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DEGENERATED HOPF BIFURCATION IN THE
FITZHUGH-NAGUMO SYSTEM. 2. BAUTIN BIFURCATION

CARMEN ROC$OREANU, NICOLAIE GIURGITEANU, ADELINA GEORGESCU

Abstract. The results on the Hopf bifurcation obtained in [1] are completed with those
concerning the degenerated Hopf þifurcation of Bautin type. They are deduced by normal
forms technique and concern a biodynamical system related with Van der Pol oscillator.
Nume¡ical investigation carried out by methods from [2] are also reported.

1. GOVERNING EQUATIONS

The Hopf bifurcation corresponds to the emergence of oscillatory regimes
from equilibria and are of fundamental importance in science and engineering.
Certain of the oscillations govern the heart functioning, whence the special
interest in oscillator (e.g. Van der Pol) for biology and medicine. Among
the most famous models used in these fields in [1] and [3] we considered the
FitzHugh-Nagumo system

(1) r : c(r-l7-r'¡l),
(2) 'ir : -@-a-tby)fc,
where a, b and c are real parameters , c ) 2. Suppose that c is flxed, therefore
only two parameters (b and ø) remain. For (1), (2) the Hopf bifurcation values
(ó, ø) are situated on the Hopf bifurcation curves Ht,z defined by the equations

h(3) ":*;(-z+Jlb-blc2)Jr-W, -c<b<c.
A Bautin bifurcation point is a degenerated l{opf bifurcation point at

which the direction of the Hopf bifurcation is reversed: the subcritical Hopf
bifurcation becomes a supercritical bifurcation or conversely. In addition the
Iimit cycles existing subcritically, continue to exist supercritically too (and
they have a very slow variation with the parameter). This phenomenon can
occur in dynamical systems of dimension at least equal to two and for two or
more parameters.
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At a Bautin bifurcation value, in the (b, a)-parameter space, a new curve
Ba is formed near the Hopf bifurcation curve. It consists of those values at
which two limit cycles collide and form a nonhyperbolic limit cycle. This
paper is mainly aimed to determine this c-rrve Ba and the valrc (bþo, aþo)
at which it sets in from the Hopf bifurcation curve fft. Due to the symmetry
with respect to a of (1), (2) we shall find the Bautin bifurcation value and a
curve of nonhyperbolic limit cycle values for a ( 0, too.

Remind that the parameter c was assumed fixed and bþo and aþo were
determined taking into account that (fixed) value of c.. rf c varies, then, in the
(b, o) plane, (bb", ob) describes a curve, locus of Bautin bifurcation points.
This curve will be also determined.

one among the methods used to prove the existence of the Hopf and
Hopf degenelated bifurcation is based on the normal forms: the given system
is transformed, by some homeomorphisms, into a typical simple (normal) form,
topologically equivalent to the given system and presenting the Hopf bifurca-
tion. The crucial point is that the first Liapunov coefficient is nonvanishing. If
this condition is not satisfied, the Hopf bifurcation degenerates. Then, if the
second Liapunov coefficient is nonvanishing, the Bautin bifurcation occurs [4],
[5]. We recall that the Liapunov coeffi.cients are the coefficients of the higher
order terms in the normal form equation.

For an easier application of normal form theory we make the change of
variables

where the constant matrix A and the nonlinear vector F depend on the pa_
rameters and have the form

^:("(r-@.)') " \
\ -Il" -(or+b.)lc)'

P : (-cr*rl - crsrf J, o)t = (h, Fz) .

In this way we lave F (c,0) : 0, for every point (b*, a*) in the (b, a) plane.
The matrix A has the eigenvalues À1,2 - Àte(") :'p(ù'+iw@) ='¡i+lr,where

p(a): tc' 7 - (**)' - (or + ¿-) lQ"),
(B)

4c2 - lcz (t - t"-)r) * (or + ø.¡|2 ¡ qz")u(a):

and ø* depends on d, o} and ö*.
The point (r*, g*) is a Hopf bifurcation point corresponding to the bifur-cationvaluea*:0 (i."^ (b,.a): (ó*,o*)) if ¡-l(0) :0,u) (ô) + O lndg(0) 10,where t1(a) will be defined in the sequel.
Let us remark that p, (0) : O implies

(e) ø*(o):a I _ b* fc2,
hence the Hopf bifurcation values in the (ó, a) plane are situated on the curvesIfi,2 defined by (3), i.e.

