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DEGENERATED HOPF BIFURCATION IN THE
FITZHUGH-NAGUMO SYSTEM. 2. BAUTIN BIFURCATION

CARMEN ROCSOREANU, NICOLAIE GIURGITEANU, ADELINA GEORGESCU

Abstract. The results on the Hopf bifurcation obtained in [1] are completed with those
concerning the degenerated Hopf hifurcation of Bautin type. They are deduced by normal
forms technique and concern a biodynamical system related with Van der Pol oscillator.
Numerical investigation carried out by methods from [2] are also reported.

1. GOVERNING EQUATIONS

The Hopf bifurcation corresponds to the emergence of oscillatory regimes
from equilibria and are of fundamental importance in science and engineering.
Certain of the oscillations govern the heart functioning, whence the special
interest in oscillator (e.g. Van der Pol) for biology and medicine. Among
the most famous models used in these fields in [1] and [3] we considered the
FitzIlugh-Nagumo system

(1) & = c(z+y—1°/3),
(2) v = —(z—a+by)/c
where a, b and c are real parameters, ¢ > 2. Suppose that c is fixed, therefore

only two parameters (b and a) remain. For (1), (2) the Hopf bifurcation vahues
(b, a) are situated on the Hopf bifurcation curves H 1,2 defined by the equations

(3) a::tg (=2+3/b—b/c®) V/1-b/c?, —c<b<ec

A Bautin bifurcation point is a degenerated Hopf bifurcation point at
which the direction of the Hopf bifurcation is reversed: the subcritical Hopf
bifurcation becomes a supercritical bifurcation or conversely. In addition the
limit cycles existing subcritically, continue to exist supercritically too (and
they have a very slow variation with the parameter). This phenomenon can
occur in dynamical systems of dimension at least equal to two and for two or
more parameters.
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At a Bautin bifurcation value, in the (b, a)-parameter space, a new curve
Ba is formed near the Hopf bifurcation curve. It consists of those values at
which two limit cycles collide and form a nonhyperbolic limit cycle. This
paper is mainly aimed to determine this curve Ba and the value (bar 05g)
at which it sets in from the Hopf bifurcation curve H;. Due to the symmetry
with respect to a of (1), (2) we shall find the Bautin bifurcation value and a
curve of nonhyperbolic limit cycle values for a < 0, too.

Remind that the parameter ¢ was assumed fixed and b}, and a}, were
determined taking into account that (fixed) value of c.. If ¢ varies, then, in the
(b, a) plane, (b},, a},) describes a curve, locus of Bautin bifurcation points.
This curve will be also determined.

One among the methods used to prove the existence of the Hopf and
Hopft degenerated bifurcation is based on the normal forms: the given system
is transformed, by some homeomorphisms, into a typical simple (normal) form,
topologically equivalent to the given system and presenting the Hopf bifurca-
tion. The crucial point is that the first Liapunov coefficient is nonvanishing. If
this condition is not satisfied, the Hopf bifurcation degenerates. Then, if the
second Liapunov coeflicient is nonvanishing, the Bautin bifurcation occurs (4],
[5]. We recall that the Liapunov coefficients are the coefficients of the higher
order terms in the normal form equation.

For an easier application of normal form theory we make the change of
variables

(4) nn=z—z, rp=y—y",

Here (z*, y*) is an equilibrium point which depends on a and b, namely
z* and y* are the solutions of the equations

(5) (z%)* = 32* (1 - 1/b) — 3a/b =0, y* = (a —z*) /b.
In order to apply this theory, first we transform (1) and (2) such that

(z", y*) be at the origin. Thus, replacing (4) into (1) and (2) and taking into
account (5) we obtain the system

6) d1=c [(1 - (m*)2) T1 + z9 — z¥2d — xi’/3} y &y = —(z1 + bxe) /¢,

which has the equilibrium point (z;, z2) = (0, 0) for every pair of parameters
(b, a). Letting x = (21, z2)T and o = (b—b*, a — a*), the system (6) becomes

(7) t=Az+F(ao,z),
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where the constant matrix A and the nonlinear vector F depend on the pa-
rameters and have the form

A:(c(l—(m*)Q) c )
~1/c —(e14+b%) Jc )’
F = (—cz*a} — cz3/3,0)" = (B, ).

In this way we have F (a, 0) = 0, for every point (b%, a*) in the (b, a) plane.
The matrix A has the eigenvalues \; 5 = A2 (@) = p(a) tiw (@) = p+ iw,
where

ple) = [ (1= )?) = (@ +5] / (20),
w(a) = \/4(:2 i [02 (1 ) (m*)2) 2 (e ot b*)]2/ (2¢)

and z* depends on «, a* and b*.

