DEGENERATED HOPF BIFURCATION IN THE FITZHUGH-NAGUMO SYSTEM. 2. BAUTIN BIFURCATION

CARMEN ROCŞOREANU, NICOLAIE GIURGITEANU, ADELINA GEORGESCU

Abstract

The results on the Hopf bifurcation obtained in [1] are completed with those concerning the degenerated Hopf bifurcation of Bautin type. They are deduced by normal forms technique and concern a biodynamical system related with Van der Pol oscillator. Numerical investigation carried out by methods from [2] are also reported.

1. GOVERNING EQUATIONS

The Hopf bifurcation corresponds to the emergence of oscillatory regimes from equilibria and are of fundamental importance in science and engineering. Certain of the oscillations govern the heart functioning, whence the special interest in oscillator (e.g. Van der Pol) for biology and medicine. Among the most famous models used in these fields in [1] and [3] we considered the FitzHugh-Nagumo system

$$
\begin{align*}
& \dot{x}=c\left(x+y-x^{3} / 3\right) \tag{1}\\
& \dot{y}=-(x-a+b y) / c
\end{align*}
$$

where a, b and c are real parameters, $c>2$. Suppose that c is fixed, therefore only two parameters (b and a) remain. For (1), (2) the Hopf bifurcation vatues (b, a) are situated on the Hopf bifurcation curves $H_{1,2}$ defined by the equations

$$
\begin{equation*}
a= \pm \frac{b}{3}\left(-2+3 / b-b / c^{2}\right) \sqrt{1-b / c^{2}},-c<b<c \tag{3}
\end{equation*}
$$

A Bautin bifurcation point is a degenerated Hopf bifurcation point at which the direction of the Hopf bifurcation is reversed: the subcritical Hopf bifurcation becomes a supercritical bifurcation or conversely. In addition the limit cycles existing subcritically, continue to exist supercritically too (and they have a very slow variation with the parameter). This phenomenon can occur in dynamical systems of dimension at least equal to two and for two or more parameters.

At a Bautin bifurcation value, in the (b, a)-parameter space, a new curve $B a$ is formed near the Hopf bifurcation curve. It consists of those values at which two limit cycles collide and form a nonhyperbolic limit cycle. This paper is mainly aimed to determine this curve $B a$ and the value ($b_{B a}^{*}, a_{B a}^{*}$) at which it sets in from the Hopf bifurcation curve H_{1}. Due to the symmetry with respect to a of (1), (2) we shall fird the Bautin bifurcation value and a curve of nonhyperbolic limit cycle values for $a<0$, too.

Remind that the parameter c was assumed fixed and $b_{B a}^{*}$ and $a_{B a}^{*}$ were determined taking into account that (fixed) value of c. . If c varies, then, in the (b, a) plane, $\left(b_{B a}^{*}, a_{B a}^{*}\right)$ describes a curve, locus of Bautin bifurcation points. This curve will be also determined.

One among the methods used to prove the existence of the Hopf and Hopf degenerated bifurcation is based on the normal forms: the given system is transformed, by some homeomorphisms, into a typical simple (normal) form, topologically equivalent to the given system and presenting the Hopf bifurcation. The crucial point is that the first Liapunov coefficient is nonvanishing. If this condition is not satisfied, the Hopf bifurcation degenerates. Then, if the second Liapunov coefficient is nonvanishing, the Bautin bifurcation occurs [4], [5]. We recall that the Liapunov coefficients are the coefficients of the higher order terms in the normal form equation.

For an easier application of normal form theory we make the change of variables

$$
\begin{equation*}
x_{1}=x-x^{*}, \quad x_{2}=y-y^{*} \tag{4}
\end{equation*}
$$

Here $\left(x^{*}, y^{*}\right)$ is an equilibrium point which depends on a and b, namely x^{*} and y^{*} are the solutions of the equations

$$
\begin{equation*}
\left(x^{*}\right)^{3}-3 x^{*}(1-1 / b)-3 a / b=0, y^{*}=\left(a-x^{*}\right) / b . \tag{5}
\end{equation*}
$$

In order to apply this theory, first we transform (1) and (2) such that $\left(x^{*}, y^{*}\right)$ be at the origin. Thus, replacing (4) into (1) and (2) and taking into account (5) we obtain the system

$$
\begin{equation*}
\dot{x}_{1}=c\left[\left(1-\left(x^{*}\right)^{2}\right) x_{1}+x_{2}-x^{*} x_{1}^{2}-x_{1}^{3} / 3\right], \dot{x}_{2}=-\left(x_{1}+b x_{2}\right) / c \tag{6}
\end{equation*}
$$

which has the equilibrium point $\left(x_{1}, x_{2}\right)=(0,0)$ for every pair of parameters (b, a) Letting $\mathbf{x}=\left(x_{1}, x_{2}\right)^{T}$ and $\alpha=\left(b-b^{*}, a-a^{*}\right)$, the system (6) becomes

$$
\begin{equation*}
\dot{x}=\mathbf{A} x+\mathbf{F}(\alpha, x), \tag{7}
\end{equation*}
$$

where the constant matrix \mathbf{A} and the nonlinear vector \mathbf{F} depend on the parameters and have the form

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{cc}
c\left(1-\left(x^{*}\right)^{2}\right) & c \\
-1 / c & -\left(\alpha_{1}+b^{*}\right) / c
\end{array}\right) \\
& \mathbf{F}=\left(-c x^{*} x_{1}^{2}-c x_{1}^{3} / 3,0\right)^{T} \equiv\left(F_{1}, F_{2}\right)
\end{aligned}
$$

