :L‘)
k=1

Remark 2. When p(n) = n, the above inequality can be immediately
obtained: from P3 it follows that

(Xn1Xn> > (GﬁleXn>e =T E(Xn)a

)\max

n n
ie. Y (ok,3)? < AT chak, @)

2. From (3.3) we obtain:
<Xn7Xn> > (Xp(n)aXp(n)> 2 Agznm(p)E(Xp(n))v le.

p
(3_5) Z($ka$)2 > Z(m'rn(k) > )\mm Zc,r (k) L (k) T z),

where (c7,...,c?) is the solution of the system (2.1) defined by (3.1).

L 12

4. PROPERTIES OF THE SUM Y ci(zi, @), z € H, 2 #0, (ci,...,Cn)
k=1 .
SOLUTION OF THE SYSTEM (2.1)

Suppose a fixed n € N* and p defined at the beginning of section 2.
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THEOREM 1. Let F, : R" = R, F,(t1,...,t,) = (z — zthk,x—~

Ztkmk), and (ct,...,cp) an arbitrary solution of the system (2.1). Then:

°. If p=mn, then mink, = (z,z) Zc (zg, T

p
2°. If p < n, then minkF, (z, ) ch (Truk) ) = (2)2) —
k=1

=

CZ <£L'k, l’)
k=1

Proof. 1°. The necessary conditions for extremum, % S () MELASSES
lead to the system (2.1). The Hessian matrix of the function F, is, at any
point, the Gram matrix G(z1,...,2,), which is strictly positive defined cf.
P1. So, F, will have a minimum attained at (cf,...,c"), the solution of the
system (2.1), namely:

minF, = (z,z) — Zcﬂ(wk,x).

k=1
O
2°. First we prove the following auxiliary results.
LEMMA 1. Let (c! (1) O )) be the solution of the system (2.2) and

(di,....,d7%) an arbitrary solution of the system (2.1).
n P

Then Zdﬁ(xk,x) = Zcﬂn(k) (Trn(k)> @), 1-e. then value of the function
k=1 k=1
P
Fy, is the same at every stationary point: (z,z) — Zcﬁn(k) (T (i)> ) -
k=1

Proof. For the sake of simplicity we omit the upper indices and we con-
sider that zi,...,z, are linearly independent and z,4,..., %, are linear com-
binations of them:

Tpri = Y CkTk, § = 1,n — p, with oy € R.
k=1

Then the solution of the system (2.2) can be written as (ci,...,cp).
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The system (2.1) becomes:

{

(z1,21)dy + ... + (z1, p)dp = (T1,21) deﬂz:a]k T1,Tk)
7=1

P
§ (@p,z1)dr + -+ (@p, 2p)dp = (T1, Tp) Z dp+j Z ik {Tp, Tk)
j=1

P
(o) dietie: - A (Tr, Tp)dp = (T1,Tn) Z @SS Zaﬂk Ll T
j=1

.\

. . Ao ob e
Its general solution will be (di,. .. ,dp), with d; = g—gﬁ;, i = 1,p and dpy1,
., dp, arbitrary, the matrices A;, 1 = 1, p, being given by
n—p P
(z1,21) - {21, %i-1) (@ %1) = '21 dp-tj kzl jp(T1, Tk)
j= =
A=
P
(zp, 1) - (ZpyTic1) (@, %p) — Zl dp+j 25 Ok {Tp, Th)
J: _m—
<I1,$i+1> oo <.’121,.’L‘p>
(@, Tit1) - - (Tp, Tp)
We get
n P n—p
S dplok,m) = ) dilwi @) + > dprifzpriyz) =
k=1 i=1 i=1

detG Z detA .’E“ + ledP‘H Zajk Tk, T

If we split det A; after the column ¢ we obtain:

(z1,21) ... (&1, 2i-1)  (Z31)  (T1,%i41) .. (1, Tp)

det 4; = ) i
(Tp, 71} . . - {Tpy Ti—1) () (28, Tip1 )% 1 (xp, Tp)
n—p n—p

Z dpy s det Gp = \|c— Z dpﬂ-aji det Gp.
=1 j=1
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n
S0, Zdi<$i,$> o Z de-]a]z (z;, ) + de-l—] Zaﬂc (Tp,x) =
. =1

Finally, the value of F,, at any stationary point is
P

z) — Z Cfn(k) <33m(1c)a33>~ O
k=1

LEMMA 2. The stationary points of Fy, are points of minimum.

Proof. The function F), is in fact a second order polynomial with n vari-
ables. Writing the Taylor formula at an arbitrary stationary point (dy,...,d,)
we get (taking into account the fact that the Hessian matrix of F,, is the Gram
matrix Gp):

Fn(tla"wtn) N d17 +Z

o 72 Gn(ml,...,mn)Y, Y = ( 1= A1y, by —dp)T.
Since YT'G,Y > 0 (cf. P1, the matrix G, is positive defined), we obtain:
Fn(tl, — ,tn) > Fn(dl, . ,dn), V(tl, e’ ,tn) S Rn,

ie. (di,...,d,) is a point of minimum. O

. )(tk—dk)—l-

The two lemmas show that the minimum value of F, is

P
o) = > Ay (T k) )
k1

A consequence of lemma 1 is the following equality: .