‘The point (z*, y*) is a Hopf bifurcation point corresponding to the bifur-
cation value a* =0 (i.e. (b,a) = (b*,a*)) if 4 (0) = 0, w (0) # 0 and £;(0) # 0,
where ¢; (@) will be defined in the sequel.

Let us remark that 4 (0) = 0 implies

(9) T (0) = £4/1 — b*/c2,

hence the Hopf bifurcation values in the (b, a) plane are situated on the curves
H 5 defined by (3), i.e.

(10) posil 3{;’* ) T e (=)L

In this way, at the bifurcation value (b,a) = (b*,a*) we have o = 0 and
w(0) =wd =1—(b*)2/c% > 0.
For a simpler writing we introduce the notation

(8)

a

B =E () =c (1 L (x*)2) , Eio = Ey (0) = b /e,
(11) By = By (a) = cz? By = B (0) = £V — &7,
E3EE3 (a):—b/c=—(a1+b*)/c, EgoEE;g (O):—b*/c

With this notation, (6) and (8) become

(12) 1 = E1z1 + czy — E'za:% -~ c:v:{’/3, T = —x1/c+ B3z,

(13) =By + B3) /2, w=1/1— (B - B;)? /4.

According to the values of the parameters occurring in Fy, Ey and E3, the
system (12) can be reduced to various normal forms, each of which presenting
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a certain dynamic bifurcation phenomenon. For instance, the Hopf bifurcation
occurs if (12) proves to be topologically equivalent to the normal form

(14) 5 = (B + i) z+Paza” + O(al"),
where 81 (0) = 0 and f1 (0) = 0.

The Bautin bifurcation takes place whenever, by means of several invert-
ible transformations, the system (12) can be reduced to the normal form

(15) 5= (B1 +1) z+Boz el + szl + 0(l2°),

where 1 (0) = 0 and 31 (0) =0,s =%l In this way the phase portraits of
(12) and (15) will be topologically equivalent. In (14) and (15), z is the new
unknown function, s = £1 and By and (o are the new parameters depending
on the former parameters a1 and ag. The bars stand for the modulus of the

complex value of z.
In order for this sequence of transformations be invertible some restric-

tions must be fulfilled [5]. Any time they occur, we shall specify them.

2. SYSTEMS EQUIVALENT TO (12)

The first transformation is defined with the aid of the eigenvector q of
the matrix A, which, with notation (11), reads A = ( lfl/c E , and the
i 3
eigen vector p of AT. Here q corresponds to the eigenvalue A; of A and p
to A1 and 7" stands for the transposition. Since A has real entries, its second
eigenvalue is Aj. In general, q, p € C2. In addition we have

(16) q=(q, M —E)a/c, p= (pL,c(B1— ) p1)s
where
(17) gL = [1 (M= El)Q]ﬁl :
Tt can be immediately checked that
(18) Aq=XMa, ATp=Xip, (@) =1, (@) =0

Here (u,v)= Uiv1 + UV2 is the scalar product in C2. Since A1 is a
complex number it follows that p,q € C2. The bar over quantities stands for

the complex conjugacy.
The first transformation reads

(19) x = (x1,%2) = zq + Zq

with z,Z € C?. Taking the scalar product of the complexified form of (12) by
p and taking into account (1834 we find, writing A instead of A1

(20) b=z +g(0y27),
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where

g(a,z,i) :‘1 < ,F(Oé,kZChLﬁl)) :plFl (a,ZQ+ﬁl) =
(21) = kj;» g (@) 2°2' = $g202° + 91177 + 59027°+

1 3 1 25 1 = S
+6930z + EgZIZ VA + 5912ZZ2 + %goszs‘

Eguation .(20) can be also obtained taking into account that z = (p,x)
hence z = (p, %) where x is given by (12). We found ’

g20 = —3151E2Q%, 930 = —2¢Pyqi,
(22) g1 = —2P1E2Q£72]'1, 921 = —26p141G,,
g2 = —25, B2}, 912 = —26P1 @14,
go3 = —2cP1q}.-
So far ¢; and p; satisfied relation (17) the i
: refore one of them is sti i-
trary. Then with the choice ¢; = 1 we find = 2

(23) 920 = g1 = goz = —2p1 B = 2g,
g30 = g21 = g12 = go3 = —2cp; = bgr.

and, correspondingly (21) becomes

(24) p=Xa+g(z+2) +gr(z+7%)°.
Let us now perform another invertible transformation (z,z) <+— (w, W)
(25) 7 =21 + 22 + 23 + 24 + 25 + O (|W°]),
where
1 =Ww,