In this way we have $\mathbf{F}(\alpha, 0)=0$, for every point $\left(b^{*}, a^{*}\right)$ in the (b, a) plane. The matrix \mathbf{A} has the eigenvalues $\lambda_{1,2}=\lambda_{1,2}(\alpha)=\mu(\alpha) \pm i \omega(\alpha) \equiv \mu+i \omega$, where

$$
\begin{gather*}
\mu(\alpha)=\left[c^{2}\left(1-\left(x^{*}\right)^{2}\right)-\left(\alpha_{1}+b^{*}\right)\right] /(2 c) \tag{8}\\
\omega(\alpha)=\sqrt{4 c^{2}-\left[c^{2}\left(1-\left(x^{*}\right)^{2}\right)+\left(\alpha_{1}+b^{*}\right)\right]^{2}} /(2 c)
\end{gather*}
$$

and x^{*} depends on α, a^{*} and b^{*}.
The point $\left(x^{*}, y^{*}\right)$ is a Hopf bifurcation point corresponding to the bifurcation value $\alpha^{*}=0$ (i.e. $(b, a)=\left(b^{*}, a^{*}\right)$) if $\mu(0)=0, \omega(0) \neq 0$ and $\ell_{1}(0) \neq 0$, where $\ell_{1}(\alpha)$ will be defined in the sequel.

Let us remark that $\mu(0)=0$ implies

$$
\begin{equation*}
x^{*}(0)= \pm \sqrt{1-b^{*} / c^{2}} \tag{9}
\end{equation*}
$$

hence the Hopf bifurcation values in the (b, a) plane are situated on the curves $H_{1,2}$ defined by (3), i.e.

$$
\begin{equation*}
a^{*}= \pm \frac{b^{*}\left(-2+3 / b^{*}-b^{*} / c^{2}\right)}{3} \sqrt{1-b^{*} / c^{2}}, b^{*} \in(-c, c) \tag{10}
\end{equation*}
$$

In this way, at the bifurcation value $(b, a)=\left(b^{*}, a^{*}\right)$ we have $\alpha=0$ and $\omega^{2}(0) \equiv \omega_{0}^{2}=1-\left(b^{*}\right)^{2} / c^{2}>0$.

For a simpler writing we introduce the notation

$$
\begin{array}{cc}
E_{1} \equiv E_{1}(\alpha)=c\left(1-\left(x^{*}\right)^{2}\right), & E_{10} \equiv E_{1}(0)=b^{*} / c \\
E_{2} \equiv E_{2}(\alpha)=c x^{2} & E_{20} \equiv E_{2}(0)= \pm \sqrt{c^{2}-b^{*}} \tag{11}\\
E_{3} \equiv E_{3}(\alpha)=-b / c=-\left(\alpha_{1}+b^{*}\right) / c, & E_{30} \equiv E_{3}(0)=-b^{*} / c
\end{array}
$$

With this notation, (6) and (8) become

$$
\begin{equation*}
\dot{x}_{1}=E_{1} x_{1}+c x_{2}-E_{2} x_{1}^{2}-c x_{1}^{3} / 3, \dot{x}_{2}=-x_{1} / c+E_{3} x_{2} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\mu=\left(E_{1}+E_{3}\right) / 2, \omega=\sqrt{1-\left(E_{1}-E_{3}\right)^{2} / 4} \tag{13}
\end{equation*}
$$

According to the values of the parameters occurring in E_{1}, E_{2} and E_{3}, the system (12) can be reduced to various normal forms, each of which presenting
a certain dynamic bifurcation phenomenon. For instance, the Hopf bifurcation occurs if (12) proves to be topologically equivalent to the normal form

$$
\begin{equation*}
\dot{\mathbf{z}}=\left(\beta_{1}+i\right) \mathbf{z}+\beta_{2} \mathbf{z}|\mathbf{z}|^{2}+O\left(|\mathbf{z}|^{4}\right) \tag{14}
\end{equation*}
$$

where $\beta_{1}(0)=0$ and $\beta_{1}(0)=0$.
The Bautin bifurcation takes place whenever, by means of several invertible transformations, the system (12) can be reduced to the normal form

$$
\begin{equation*}
\dot{\mathbf{z}}=\left(\beta_{1}+i\right) \mathbf{z}+\beta_{2} \mathbf{z}|\mathbf{z}|^{2}+s \mathbf{z}|\mathbf{z}|^{4}+O\left(|\mathbf{z}|^{6}\right) \tag{15}
\end{equation*}
$$

where $\beta_{1}(0)=0$ and $\beta_{1}(0)=0, s= \pm 1$. In this way the phase portraits of (12) and (15) will be topologically equivalent. In (14) and (15), \mathbf{z} is the new unknown function, $s= \pm 1$ and β_{1} and β_{2} are the new parameters depending on the former parameters α_{1} and α_{2}. The bars stand for the modulus of the complex value of \mathbf{z}.

In order for this sequence of transformations be invertible some restrictions must be fulfilled [5]. Any time they occur, we shall specify them.

2. SYSTEMS EQUIVALENT TO (12)

The first transformation is defined with the aid of the eigenvector \mathbf{q} of the matrix \mathbf{A}, which, with notation (11), reads $\mathbf{A}=\left(\begin{array}{cc}E_{1} & c \\ -1 / c & E_{3}\end{array}\right)$, and the eigen vector \mathbf{p} of \mathbf{A}^{T}. Here \mathbf{q} corresponds to the eigenvalue λ_{1} of \mathbf{A} and \mathbf{p} to $\overline{\lambda_{1}}$ and T stands for the transposition. Since \mathbf{A} has real entries, its second eigenvalue is $\overline{\lambda_{1}}$. In general, $\mathbf{q}, \mathbf{p} \in \mathbb{C}^{2}$. In addition we have

$$
\begin{equation*}
\mathbf{q}=\left(q_{1},\left(\lambda_{1}-E_{1}\right) q_{1} / c\right), \mathbf{p}=\left(p 1, c\left(E_{1}-\overline{\lambda_{1}}\right) p_{1}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{p_{1}} q_{1}=\left[1-\left(\lambda_{1}-E_{1}\right)^{2}\right]^{-1} \tag{17}
\end{equation*}
$$

It can be immediately checked that

$$
\begin{equation*}
\mathbf{A} \mathbf{q}=\lambda_{1} \mathbf{q}, \mathbf{A}^{T} \mathbf{p}=\overline{\lambda_{1}} \mathbf{p},\langle\mathbf{p}, \mathbf{q}\rangle=1,\langle\mathbf{p}, \overline{\mathbf{q}}\rangle=0 \tag{18}
\end{equation*}
$$

Here $\langle\mathbf{u}, \mathbf{v}\rangle=\overline{u_{1}} v_{1}+\overline{u_{2}} v_{2}$ is the scalar product in \mathbb{C}^{2}. Since λ_{1} is a complex number it follows that $\mathbf{p}, \mathbf{q} \in \mathbb{C}^{2}$. The bar over quantities stands for the complex conjugacy.