(4) rL :x T' r2 a a b. (-2 + 3lb. - b.I
"r)(10)

,2 (0

0*:* - b* l"r, b* e (-c, c) .
Here (z*, gr*) is an equilibrium point which depends on ¿ and b, namely

r* and y* are the solutions of the equations

(5) ("*)t - 3z* (1 - rlb) - Jaf b:0, y* : (a - r.) lb.

In order to apply this theory, first we transform (1) and (2) such that
(r*, y*) be at the origin. Thus, replacing (4) into (1) and (2) and taking into
account (5) we obtain the system

(6) ùr:cl(t- ("-l') ", * 12-r*rl-"?ß|, ù2: -(rr+br2) f c,

which has the equilibrium point (21, *r) : (0, 0) for every pair of parameters
(b, o). Letting * : (*t, r2)T and o : (b - b*, a - o*),the system (6) becomes

(7) ù:Ar*F(a,r) ,

3

In this way, at the bifurcation value

)=r8-1-(b.)2 lc2>0.
For a simpler writing we introduce t

(b,a): (b*,a*) we have a:0 and

he notation

(11)
Et: Et(o) : 

" (r - @\') , Ero = Er (o) : b* lc,
E2 = E2 (o) : cr2 Ezo = Ez (0) : tr/"2Ã,

E3= Es(o) : -bl": -(or *b*) fc, A¡o = Es(0) : _b*1".

With this notation, (6) and (B) become

ùy : E1r1l cr2 - Ezr? - crlls, i:z : -rt/c * 8312,(12)

(13) tt: (Et ¡ Ez) 12, u : 1fr - (8,. - nù, 14

ll

According to the values of the parameters occurring in F.1, E2 and..Ð3, the
system (r2) can be reduced to various normal forms, uu-.h of which prur"ltirrg



acertainclynamicbifurcationphenomenon.Forinstance,theHopfbifurcation
occurs if (i2) prouu. iã-ùe topologically equivalent to the normal folm

(14) ù:(0tIi)21-þzzl'l'+O(l"ln)'
where Ér (0) :0 and B1 (0) : 0'

The Bautin ¡irrrr.uìi"" takes place whenever, by means of several invert-

ible transfor-utio,,Jìît ty't"- 1iz¡ cu" be reduced to the normal form

(15) ùt : (þt -t i) zIB2zl'l' + szlzla + 0(lz16)'

where Ér (0) : 0 and Ér (0) : 0, s : *1' In this way the phase portraits of

(12) and (15) will ú" i"nàrâSicaily equivalenr. In (14) and (15), z is the new

unknown function' ': if lrrd' þl and' B2 are the new^parameters depending

onthef'ormerpuru-et""a1anðcz2'Thebarsstandforthemodulusofthe
complex value of z'

InorderforthisSequenceoftransformationsbeinvertiblesomerestric-
tions must be fulfiIreãlsj. e"v time they occrlr) we shall specify them.

2. SYSTEMS EQUTVALENT TO (12)

Thefirsttransformationisdefinedwiththeaidoftheeigenvectorqof/ E', ^\
the matrix A, which, with notation (11)' reads A: ( -ii" ;, )' 

and the

eigen vector p of 4". Here q coÏresponds to the eigenvalue Àl of A and p

to\andTstandsforthetransposition.SinceAhasrealentries,itssecond

"ig"nrutrr" 
is \. In general, g, P € C2' In additionwe have

(16) 9:(4r,(Àr -Er) qrlc),n:(trl' "(E'-)o)et)'
where - 1

(17) Ptqt': [r - ('lr - nù')

It can be immediatelY checked that

(18) Aq : Àrq, A"P : EP, (P' q) : 1' (P'4) : o'

Here (u, v): 74u1* uzuz is th 
-scalar 

product in C2' Since Àr is a

complex number it foifo*. tnuf p,q € C2. The bar over quantities stands for

the comPlex conjugacY'

The first transformation reads

(19) x : (xr, *') : zq-l zq

with z,Ze C2' Taking the scalar product d lh." 
co3P1"1t-fi,"d form of (12) by

p and taking into u..ã""t (18)e,a we find' writing À instead of Àr

(20) ù: \z I s (a'z'z) 
'
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where