_h L — ey
273 = “Bw? + hyww + hor g2
_h [ | 1
73 = Mowd | E'%Jn.w,r‘f“,r + Beww? 4 Qo_iw?:,

(26) <
_ hy 4 . h 3 /
Bi=a W —“}ﬁ wiW + 2wt 4 Maiwigd 4 ot
— L4560 1] rdear h = - =
75 = 4w —I; W W + B2 wiw? 4 Lawiwi4 .
bt v 105 570
o 54 WW e W -

. The new gnknown vector function is w. Let us determine the so far
arbitrary coefficients h;; such that the differential equation for w becomes

(27) W = AW + ¢ W2W 4 W .

Of course, (27) is exact up to O (|[w°|) asa — 0
3 . Therefore tl i
shall be determined from the rela|tion|) g

(28) 4 = Dw + K%
where
= L, 3 h J
A s e B E Ao
A M
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= — h 3 h 2— | h =2
0 K = huw + hoaww + Maw? 4 ba h+ _'3”;’ wh+ _%wa 5
&) I 4 Bt - B 4 bt 4 et

obtained by introducing (25) into (24). On the other h_and_, W is give_n by (27).
In this way (28) represents an identity of two polynomials in w and W, whence
a system of affine algebraic equations in h;j and ¢; and cy. '
With the exception corresponding to indices 21 and 32, all other equa.tlons
allow the unique determination of hij. Indeed, each equation .with i.—f— ji=2
contains a single h;;; each equation with i + j = 3,4 or 5 contains a s1.ngle hi;
with 4 4+ 7 = 3, 4 or 5 respectively and also some previously determined hi;

with 7+ 5 < 3, 4 or 5 respectively. _

The equation for hy; contains, in addition, ¢; and the equ?bt_lon for hzo
contains also cy. It can be proved [5] that in order for the transition (25) be
regular at a = 0, it is necessary to choose hgy = f%zl = 0. As a consequence,
for the particular case of (6), these equations provide ¢1 and ¢z, namely

T = g (37‘ + 2Rehy1 + hog + Eog) ] ¥y
c2 = g(h12/2 (hao + hoz + 37) + Rehgy + (h3o + hos) /2+
(31) + (h31 + 513) /3 + 67 <Reh%1 + |h11|2) + 61 (h20 + E()Q) Rehu +

+ (hoz + Pao) (hao + hos) /6 + 3r/2 | hao + Fioa|” + Bz (2Rehyy + 3r).

The final expressions of ¢; and ¢y in terms of g and 7 are given in [8]. They
were obtained using the software MATHEMATICA [7]. Here we quote only

39 Rec; = [12u3 (Reg)? — 4p%w (Reg) (Img) + 3utr (Reg) +
(32) +30p2w?r (Reg) + pGq + 9w3GoReg] /N,

where
G = w? [92 (Reg)? - 16(Img)2] )
Gz = 3rw—4lmg, N = p* + 104202 + 9w,
The third transformation concerns the independent variable. It reads
(33) T =w(at)
and transforms (27) into

B4 = (0 +i) Wt d () WP+ dy (0) WO 40 (wl°).
where
(35)  v(a) =p(a)/w(a), di(a) = c1 (@) /w (@), dz (@) = ¢z (@) Jw () .

Here v () is a real function.

—_—
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The next differential transformation introduces also a new time scale and
has the form

(36)  dr= {1 ~Imdy (@) |w]? + (Im?d, (a) — Tmd; (o)) w4} dg.

It allows us to pass from (34) to

(37) ‘3—2’ = (@) + 1) W+ 4 (@) W 4 £ (o) w32 4 O (lw[6) .

The functions ¢; and £y are called the first and the second Liapunov
coefficient respectively and they are given by

¢ (a) = Red; (o) — v () Imd; (),
£ (@) = Red; (@) — Red, (@) Imd; (@) + v () [Im?d; (@) — Tmd, ()]

3. THE LOCUS OF THE BAUTIN BIFURCATION VALUES

In the FitzHugh-Nagumo case we have, for o = 0

o (1= @97 /e2), By = 172 - 0/ 20,

g = =V —b*/24ib*\/c2 — b/ (2cwo), r=¢/ (3\/02 — b*) ,
£1(0) = Rec; (0) Jwyp = Reg (3wor — 4Img) /w? =
- <_ (b*)2 + 2% 2 — c2) / (2wic) .
For those b}, for which ¢, (0) # 0 the normal form (37) presents a Hopf

bifurcation around the points P*, — (=3 (0,53, a%) , v (0, by aly), by, ay).
For those values b}, for which ¢, (0) =0, i.e.