The first transformation reads

$$
\begin{equation*}
\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{zq}+\overline{\mathbf{z q}} \tag{19}
\end{equation*}
$$

with $\mathbf{z}, \overline{\mathbf{z}} \in \mathbb{C}^{2}$. Taking the scalar product of the complexified form of (12) by \mathbf{p} and taking into account (18) $)_{3,4}$ we find, writing λ instead of λ_{1}

$$
\begin{equation*}
\dot{\mathbf{z}}=\lambda \mathbf{z}+g(\alpha, \mathbf{z}, \overline{\mathbf{z}}) \tag{20}
\end{equation*}
$$

where

$$
\begin{gather*}
g(\alpha, \mathbf{z}, \overline{\mathbf{z}})=\langle p, F(\alpha, \mathbf{z q}+\overline{\mathbf{z q}})\rangle=p_{1} F_{1}(\alpha, \mathbf{z q}+\overline{\mathbf{z} \mathbf{q}})= \\
=\sum_{k+l \geqslant 2} \frac{1}{k!l!} g_{k l}(\alpha) \mathbf{z}^{k} \overline{\mathbf{z}}^{l}=\frac{1}{2} g_{20} \mathbf{z}^{2}+g_{11} \mathbf{z} \overline{\mathbf{z}}+\frac{1}{2} g_{02} \overline{\mathbf{z}}^{2}+ \tag{21}\\
+\frac{1}{6} g_{30} \mathbf{z}^{3}+\frac{1}{2} g_{21} \mathbf{z}^{2} \overline{\mathbf{z}}+\frac{1}{2} g_{12} \mathbf{z} \overline{\mathbf{z}}^{2}+\frac{1}{6} g_{03} \overline{\mathbf{z}}^{3} .
\end{gather*}
$$

Equation (20) can be also obtained taking into account that $\mathbf{z}=\langle\mathbf{p}, \mathbf{x}\rangle$, hence $\dot{\mathbf{z}}=\langle\mathbf{p}, \dot{\mathbf{x}}\rangle$ where $\dot{\mathbf{x}}$ is given by (12). We found

$$
\begin{array}{cc}
g_{20}=-2 \bar{p}_{1} E_{2} q_{1}^{2}, & g_{30}=-2 c \bar{p}_{1} q_{1}^{3} \\
g_{11}=-2 \bar{p}_{1} E_{2} q_{1} \bar{q}_{1}, & g_{21}=-2 c \bar{p}_{1} q_{1}^{2} \bar{q}_{1} \\
g_{02}=-2 \bar{p}_{1} E_{2} \bar{q}_{1}^{2}, & g_{12}=-2 c \bar{p}_{1} q_{1} \bar{q}_{1}^{2} \tag{22}\\
& g_{03}=-2 c \bar{p}_{1} \bar{q}_{1}^{3}
\end{array}
$$

So far q_{1} and p_{1} satisfied relation (17) therefore one of them is still arbitrary. Then with the choice $q_{1}=1$ we find

$$
\begin{gather*}
g_{20}=g_{11}=g_{02}=-2 p_{1} E_{2} \equiv 2 g, \tag{23}\\
g_{30}=g_{21}=g_{12}=g_{03}=-2 c \bar{p}_{1} \equiv 6 g r .
\end{gather*}
$$

and, correspondingly (21) becomes

$$
\begin{equation*}
\dot{\mathbf{z}}=\lambda \mathbf{z}+g(\mathbf{z}+\overline{\mathbf{z}})^{2}+g r(\mathbf{z}+\overline{\mathbf{z}})^{3} \tag{24}
\end{equation*}
$$

Let us now perform another invertible transformation $(\mathbf{z}, \overline{\mathbf{z}}) \longleftrightarrow(\mathbf{w}, \overline{\mathbf{w}})$

$$
\begin{equation*}
\mathbf{z}=\mathbf{z}_{1}+\mathbf{z}_{2}+\mathbf{z}_{3}+\mathbf{z}_{4}+\mathbf{z}_{5}+O\left(\left|\mathbf{w}^{6}\right|\right) \tag{25}
\end{equation*}
$$

where

$$
\mathbf{z}_{1}=\mathbf{w}
$$

$$
\mathbf{z}_{2}=\frac{h_{20}}{2} \mathbf{w}^{2}+h_{11} \mathbf{w} \overline{\mathbf{w}}+\frac{h_{02}}{2} \overline{\mathbf{w}}^{2}
$$

$$
\mathbf{z}_{3}=\frac{h_{30}}{6} \mathbf{w}^{3}+\frac{h_{21}}{2} \mathbf{w}^{2} \overline{\mathbf{w}}+\frac{h_{12}}{2} \mathbf{w} \overline{\mathbf{w}}^{2}+\frac{h_{03}}{6} \overline{\mathbf{w}}^{3}
$$

$$
\begin{align*}
& \mathbf{z}_{3} \tag{26}\\
& \mathbf{z}_{4}=\frac{h_{40}}{24} \mathbf{w}^{4}+\frac{h_{31}}{6} \mathbf{w}^{3} \overline{\mathbf{w}}+\frac{h_{22}}{4} \mathbf{w}^{2} \overline{\mathbf{w}}^{2}+\frac{h_{13}}{6} \mathbf{w} \overline{\mathbf{w}}^{3}+\frac{h_{04}}{24} \overline{\mathbf{w}}^{4}, \\
& \mathbf{z}_{5}=\frac{h_{50}}{120} \mathbf{w}^{5}+\frac{h_{41}}{24} \mathbf{w}^{4} \overline{\mathbf{w}}+\frac{h_{32}}{12} \mathbf{w}^{3} \overline{\mathbf{w}}^{2}+\frac{h_{23}}{12} \mathbf{w}^{2} \overline{\mathbf{w}}^{3}+
\end{align*}
$$

$$
+\frac{h_{14}}{24} \mathbf{w} \overline{\mathbf{w}}^{4}+\frac{h_{05}}{120} \overline{\mathbf{w}}^{5}
$$