/4
(4.1) > (Tra(er 3 ch Tiy T
k=1

whence the stated affirmation 2°.
Relations (4.1) and (3.5) imply:
n n
(4.2) > a7 > X (p) Y cR(wr,®), VneN
k=1 k=1
On the other hand, by P4 we obtain, using the same equalities as in the
consequence 1, section 2, that

n

n
(4.3) Z(zk,x)Q > )\;mianZ(mk,w), Vn € N*.
k=1

k=1



10 Daniela Citinag 8

where A2™1 is the smallest positive elgenvalue of the matrix @,,.

5. MAIN RESULT

THEOREM 2. Let {z,,n € N*} be o subset of the separable real Hilbert
space H and Gy, the Gram malrices associated to sets {zy,k =1,... ,n},n €
N*. We denote by A = max{ A\ (p), AR} and A the largest eigenvalue
of Gy.

Let A = limsup A7 and B = lim inf \™7,
n-—>00

n—o0
The following statements are true:

x
1. If A < oo, then Z(a:k,x)z < Allz||? Vo e H.
k=1

(e}
2. Ifspan{z,, n € N*} = H and B > 0, then Bllz|? < Z(zn,x)Q, Vo €
n=1

H.
3. If A< oo, B>0 and span{z,, n € N*} = H, then the set {z,, n €
N*} forms a frame in .

Proof. 1. Let x € H and € > 0. There exists no(e) such that \"®* < A 4
n n

€, Yn > no(e). From (3.4) it follows that Z(xk,x)z <(A+¢) Zcﬁ(azk,x),

k=1 k=1
Vn > no(e), where (c},...,c") is an arbitrary solution of (2.1). Take an
arbitrary n > ng(e). Since Fy,(¢y, ... ytn) 20, V{1, ... t,) € R™ we have
n 1 n
> i i )
<.’17,$> _ch<$k,$> ~A+e <"'Ck>1m>
el k=1
Keeping the extreme sides and passing to limit we get
1 [e.0]
T 2
<.’I),{E) = Ate <$k:a$> )
k=1
inequality which holds for every e > 0.
So
(o0}
(5.1) D (zk, ) < Alef?.
k=1

2. Assume that the set {z,,,n € N*} is closed in H, (span{z,,n € N*} =
#H), and let £ € H, € > 0. Then there exists n(e) € N* and (c,*;)k:m such

that Fn(ci,...,ch) <e, ¥n > n(e).
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From (4.2) and (4.3) it follows that there exists 7, (¢€) such that

n n
(5.2) D ak,3)? > (B-¢) > Rlmk, z), Vn > n(e),

k=1 k=1
where (cf,...,c) is an arbitrary solution of (2.1). Consider now n = max
{n(e),n1(e)}. Taking into account Theorem L,y we have: Fy(ch,...,c%) <

n
Fo(e}, 0. e<Er e Zcﬂ(wk,x) > (z,z) — €.
k=1

Consequently, by (5_.2),

o0 n n

D (@na)? 2 (zh,2)% > (B—e) > g, ) > (B —e)((z,z) — e).

n=1 k=1 k=1

Keeping only the inequality Z(:pn, )’ > (B+¢)((=, x) —¢), which holds

n=1
for every € > 0, it follows
(5.3) > (@n,7)? > Bla||.
n=1

3. The statement is an immediate consequence of the previous two affir-
mations. []

6. A PARTICULAR CASE

In the separable real Hilbert space % we consider the orthonormal set
{Pn,n € N*}. We construct the set {en,n € N*} in the following way:

a

1
€1 = a11p1

1 1
€2 = a91P1 + aop2

e = a,lclpl L w a}gkpk
(6.1) Ck+1 = 11Dkt

2 2
€k+2 = 021Dk+1 + . .. + 59Dk 42

exk = ailpkﬂ + ... 4 a%kpgk
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1, _¢ 1 pk+l k+1 o i

or By = AP, E;T = A2pk+ y-.., where 4,, = (a%‘?)i:l,k’j:l,i, E, =
T gk+1 _ T i T :
(ETFIRPIEn oW A= (€kt1,.-rem)T, ..., Ey = (e,...,ei4k-1)T, the matri-

ces Pkl, P,f“, ... being defined in an analogous way.

The matrices A, are triangular and we may assume they have different
dimensions. Relations (6.1) which define the set {en, n € N*} may be written
in matrix form: £ = M - P, where E = (E,iE,f“ L)TP = (P,CIPIQH'1 T
and M is a block diagonal infinite matrix: diag(M) = (A1 45.. ). ‘

Denoting by G, the Gram matrix associated to the blocks Al Ay, Ay,
we get:

Al — M
Ay — A\,
det(G,, — M) =
An — A
= ‘Al—/\Ikl-IAg—/\Ik]-...-]An—)\Ikl.
In this way, the conditions A < co and B > 0 are easily satisfied, taking

for instance matrices 4,, having the same real positive eigenvalues.
The coeflicients afj must be taken such that span {e,,n € N*} = H.

7. COMPARISON WITH EXISTING RESULTS

In [3] is given an equivalent condition under which a frame is a Riesz

basis of a separable Hilbert space and there are obtained (using a different
in 2
min
approach) formulas for the Riesz bounds: lim sup(n—)

Amax
n—00
B and liminfA"®* for the upper bound A. Using P4 it can be proved that
n—oo
( )\min)Q
n
Agmx

for the lower bound

can be replaced by )\;ni“ (which is a better value) and, at the same

time, an optimal lower bound for the frame {z; : i = 1,n} considered in [3].
The conditions of closedness (condition 2° in Theorem 2) is imposed in [3] too.

The advantage of our results consists in the fact that the set {z;i:1 €N}
need not be linearly independent, as it was assumed in [3]. Though, we con-
sidered here only real Hilbert spaces.
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