(38) (b*Ba)2 ol 2b*Bac2 + 02 = 07

the Hopf bifurcation fails and a, Bautin bifurcation takes place around the
pOint Péa = (x*Ba (0’ b*Ba’ a’*Ba) ’ y*Ba (O’ b*Ba7 a’*Ba) ? bBa’ a*éa)’ Where (b*Ba’ a’*Ba)
are also situated on the Hopf bifurcation curves. Obviously we have

(39) bpe =2 —cv/e2 —1.

Taking into account (3), it follows the corresponding aj, values

(40) Q= £2 (C\/(ﬂ P 1) i1/
Then, from (9) we obtain

(41) The = £v/1—1/c2,
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Elimination of ¢ between (39) and (40) yields in the (b,a)-plane the curve
locus of Bautin bifurcation points. In order to determine it, let us recall that
our reasoning made in the quoted previous papers are valid for ¢ > 2, in which
case b* > 0. Since taking into account (39) and (40) we have

(42) ap, = £3 (1 - bh,) V1 —1/c2.

It follows

(43) (3a%a/ [4(1 = b))% = (1 = bE,) /ba,
whence b3, < 1. Then from (39) we see that b, — 1/2 as ¢ — 0.
Correspondingly a};, € (—%, %) Finally (43) reads

(44) 0ha = 3 (1= bha) \/1/b, — 1, b, € (0.5,1)

and represents the curve locus of the Bautin bifurcation values (Figure 1).
This curve has a limit point corresponding to by, = 1/2. This explains
why the experiments revealed no Bautin phenomenon for by, < 1/2.

M a*
aBa
0.66
0.64
0.62
Fig. 1. The curve locus of the Bautin
bifurcation point for a > 0.
0.58
>
0.5050.510,5150. 520.5250. 530. 535 b'I“3
a

Our numerical experiments were carried out at ¢ = 5 and b fixed, namely
b=0.5; 0.6; 0.7; 0.8; 0.9; 1; 1.2; 1.3 and a variable.
They showed the existence of a Bautin bifurcation value at about

( *Ba ezp7a'*Ba ezp) = (0'57 0'65) :

They agree very well with the theoretical values given by (39) and (40) for
¢=>5 and a > 0, namely b%, = 25 — 5v/24 =~ 0.505103 and

aha = 4 (5v24 - 24) 424725 ~ 0.653163.

Let us recall that the Bogdanov-Takens bifurcation values (4], [5] are situ-
ated at the intersection of the curves 51,2 (corresponding to double equilibrium
points) and the Hopf bifurcation curves Hj 5. Hence, these values (b5 a%7)

describe, as ¢ is varied, part of the curves 51,2 Let us call them S 5 pr; they
are locus of the Bogdanov-Takens bifurcation values.

Unlike this situation, the locus of the Bautin bifurcation values (44) is not
related to S15. For each ¢ fixed, the Bogdanov-Takens bifurcation values are
limit points of the Hopf bifurcation curves H. 1,2 whereas the Bautin bifurcation
values belong to Hj . In fact, the genuine locus of the Hopf bifurcation value
are Hy o except for (by,,a},) i.e. it consists of the curves (3) defined for

(45) b€ (=¢,bp,) U (b, )

In this way the Bautin bifurcation values are also limit points for the Hopf
bifurcation curves described by the equations (3) for the domain (45) of b..
However, since the Bogdanov-Takens as well as Bautin bifurcation values are
as close as wanted to Hopf bifurcation point, the Bautin and Bogdanov-Takens
bifurcations are Hopf degenerated bifurcations.

The pair (bg,,a%,) is a Bautin bifurcation point if the corresponding
second Liapunov coefficient has the property £ (0) # 0. Since #; (0) = 0,
v(0) = 0, from (35) we have £5 (0) = Recy (0) /wp. Taking into account the
expression of Recy from [8] and using the above expressions for wy, g and 7 in
which b%, is given by (39) we find

40b%
(46) 2, (0) = 5 Ba RegImg # 0.
“Wo

Hence, all points of the curve (44) are Bautin bifurcation points.