The new unknown vector function is \mathbf{w}. Let us determine the so far arbitrary coefficients $h_{i j}$ such that the differential equation for \mathbf{w} becomes

$$
\begin{equation*}
\dot{\mathbf{w}}=\lambda \mathbf{w}+c_{1} \mathbf{w}^{2} \overline{\mathbf{w}}+c_{2} \mathbf{w}^{3} \overline{\mathbf{w}}^{2} \tag{27}
\end{equation*}
$$

Of course, (27) is exact up to $O\left(\left|\mathbf{w}^{6}\right|\right)$ as $\alpha \rightarrow 0$. Therefore these coefficients shall be determined from the relation

$$
\begin{equation*}
\dot{\mathbf{z}}=D \dot{\mathbf{w}}+K \dot{\overline{\mathrm{w}}} \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
& D=1+h_{20} \mathbf{w}+h_{11} \overline{\mathbf{w}}+\frac{h_{30}}{2} \mathbf{w}^{2}+\frac{h_{12}}{2} \overline{\mathbf{w}}^{2}+\frac{h_{40}}{6} \mathbf{w}^{3}+\frac{h_{31}}{2} \mathbf{w}^{2} \overline{\mathbf{w}}+ \tag{29}\\
& +\frac{h_{22}}{2} \mathbf{w} \overline{\mathbf{w}}^{2}+\frac{h_{13}}{6} \overline{\mathbf{w}}^{3}+\frac{h_{55}}{24} \mathbf{w}^{4}+\frac{h_{41}}{6} \mathbf{w}^{3} \overline{\mathbf{w}}+\frac{h_{23}}{6} \overline{\mathbf{w}}^{3}+\frac{h_{11}}{24} \overline{\mathbf{w}}^{4}
\end{align*}
$$

$$
\begin{aligned}
K= & h_{11} \mathbf{w}+h_{02} \mathbf{w} \overline{h_{1}}+\frac{h_{03}}{2} \overline{\mathbf{w}}^{2}+\frac{h_{31}}{6} \mathbf{w}^{3}+\frac{h_{22}}{2} \mathbf{w}^{2} \overline{\mathbf{w}}+\frac{h_{13}}{2} \overline{\mathbf{w}}^{2}+ \\
& +\frac{h_{04}}{6} \overline{\mathbf{w}}^{3}+\frac{h_{14}}{24} \mathbf{w}^{4}+\frac{h_{23}}{4} \mathbf{w}^{2} \overline{\mathbf{w}}^{2}+\frac{h_{14}}{6} \mathbf{w}^{\mathbf{w}} \overline{\mathbf{w}}^{3}+\frac{h_{005}}{24} \overline{\mathbf{w}}^{4},
\end{aligned}
$$

obtained by introducing (25) into (24). On the other hand, \dot{w} is given by (27). In this way (28) represents an identity of two polynomials in \mathbf{w} and $\overline{\mathbf{w}}$, whence a system of affine algebraic equations in $h_{i j}$ and c_{1} and c_{2}.

With the exception corresponding to indices 21 and 32 , all other equations allow the unique determination of $h_{i j}$. Indeed, each equation with $i+j=2$ contains a single $h_{i j}$; each equation with $i+j=3,4$ or 5 contains a single $h_{i j}$ with $i+j=3,4$ or 5 respectively and also some previously determined $h_{i j}$ with $i+j<3,4$ or 5 respectively.

The equation for h_{21} contains, in addition, c_{1} and the equation for h_{32} contains also c_{2}. It can be proved [5] that in order for the transition (25) be regular at $\alpha=0$, it is necessary to choose $h_{32}=h_{21}=0$. As a consequence, for the particular case of (6), these equations provide c_{1} and c_{2}, namely
$c_{1}=g\left(3 r+2 \operatorname{Re} h_{11}+h_{20}+\bar{h}_{02}\right)$,
$c_{2}=g\left(h_{12} / 2\left(h_{20}+\bar{h}_{02}+3 r\right)+\operatorname{Re} h_{22}+r\left(h_{30}+\bar{h}_{03}\right) / 2+\right.$
(31) $\quad+\left(h_{31}+\bar{h}_{13}\right) / 3+6 r\left(\operatorname{Re} h_{11}^{2}+\left|h_{11}\right|^{2}\right)+6 r\left(h_{20}+\bar{h}_{02}\right) \operatorname{Re} h_{11}+$

$$
+\left(h_{02}+\bar{h}_{20}\right)\left(h_{30}+\bar{h}_{03}\right) / 6+3 r / 2\left|h_{20}+\bar{h}_{02}\right|^{2}+\bar{h}_{12}\left(2 \operatorname{Re} h_{11}+3 r\right)
$$