(2r)

g (a,z,z) : (p,F (o,zq,+ zq)) : ptFt(o,rq+ zq) :
: t #gu @) zkzt : Lgror' I g¿zz + |sozz2+

k+l>2
-lf,szoz3 1- |szø22 -l lonzz2 1- fnzz3 '

Equation (20) can be also obtained taking into account thai z: (P,x),
hence ù: (p,x) where * is given by (12). We found

gzo: -2ptÛzq?, gso: -2cpú?,
/ñô\ gtt : -2PlEzQtQt, 9zl : -2i\ß?qt,\¿z) goz: -2pë24?, 9n: -2cPßtq?,

goz: -2cpr41.

So far Ç1 and p1 satisfied relation (17) therefole one of them is still arbi-
trary. Then with the choice Qr: L we find

/îÐ\ g2o : gll: 902 = -2P182:29,

ll, ."'.,".0""0,"*,;'(ï; î:"-"ii: 
: e03: -2ch:6sr

(24) ù: Àz+s@+z)2 +sr(z+z)3 .

Let us now perform another invertible transformation (2, 
") <---+ (*, *)

(25) z: zrlzztzs+l-4+lz5+ O (l*ul) 
'

where

Z1 :W,
ñ2,
ww2 + *wt,
w2w2 +$ww3 +*wn,
w3w2 + rffw2w\ +

The new unknown vector function is w. Let us determine the so far
arbitrary coefficients h¿¡ such that the differential equation for w becomes

(27) rfu : Àw * c1w2w + czwsw2.

Of course, (27) is exact up to O (lw6l) as a -+ 0. Therefore these coefficients
shall be determined from the relation

(28) ù,: D'iv + Kw

where

(2e)
D : I * hzow* h¡ ¡w + V*' + 9w'+ ?*' + \w2w+
+\ww2 + {å*t + Æ*n + $w3w+ Sww3 + Wwn,

Carmen Nicolaie Adelina G 4 5
100



t02 Carmen Rocsoreanu. Nicolaie delina GeorgescuGiursiteanu ,A
76

lB0) K:ltnw *äozwF+\wr +?*t +\w2w+$ww2+
+ry*' t- W*n + ffw2w2 + Swws + Æwn,

obtained by introducing (25) into (24). on the other hand, w is given by (27).
In this way (28) represents an identity of two polynomials in w u.rd w, *nàrrce
a system of affine algebraic equations in h¿¡ and, c1 and, c2.

With the exception corresponding to indices 21 and 32, all other equations
allow the unique determination of h¿¡. rndeed., each equation wiih i -f j : 2
contains a single h¿¡; eachequation with z i j : J, 4 or b contains a single å¿¡
with ¿ I j :3, 4 or 5 respectively and also some previously aetermmãd fr,i
with i + j < 3, 4 or 5 respectively.

The equation for å21 contains, in addition, c1 and the equation for h32
contains also c2. It can be proved [5] that in order for the transition (25) b;
regular at a:0, it is necessary to choose hsz: h2t:0. As u 

"orr."ir"rr.",for the particular case of (6), these equations provide c1 and c2, nameiy

cr : o (3r + 2Fteh:n + hzo l- hoz) ,

c2 : g (hnlz (hzo +Eoz + Br) rReh22 + r (fus + hæ) 12+
(31) + (hrr a ãrr) lJ + ar (n"nf, * lhrr l') + o" (hzo +Es2) Reh11 +

+ (ho, +Ero) (åro + ñrt) 16 -t Jr l2lhro +Eorl' + hp (2ueh,¿ r Br) .

The final expressions of c1 and c2 in terms of g and r are given in [B]. They
were obtained using the software MATHEMATICA [z]. Here we quote only

(J2) Recl : 
ftz¡"s çn"s¡' - nr'r(Ree) (Ime) t B¡,rar(Ree) +
t30p,2u2r (Reg) + pßt -t 9u3?2Reg] f N,

where

Gt : ,'lsz(R"g)' - 16(Ime)2] ,

Gz : Bru - 4Img, N : p4 1- I0¡,Pa2 t gua.