The final expressions of c_{1} and c_{2} in terms of g and r are given in [8]. They were obtained using the software MATHEMATICA [7]. Here we quote only

$$
\begin{align*}
\operatorname{Re} c_{1}= & {\left[12 \mu^{3}(\operatorname{Re} g)^{2}-4 \mu^{2} \omega(\operatorname{Re} g)(\operatorname{Im} g)+3 \mu^{4} r(\operatorname{Re} g)+\right.} \tag{32}\\
& \left.+30 \mu^{2} \omega^{2} r(\operatorname{Re} g)+\mu G_{1}+9 \omega^{3} G_{2} \operatorname{Re} g\right] / N,
\end{align*}
$$

where

$$
\begin{aligned}
G_{1} & =\omega^{2}\left[92(\operatorname{Re} g)^{2}-16(\operatorname{Im} g)^{2}\right] \\
G_{2} & =3 r \omega-4 \operatorname{Im} g, N=\mu^{4}+10 \mu^{2} \omega^{2}+9 \omega^{4}
\end{aligned}
$$

The third transformation concerns the independent variable. It reads

$$
\begin{equation*}
\tau=\omega(\alpha t) \tag{33}
\end{equation*}
$$

and transforms (27) into

$$
\begin{equation*}
\frac{\mathrm{d} \mathbf{w}}{\mathrm{~d} \tau}=(\nu(\alpha)+i) \mathbf{w}+d_{1}(\alpha) \mathbf{w}^{2} \overline{\mathbf{w}}+d_{2}(\alpha) \mathbf{w}^{3} \overline{\mathbf{w}}^{2}+O\left(|\mathbf{w}|^{6}\right) \tag{34}
\end{equation*}
$$

where
(35) $\quad \nu(\alpha)=\mu(\alpha) / \omega(\alpha), d_{1}(\alpha)=c_{1}(\alpha) / \omega(\alpha), d_{2}(\alpha)=c_{2}(\alpha) / \omega(\alpha)$.

Here $\nu(\alpha)$ is a real function.

The next differential transformation introduces also a new time scale and
the form has the form

$$
\begin{equation*}
\mathrm{d} \tau=\left\{1-\operatorname{Im} d_{1}(\alpha)|\mathbf{w}|^{2}+\left(\operatorname{Im}^{2} d_{1}(\alpha)-\operatorname{Im} d_{2}(\alpha)\right) \mathbf{w}^{4}\right\} \mathrm{d} \theta \tag{36}
\end{equation*}
$$

It allows us to pass from (34) to
(37) $\frac{\mathrm{d} \mathbf{w}}{\mathrm{d} \theta}=(\nu(\alpha)+i) \mathbf{w}+\ell_{1}(\alpha) \mathbf{w}^{2} \overline{\mathbf{w}}+\ell_{2}(\alpha) \mathbf{w}^{3} \overline{\mathbf{w}}^{2}+O\left(|\mathbf{w}|^{6}\right)$.

The functions ℓ_{1} and ℓ_{2} are called the first and the second Liapunov coefficient respectively and they are given by

$$
\begin{aligned}
& \ell_{1}(\alpha)=\operatorname{Re} d_{1}(\alpha)-\nu(\alpha) \operatorname{Im} d_{1}(\alpha) \\
& \ell_{2}(\alpha)=\operatorname{Re} d_{2}(\alpha)-\operatorname{Re} d_{1}(\alpha) \operatorname{Im} d_{1}(\alpha)+\nu(\alpha)\left[\operatorname{Im}^{2} d_{1}(\alpha)-\operatorname{Im} d_{2}(\alpha)\right]
\end{aligned}
$$

3. THE LOCUS OF the bautin bifurcation values

In the FitzHugh-Nagumo case we have, for $\alpha=0$

$$
\begin{aligned}
\omega_{0} & =\sqrt{\left(1-\left(b^{*}\right)^{2} / c^{2}\right)}, \bar{p}_{1}=1 / 2-i b^{*} /\left(2 c \omega_{0}\right) \\
g & =-\sqrt{c^{2}-b^{*}} / 2+i b^{*} \sqrt{c^{2}-b^{*}} /\left(2 c \omega_{0}\right), r=c /\left(3 \sqrt{c^{2}-b^{*}}\right) \\
\ell_{1}(0) & =\operatorname{Rec} c_{1}(0) / \omega_{0}=\operatorname{Re} g\left(3 \omega_{0} r-4 \operatorname{Im} g\right) / \omega_{0}^{2}= \\
& =\left(-\left(b^{*}\right)^{2}+2 b^{*} c^{2}-c^{2}\right) /\left(2 \omega_{0}^{3} c\right)
\end{aligned}
$$

For those b_{H}^{*} for which $\ell_{1}(0) \neq 0$ the normal form (37) presents a Hopf bifurcation around the points $P_{H}^{*}=\left(x_{H}^{*}\left(0, b_{H}^{*}, a_{H}^{*}\right), y_{H}^{*}\left(0, b_{H}^{*}, a_{H}^{*}\right), b_{H}^{*}, a_{H}^{*}\right)$.

$$
\begin{equation*}
\left(b_{B a}^{*}\right)^{2}-2 b_{B a}^{*} c^{2}+c^{2}=0 \tag{38}
\end{equation*}
$$

the Hopf bifurcation fails and a Bautin bifurcation takes place around the point $P_{B a}^{*}=\left(x_{B a}^{*}\left(0, b_{B a}^{*}, a_{B a}^{*}\right), y_{B a}^{*}\left(0, b_{B a}^{*}, a_{B a}^{*}\right), b_{B a}^{*}, a_{B a}^{*}\right)$, where $\left(b_{B a}^{*}, a_{B a}^{*}\right)$

$$
\begin{equation*}
b_{B a}^{*}=c^{2}-c \sqrt{c^{2}-1} \tag{39}
\end{equation*}
$$

Taking into account (3), it follows the corresponding $a_{B a}^{*}$ values

$$
\begin{equation*}
a_{B a}^{*}= \pm \frac{4}{3}\left(c \sqrt{c^{2}-1}-c^{2}+1\right) \sqrt[4]{1-1 / c^{2}} \tag{40}
\end{equation*}
$$

Then, from (9) we obtain

$$
\begin{equation*}
x_{B a}^{*}= \pm \sqrt[4]{1-1 / c^{2}} \tag{41}
\end{equation*}
$$

Elimination of c between (39) and (40) yields in the ($b, a)$-plane the curve locus of Bautin bifurcation points. In order to determine it, let us recall that our reasoning made in the quoted previous papers are valid for $c>2$, in which case $b^{*}>0$. Since taking into account (39) and (40) we have

$$
\begin{equation*}
a_{B a}^{*}= \pm \frac{4}{3}\left(1-b_{B a}^{*}\right) \sqrt[4]{1-1 / c^{2}} \tag{42}
\end{equation*}
$$

It follows

$$
\begin{equation*}
\left(3 a_{B a}^{*} /\left[4\left(1-b_{B a}^{*}\right)\right]\right)^{2}=\left(1-b_{B a}^{*}\right) / b_{B a}^{*}, \tag{43}
\end{equation*}
$$

whence $b_{B a}^{*} \leqslant 1$. Then from (39) we see that $b_{B a}^{*} \longrightarrow 1 / 2$ as $c \longrightarrow \infty$. Correspondingly $a_{B a}^{*} \in\left(-\frac{2}{3}, \frac{2}{3}\right)$. Finally (43) reads

$$
\begin{equation*}
a_{B a}^{*}= \pm \frac{4}{3}\left(1-b_{B a}^{*}\right) \sqrt{1 / b_{B a}^{*}-1}, b_{B a}^{*} \in(0.5,1) \tag{44}
\end{equation*}
$$

and represents the curve locus of the Bautin bifurcation values (Figure 1).
This curve has a limit point corresponding to $b_{B a}^{*}=1 / 2$. This explains why the experiments revealed no Bautin phenomenon for $b_{B a}^{*}<1 / 2$.

Fig. 1. The curve locus of the Bautin bifurcation point for $a>0$.

Our numerical experiments were carried out at $c=5$ and b fixed, namely $b=0.5 ; 0.6 ; 0.7 ; 0.8 ; 0.9 ; 1 ; 1.2 ; 1.3$ and a variable.

They showed the existence of a Bautin bifurcation value at about

$$
\left(b_{B a \exp }^{*}, a_{\text {Ba exp }}^{*}\right)=(0.5,0.65)
$$

They agree very well with the theoretical values given by (39) and (40) for $c=5$ and $a>0$, namely $b_{B a}^{*}=25-5 \sqrt{24} \approx 0.505103$ and

$$
a_{B a}^{*}=\frac{4}{3}(5 \sqrt{24}-24) \sqrt[4]{24 / 25} \approx 0.653163
$$

Let us recall that the Bogdanov-Takens bifurcation values [4], [5] are situated at the intersection of the curves $S_{1,2}$ (corresponding to double equilibrium points) and the Hopf bifurcation curves $H_{1,2}$. Hence, these values ($b_{B T}^{*}, a_{B T}^{*}$)
describe, as c is varied, part of the curves $S_{1,2}$. Let us call them $S_{1,2 B T}$; they are locus of the Bogdanov-Takens bifurcation values.

Unlike this situation, the locus of the Bautin bifurcation values (44) is not related to $S_{1,2}$. For each c fixed, the Bogdanov-Takens bifurcation values are limit points of the Hopf bifurcation curves $H_{1,2}$ whereas the Bautin bifurcation values belong to $H_{1,2}$. In fact, the genuine locus of the Hopf bifurcation value are $H_{1,2}$ except for ($b_{B a}^{*}, a_{B a}^{*}$) i.e. it consists of the curves (3) defined for

$$
\begin{equation*}
b \in\left(-c, b_{B a}^{*}\right) \cup\left(b_{B a}^{*}, c\right) \tag{45}
\end{equation*}
$$

In this way the Bautin bifurcation values are also limit points for the Hopf bifurcation curves described by the equations (3) for the domain (45) of b.. However, since the Bogdanov-Takens as well as Bautin bifurcation values are as close as wanted to Hopf bifurcation point, the Bautin and Bogdanov-Takens bifurcations are Hopf degenerated bifurcations.

The pair ($b_{B a}^{*}, a_{B a}^{*}$) is a Bautin bifurcation point if the corresponding second Liapunov coefficient has the property $\ell_{2}(0) \neq 0$. Since $\ell_{1}(0)=0$, $\nu(0)=0$, from (35) we have $\ell_{2}(0)=\operatorname{Rec} c_{2}(0) / \omega_{0}$. Taking into account the expression of Rec_{2} from [8] and using the above expressions for ω_{0}, g and r in which $b_{B a}^{*}$ is given by (39) we find

$$
\begin{equation*}
\ell_{2}(0)=\frac{40 b_{B a}^{*}}{9 \omega_{0}^{4}} \operatorname{Reg} \operatorname{Im} g \neq 0 . \tag{46}
\end{equation*}
$$

Hence, all points of the curve (44) are Bautin bifurcation points.

4. THE NONHYPERBOLIC LIMIT CYCLE BIFURCATION

In order to pass from (37) to its normal form (15) we need an invertible parameter transformation

$$
\begin{equation*}
\mu_{1}=\nu(\alpha), \mu_{2}=\ell_{1}(\alpha) \tag{47}
\end{equation*}
$$

which is regular at $\alpha_{s}=0$, i.e.

$$
\operatorname{det}\left(\begin{array}{ll}
\frac{\partial \nu}{\partial \alpha_{1}} & \frac{\partial \nu}{\partial \alpha_{2}} \tag{48}\\
\frac{\partial \ell_{1}}{\partial \alpha_{1}} & \frac{\partial \ell_{1}}{\partial \alpha_{2}}
\end{array}\right)_{\mid \alpha=0}=\frac{1}{\omega_{0}} \operatorname{det}\left(\begin{array}{ll}
\frac{\partial \mu}{\partial \alpha_{1}} & \frac{\partial \mu}{\partial \alpha_{2}} \\
\frac{\partial \ell_{1}}{\partial \alpha_{1}} & \frac{\partial \ell_{1}}{\partial \alpha_{2}}
\end{array}\right)_{\mid \alpha=0} \neq 0
$$