The third transformation concerns the independent variable. It reads

(33) r:w(at)
and transforms (27) into

(84) #: e@)*i)w +d,1(a)w2w+ da(o)*B*2+o(l*lu) 
,

where

(35) u (a) : p (a) l, @) , d-'. (o) : 
"t 

(o) l, (o) ,, d,z(o) : c2 (a) lu (a) .

Here u (a) is a real function.

0.. ,ilnäTiît 
differential transformation inrroduces also a new time scare and

(36) o' : 
{1 - rmdl (o) l*1, + (rm2d,r (a) _rmd,21a)) wa} aa,

It allows us to pass from (34) to

(37) #: @@)*z)w +(1(a)w2w+ t2(a)wræ,+o(t*t.)
The functions (.1 and. $ are cated the first and the second Liapunovcoefficient respectively and thly are given by

[¡ (a) : Redl (a) - u (a)Imd¡ (a\ .
(.2 (a) : Red2 (a) _ Redi 1"; i_ai '@) 

+ u (a) ftm2a, @) _ rmd,2 (a)l .

Bifurcation

3. THE LOCUS OF THE BAUTIN BIFURCATION VALUES

In the FitzHugh-Nagumo case \¡¡e have, for a : 0

103

ug I(r - (u-), ¡"2), Ft : 712 - it* / (2"r0) ,

c2 -b*12+ib* c2 - b* / (2-o), r : c/ þttæ 
_ r, )

9-

bifur ) l0 the^normal form (37) presents a Hopf
For r .-. (r\(9, ,h , oh) , yh þ, th , "Ð , bh , ;t'(o) : o, i."' -

(38) þb"), - 2bþoc2 + c2 :0,
the Hopf bifurcation fails and a Bautin bifurcation takes prace around thepoint Plo : (rbo Q,,b,b","bù., uþo(O,bbo,obo) , uþ", ob".\,'rh"r" (bb", ob")are also situated on thã-Hopî¡ii""tiitioi curves. obviously we have
(39) bho: c2 - "1/jj.

Taking into account (3), it follows the corresponding aþo values

h (0) : Recl (0) /uo : Res
: (- {u.), t 2b*c2 _

(40)
"b": +t (

Then, from (9) we obtain

(41)

(3usr -  Ims) /r3 :

"') I Q,B") .

c2-I-c2+I

4

7-Ifcz

rbo: 
=L

7 - 7/c2
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describe, as c is varied, part of the curves ,91,2. Let us call them 
^91,2 BTi they

are locus of the Bogdanov-Takens bifurcation values.
Unlike this situation, the locus of the Bautin bifurcation values (44) is not

related to ^91,2. For each c fixed, the Bogdanov-Takens bifurcation values are
Iimit points of the Hopf bifurcation curves Ht,2 whereas the Bautin bifurcation
values belong to H1,2. In fact, the genuine locus of the Hopf bifurcation value
are H1,2 except nor (bþo,aþ) i.e. it consists of the curves (3) defined for

(45) be(-c,bb)u(bh",")
In this way the Bautin bifurcation values are also limit points for the Hopf
bifurcation curves described by the equations (3) for the domain (a5) of b..
However, since the Bogdanov-Takens as well as Bautin bifurcation values are
as close as wanted to Hopf bifurcation point, the Bautin and Bogdanov-Takens
bifurcations are Hopf degenerated bifurcations.

The pair (bb",ob) is a Bautin bifurcation point if the corresponding
second Liapunov coefficient has the property h(0) + 0. Since /1 (0) : 0,
u(0) :0, from (35) we have L2(0) : R"", (0) lro. Taking into account the
expression of Rec2 from [B] and using the above expressions for øe, g and r in
which bþo is given by (39) we find

(46) t2 (0) : 
ffi^"ntry + 0.

Hence, all points of the curve (44) are Bautin bifurcation points.

4. THE NONHYPERBOLIC LIMIT CYCLE BIFURCATION

In order to pass from (37) to its normal form (1b) we need an invertible
parameter transformation

(47) þt : u (o) , pr: h (a) ,

which is regular at a - 0, i.e.

our numerical experiments were carried out at c : 5 and b fixed, namely
Ò : 0.5; 0.6; 0.7; 0.8; 0.9; 7; 7.2;1.3 and ¿ variable.

They showed the existence of a Bautin bifurcation value at about

(bbo"*o,obo",p): (0.5, 0.65) .