Thus (37) becomes

$$
\begin{equation*}
\dot{\mathbf{w}}=\left(\mu_{1}+i\right) \mathbf{w}+\mu_{2} \mathbf{w}|\mathbf{w}|^{2}+L_{2}(\mu) \mathbf{w}|\mathbf{w}|^{4}+O\left(|\mathbf{w}|^{6}\right), \tag{49}
\end{equation*}
$$

where $L_{2}(\mu)=\ell_{2}(\alpha(\mu))$ is a smooth function of μ with $L_{2}(0)=\ell_{2}(0) \neq 0$. Finally we use the rescaling [5]

$$
\begin{equation*}
\mathbf{w}=\sqrt[4]{\left|L_{2}(\mu)\right|} \mathbf{u}, \mathbf{u} \in \mathbb{C}^{2} \tag{50}
\end{equation*}
$$

and introduce other new parameters

$$
\begin{equation*}
\beta_{1}=\mu_{1}, \beta_{2}=\sqrt{\left|L_{2}(\mu)\right|} \mu_{2} \tag{51}
\end{equation*}
$$

to produce equation (15), where instead of \mathbf{u} we wrote \mathbf{z}, presenting the Bautin bifurcation phenomenon at $\left(\mathbf{u}, \beta_{1}, \beta_{2}\right)=(0,0,0)$. In (15) we have $s=\operatorname{sign} \ell_{2}(0)$. In these conditions, in the ($\left.\beta_{1}, \beta_{2}\right)$-plane there exists a curve $B a$ tangent to H_{1} at $Q\left(b_{B a}^{*}, a_{B a}^{*}\right)$, such that for points of $B a$ the corresponding equation (15) possesses two colliding limit cycles (that is a nonhyperbolic limit cycle). It reads

$$
\begin{equation*}
\beta_{2}^{2}+4 \beta_{1}=0, \beta_{2}>0 \tag{52}
\end{equation*}
$$

Coming back to our initial variables, the equation of this curve has the form $\ell_{2} \ell_{1}^{2}+4 \nu=0$ or equivalently

$$
\begin{gather*}
{\left[\operatorname{Re} c_{2}-\frac{1}{\omega} \operatorname{Re} c_{1} \operatorname{Im} c_{1}+\mu\left(\operatorname{Im} c_{1}\right)^{2}-\operatorname{Im} c_{2}\right]} \tag{53}\\
\cdot\left(\frac{1}{\omega} \operatorname{Re} c_{1}-\frac{\nu}{\omega} \operatorname{Im} c_{1}\right)^{2}+4 \mu=0
\end{gather*}
$$

The involved equations depend on $\alpha=\left(b-b_{B a}^{*}, a-a_{B a}^{*}\right)$.
For our concrete equation (12) we represented (53) in Figure 2 for the case $c=5$. Since $B a$ is very close to H_{1}, in Figure 2 we gave a qualitative representation. This was supplemented with Table 1 for values (b, a) situated on $B a$ and H_{1}. The first three decimals of $a_{B a}$ obtained theoretically are the same as those obtained numerically.

Table 1.

Values (b, a) situated on the Hopf curve H_{1} and on the

curve $B a$		
b	$a_{H_{1}}$	$a_{B a}$
0.55	0.6223	0.6227
0.60	0.5880	0.5889
0.70	0.5193	0.521
0.80	0.4507	0.453
0.90	0.3821	0.386
1.00	0.3135	0.318
1.20	0.1764	0.183
1.30	0.1078	0.115
1.3104	0.1034	0.108

Fig. 2. The curve $B a$ of nonhyperbolic limit cycle bifurcation values and the point Q of Bautin bifurcation, for $c=5$.

In Figure 3, phase portraits for the different regions of Figure 2 around Q are represented. In Figure 3a, the trajectory through (1, 0.2) is drawn for parameters (b, a) in domain 1 of Figure 2. Its α-limit point is the only equilibrium point (repulsor) and its ω-limit set is the attractive limit cycle. In Figure 3 b , the trajectory through the same point is represented for (b, a) in domain 2 of Figure 2. Its α-limit set is the repulsive limit cycle and its ω-limit set is the attractive limit cycle. The only equilibrium point is an attractor, situated inside the repulsive limit cycle. In Figure 3c, the trajectory through the point $(1,0.2)$ is represented for parameters in domain 3 of Figure 2. It emerges from infinity, while its ω-limit set is the only equilibrium point, the attractor. Both limit cycles disappeared, due to their collision that took place for (b, a) situated on the curve $B a$.

It remains to prove (48) for the concrete case of (12). Thus, taking into account (13) it follows

$$
\begin{equation*}
\bar{p}_{1}=1 / 2+\mathrm{i}\left(\nu / 2-c\left(1-\left(x^{*}\right)^{2}\right) /(2 \omega)\right) \tag{54}
\end{equation*}
$$

whence

$$
\text { (55) } \begin{aligned}
\operatorname{Re} g & =-c x^{*} / 2 \\
\operatorname{Im} g & =E_{2}\left(E_{1}-E_{3}\right) /(4 \omega)=-c x^{*} / 2+c^{2} x^{*}\left(1-\left(x^{*}\right)^{2}\right) /(2 \omega) \\
r & =1 /\left(3 x^{*}\right),[r \operatorname{Re} g](0)=-c / 6,[\operatorname{Im} g](0)=3 \omega_{0} r(0) / 4
\end{aligned}
$$

The differentiation of (5) with respect to a and b leads to

$$
\begin{align*}
& \frac{\partial \nu}{\partial \alpha_{1}}(0)=\frac{-5\left(b^{*}\right)^{2}-c^{2}}{6 c \omega_{0}\left(b^{*}\right)^{2}}, \frac{\partial \nu}{\partial \alpha_{2}}(0)=\frac{-c}{2 \omega_{0} b^{*} x^{*}(0)} \tag{56}\\
& \frac{\partial \omega}{\partial \alpha_{1}}(0)=\frac{c^{2}-b^{*}}{3 c^{2} \omega_{0}}=\frac{\left(x^{*}\right)^{2}}{3 \omega_{0}}(0), \frac{\partial \omega}{\partial \alpha_{2}}(0)=\frac{-c^{2} x^{*}}{2 \omega_{0} b^{*}}(0) .
\end{align*}
$$

Then (32) and (35) imply

$$
\begin{align*}
\frac{\partial \operatorname{Re} c_{1}}{\partial \alpha_{i}}(0) & =\frac{G_{1}(0)}{9 \omega_{0}^{2}} \frac{\partial \nu}{\partial \alpha_{i}}(0)-\frac{c x^{*}}{2 \omega_{0}}(0) \frac{\partial(3 \omega r-4 \operatorname{Im} g)}{\partial \alpha_{i}}(0) \\
\frac{\partial \ell_{1}}{\partial \alpha_{i}}(0) & =\frac{1}{\omega_{0}}\left[\frac{\partial \operatorname{Re}_{1}}{\partial \alpha_{i}}(0)-\operatorname{Im} c_{1}(0) \frac{\partial \nu}{\partial \alpha_{i}}(0)\right] \tag{57}
\end{align*}
$$

where it was taken into account that $\operatorname{Re} c_{1}(0)=0$ and $\mu(0)=\nu(0)=0$. Thus, the left hand side of (48) becomes

$$
\begin{equation*}
\left[\frac{\partial \nu}{\partial \alpha_{1}} \frac{\partial}{\partial \alpha_{2}}(3 \omega r-4 \operatorname{Im} g)-\frac{\partial \nu}{\partial \alpha_{2}} \frac{\partial}{\partial \alpha_{1}}(3 \omega r-4 \operatorname{Im} g)\right]_{0} \tag{58}
\end{equation*}
$$

Here $3 \omega r-4 \operatorname{Im} g=2 c x^{*} \nu+\frac{\omega^{2}-2 c^{2}\left(x^{*}\right)^{2}\left(1-\left(x^{*}\right)^{2}\right)}{x^{*} \omega}$, therefore we must consider only

$$
\begin{equation*}
\frac{\partial}{\partial \alpha_{i}}(3 \omega r-4 \operatorname{Im} g)(0)=\left\{\frac{\partial}{\partial \alpha_{i}}\left[\frac{\omega^{2}-2 c^{2}\left(x^{*}\right)^{2}\left(1-\left(x^{*}\right)^{2}\right)}{\omega x^{*}}\right]\right\}_{0} \tag{59}
\end{equation*}
$$

In this way (58) reads

$$
\begin{gather*}
\frac{2}{x^{2}}\left(\frac{\partial \nu}{\partial \alpha_{1}} \frac{\partial \omega}{\partial \alpha_{2}}-\frac{\partial \nu}{\partial \alpha_{2}} \frac{\partial \omega}{\partial \alpha_{1}}\right)- \\
-\frac{\omega_{0}^{2}-2 c^{2}\left(x^{*}\right)^{2}\left(1-3\left(x^{*}\right)^{2}\right)}{\omega_{0}\left(x^{*}\right)^{2}}\left[\frac{\partial \nu}{\partial \alpha_{1}} \frac{\partial x^{*}}{\partial \alpha_{2}}-\frac{\partial \nu}{\partial \alpha_{2}} \frac{\partial x^{*}}{\partial \alpha_{1}}\right]= \tag{60}\\
=\frac{2}{x^{2}} \frac{c x^{*}\left(c^{2}+3 b^{*}\right)}{6 \omega_{0}^{2}\left(b^{*}\right)^{2}}+\frac{4 c^{2}\left(x^{*}\right)^{2}}{\omega_{0}} \frac{1}{4 c \omega_{0} b^{*}\left(x^{*}\right)^{2}}=\frac{c^{3}}{3 \omega_{0}^{2} b^{*}} \neq 0,
\end{gather*}
$$

which proves (48).

REFERENCES

[1] GEORGESCU, A., ROCŞOREANU, C., GIURGIŢEANU, N., Equilibria and relaxation oscillations of the nodal system of the heart. 2. Hopf bifurcation, Rev. Roum. Sci. Tech. - Mec. Appl. (in press).
[2] GIURGIŢEANU, N., Study of the phase portrait. I. Improvements of the numerical methods, St. Cerc. Mec. Apl., 55, nos. 5-6, pp. 335-355, 1996 (in Romanian).
[3] ROCŞOREANU, C., Equilibria and relaxation oscillations of the nodal system of the heart. 1. Bifurcation diagrams of equilibria, Rev. Roum. Sci. Tech. - Mec. Appl., 43, no. 3, 1998.
[4] GUCKENHEIMER, J., HOLMES, P., Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, Springer, New York, 1983.
[5] KUZNETSOV, YU., Elements of Applicd Bifurcation Theory, Springer, New York, 1995. [6] ROCŞOREANU, C., GIURGIŢEANU, N., GEORGESCU, A., Degenerated Hopf bifurcation in the FitzHugh-Nagumo system. 1. Bogdanov-Takens bifurcation, Ann. of Univ. of Timisoara, XXXV, no. 2, pp. 285-298, 1997.
[7] *** MATHEMATICA, A system for doing mathematics by computer, 1994
[8] ROCŞOREANU, C., Dynamics and bifurcation in the Fitz-Hugh-Nagumo equation, Romanian Academy, Bucharest, PhD Thesis, 1997 (in Romanian).

Received December 15, 1998

University of Craiova, Dept. of
Mathematics, Craiova, 1100, Romania;
University of Ctaiova, Dept. of Ec.
Sciences, Craiova, 1100, Romania;
Romanian Academy, Institute of Applied Mathematics, PO BOX 1-24, RO-70700, Bucharest