They agree very well with the theoretical values given by (3g) and (40) for
c: 5 and a ) 0, namely b*ito:25 - 5\/24 = 0.b0b103 and

abo: i (s,m - z+) <ÆÆ = 0.6b3163.

Let us recall that the Bogdanov-Takens bifurcation values [4], [5] are situ-
ated at the intersection of the curves ,S1,2 (corresponding to douËtã equilibrium
points) and the Hopf bifurcation curves H1,2. Hence, these values \b;r,o;r¡

Carmen Rocsoreanu. Nicolaie

0.5050 . 5 10. 5 150 . 520 . 52 50. 530,53 5 b;,

Giursiteanu. Adelina Georeescu

Ilbb" - I, bbo € (0.b, 1)

Fig. 1. The curve locus of the Bautin
bifurcation point for a ) 0.

8 I
Elimination of c between (3g) and (40) yields in the (b, a)-plane the curve
locus of Bautin bifurcation points. In order to determine it,'let us recall that
our reasoning made in the quotecl previous papers are valid for c ) 2, in which
case b* ) 0. Since taking into account (Bg) and (40) we have

(42) abo: +å (1 - ób,) 7-7fc2
It follows

(43) ß"b"1[4(r _ bb)Dr: (1 _ tb) lbb",
whence Õä" < 1. Then from (Bg) we see that bb" --+ rf 2 as c ---+ oo.
Correspondingly aþo € (-å,f). Finaly (48) reads

(44) abo: ++ (1- biB")

and represents the curve locus of the Bautin bifurcation values (F.igure 1).
This curve has a lirnit point corresponding to bþ": I/2. This expÍains

why the experiments revealed no Bautin phenomenol ø, t;" < I12.

d;.

o

4.62

o.5€

(48)

Thus (37) becomes

(49) ,ìv : (pt + z)w i ¡1,2w l*l'+ Lz(p)w lwla + o

:a¿", (# #) lo
la:o

t)

)l*l
where Lz(p): h(ct (p)) ir a smooth function of ¿ with Lz(0): ¿2(0) +0
Finally we use the rescaling [5]

(50) *: {L2jr)lu, u € C2
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and introduce other new parameters

(51) pt: þt, Þz: lþ2çy¡'2
to produce equation (15), where instead of u we \¡/rote z, presenting the
Bautin bifurcation phenomenon at (u, h,þz): (0,0,0). In (15) we have
s: signlz(0). In these conditions, in the (fu,12)-plane there exists a curve
Ba tangent to H1 at Q(bþ",øþo), such that for points of Ba the correspond-
ing equation (15) possesses two colliding limit cycles (that is a nonhyperbolic
limit cycle). It reads

(52) þ3 + +p, :0, þz ) o.

a) ö = 0.55, ø: 0.6 b ô=0.55,a=0.6227481

Coming back to our initial variables, the equation of this curve has the
form !.211* 4u :0 or equivalently

(58) In"", - jReclI-c1 r ¡'r'.(rmc1)2 - r-"2] '

. (jnec1 - ftrmc1)z t 4p,: g.

The involved equations depend on o : (b - bb", a - ab).
For our concrete equation (12) we represented (53) in Figure 2 for the

case c : 5. Since Ba is vely close to H1, in Figure 2 we gave a qualitative
representation. This was supplemented with Table 1 for values (b, a) situated
on Ba and 111. The first three decimals of aBo obtained theoretically are the
same as those obtained numerically.

Fig. 3. Phase portraits for c : 5 and

(b, a) i" domains 1, 2, 3 from Figure 2.

c) ö:0.55,o:0.63

Table 1.

Values (b, o) situated on the
Hopf curve I11 and on the

curve Bø

a

In Figure 3, phase portraits for the different regions of Figure 2 around

Q are represented. In Figure 3a, the trajectory through (1, 0.2) is drawn
for parameters (b, a) in domain 1 of Figure 2. Its a-limit point is the only
equilibrium point (repulsor) and its ø-limit set is the attractive limit cycle. In
Figure 3b, the trajectory through the same point is represented for (b, ø) in
domain 2 of Figure 2. Its a-limit set is the repulsive limit cycle and its ø-limit
set is the attractive limit cycle. The only equilibrium point is an attractor,
situated inside the repulsive limit cycle. In Figure 3c, the trajectory through
the point (1, 0.2) is represented for parameters in domain 3 of Figure 2. It
emerges from infinity, while its ø-limit set is the only equilibrium point, the
attractor. Both limit cycles disappeared, due to their collision that took place

for (ó, a) situated on the curve B¿.
It remains to prove (48) for the concrete case of (12)' Thus, taking into

account (13) it follows

1

aBa

0,6227

0.5889

0.62t

0.453

0.386

0.318

0.183

0.1 15

0.108

aHt

0.6223

0.5880

0.5193

0.4507

0.3821

0.3135

0.t764

0.1078

0.1034

b

0.55

0.60

0.70

0.80

0.90

1.00

r.20

1.30

1.3104

e

h : r12 + r (ulz- " (r - ("-)') t Q"))(54)

0 1 b whence

Fig. 2. The curve Bo of nonhyperbolic
limit cycle bifurcation values and the

point Q of Bautin bifurcation, for c : 5

Reg

rmg

-cr* f 2,

Ez(Et - ns) I Ør) : -cr* /2 * c2r* (t - tr.l') I Qr),
1l @r.), [rRee] Q) : -c16, [I-g] (0) : 3øor (0) 14.r

x x

v

(

(55)
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The differentiation of (5) with respect to ¿ and b leads to [3] ROC$OREANU, C., Equilibria and relaration oscillations of the noilal sgstem oJ the

heart. 1. BiJurcation diagrarns of equilibria, Rev. Roum. Sci. Tech. - Mec. Appl',43'
no. 3, 1998.

[4] GUCKENHEIMER, J., HOLMES, P., Nonlinear oscillations, Dgnam,ical systems and

BiJurcation of Vector Fields, Springer, New York, 1983.

[5] KUZNETSOV, YU., Elements of Applied, Bi,furcation Theory, springer, New York, 1995.

f6l ROC$OREANU, C., GIURGITEANU, N., GEORGESCU, 4., Degenerated Hopf b'ifurca-

tion in the FitzUugh-Nagumo system. 1. Bogd,anou-Taleens bifurcation, Ann. of Univ'
of Timiqoara, XXXV, no. 2, pp. 285-298, t997.

[7] *** MATHEMATiCA, A system for doing mathematics by computer, 1994.

[g] ROC$OREANU, C., Dgnamics and, bifurcation in the Fitz-Hugh-Nagumo equation,

Romanian Academy, Bucharest, PhD Thesis, 1997 (in Romanian).

?Q\:dat '
-5 (b*)2 - c2 ôu -c/rì\ _

aort"t - 2uob.r\0)'6cr^u6 (b-) 21
(56)

ôu c2 - b*

^ ((.)) :-:
OA1 óC'uç¡ ffror ,#rot:-##rot

(57)

Then (32) and (35) imply

(o) -#(o) (o),

(0) - Imcl (0)
ðu

0
ôa¿

Received December 15, 1998 Uniuers'i,tg of Cra'ioua, Dept. of
Mathematics, Craioua, 1 1 00, Romania;

Uniuersitg of Craioua, Dept. of Ec.

Sciences, Craioua, 1100, Romania;
Roman'ian Acad,emy, Insti,tute ol Applied'

Mathemat'ics, PO BOX 1-24, RO-70700,
Bucharest

where it was taken into account that Recl (0) : 0 and p (0) : z (0) :'0. Thus,
the left hand side of (aB) becomes

(b8) l#h(rur -4rms) -#h(rur -4r-e)]0

Flere 3ør - 4Img : 2cr*u I
consider only

u2 -2c2 ("-)'(1 - (".)')
, therefore we must

t*u)

(5e)
ô

(3ur - alme) (0) : ô

A",

u2 -2c2 ("-)' (t - ("-)')

l),oa¿ u)r*

In this way (58) reads

2 ôu ôu 0u
12 ôaz ôotz )at

(60)
,fr - 2"2 1r*¡2 ("-)') I 0u ôr* ôu ôr*1t______t

l\ay 0c.2 ða2 ôa1 ],O(r* )"

+
2

ï2
cT ,c" + 3b* 4c2 (r*)2 7 c3

uo Act tsb* (r*¡z - swfrb*6u3 (b.)
+0,

which proves (48)
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