4. THE NONHYPERBOLIC LIMIT CYCLE BIFURCATION

In order to pass from (37) to its normal form (15) we need an invertible
parameter transformation )

(47) pr=v(a), p2 =4 (a),

which is regular at a = 0, i.e.
i dy I Ou  Ou

(48) det(%_'g;_ f}fel) :w—det<@i 3;3) # 0.
doy dag la=0 0 da1  day la=0

Thus (37) becomes
(49) W= (u ) Wt pewlwl’ + Ly () w w|* + 0 (jwl®),

where Ly (1) = £ (o (1)) is a smooth function of p with Ly (0) = £5 (0) # 0.
Finally we use the rescaling [5]

(50) w = /| Ls (1)|u, u € C?
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and introduce other new parameters

(51) Br = p1, B2 = +/|La2 (1)|p2

to produce equation (15), where instead of u we wrote z, presenting the
Bautin bifurcation phenomenon at (u,fi,02) = (0,0,0). In (15) we have
s = signfy (0). In these conditions, in the (B, 82)-plane there exists a curve
Ba tangent to Hy at Q (bg,,a%,), such that for points of Ba the correspond-
ing equation (15) possesses two colliding limit cycles (that is a nonhyperbolic
limit cycle). It reads

(52) B3 +4p1 =0, By > 0.

Coming back to our initial variables, the equation of this curve has the
form 4562 + 4v = 0 or equivalently

[Recz - %Recllmcl + (Imcl)2 — I'mc2] ;

(53) B
. (%Recl — LImey)” +4p = 0.

The involved equations depend on o = (b — b}, a — a¥,).

For our concrete equation (12) we represented (53) in Figure 2 for the
case ¢ = 5. Since Ba is very close to Hj, in Figure 2 we gave a qualitative
representation. This was supplemented with Table 1 for values (b, a) situated
on Ba and H;. The first three decimals of ap, obtained theoretically are the
same as those obtained numerically.

Table 1. b a

Values (b, a) situated on the
Hopf curve H; and on the
curve Ba

b ag, | GBa
0.55 0.6223 | 0.6227
0.60 0.5880 | 0.5889
0.70 0.5193 | 0.521
0.80 0.4507 | 0.453
0.90 0.3821 | 0.386
1.00 0.3135 | 0.318
1.20 0.1764 | 0.183
1.30 0.1078 | 0.115

1.3104 | 0.1034 | 0.108

Fig. 2. The curve Ba of nonhyperbolic
limit cycle bifurcation values and the

point @ of Bautin bifurcation, for ¢ = 5.
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AT

a) b= 0.55,0 = 0.6 b) b= 0.55,a = 0.6227481

'y

A

c) b=10.55,a = 0.63

Fig. 3. Phase portraits for ¢ = 5 and
(b, a) in domains 1, 2, 3 from Figure 2.

In Figure 3, phase portraits for the different regions of Figure 2 around
Q are represented. In Figure 3a, the trajectory through (1, 0.2) is drawn
for parameters (b,a) in domain 1 of Figure 2. Its c-limit point is the only
equilibrium point (repulsor) and its w-limit set is the attractive limit cycle. In
Figure 3b, the trajectory through the same point is represented for (b,a) in
domain 2 of Figure 2. Its a-limit set is the repulsive limit cycle and its w-limit
set is the attractive limit cycle. The only equilibrium point is an attractor,
situated inside the repulsive limit cycle. In Figure 3c, the trajectory through
the point (1, 0.2) is represented for parameters in domain 3 of Figure 2. It
emerges from infinity, while its w-limit set is the only equilibrium point, the
attractor. Both limit cycles disappeared, due to their collision that took place
for (b,a) situated on the curve Ba. -

It remains to prove (48) for the concrete case of (12). Thus, taking into
account (13) it follows

(54) B, =1/2 +i (,,/2 s (1 . (x*)2) / (Zw))
whence

Reg = —cz*/2,
(55) Tmg = E (B — Es)/ (4w) = —cz™ /2 + Px* (1 ol (a;*)2) /(2w),
r = 1/(3z*), [rReg] (0) = —¢/6, [Img] (0) = 3wor (0) /4.
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The differentiation of (5) with respect to a and b leads to

ov 5" - ov —
(0= ()*2’3 (0)=ﬁ7
(56) 5 1 2660.)[;) (b )( )2 G2 5 W™ T (2)
w ¢t — b* T* w —cer*
0) = = —_— =
day 0) 3c2wq 3w 0, 8a2( ) 2wob* (0).
Then (32) and (35) imply
ORecy Gy (0) ov cz* 0 (3wr — 4Img)
0) = 0) — :
(57) da; (0) 9wi Oy 2wo (0) da; 0,
8€1 = 1 BRecl ov
aaim)—-wnf St (0) - s (0) e 0)]

where it was taken into account that Rec; (0) = 0 and p (0) = v (0) ='0. Thus,
the left hand side of (48) becomes

[81/ 0 ov 0 ]
;

(58) (Bwr — 4Img) — — —— (3wr — 4Img)

87.11 87@2 dag Oy

w? — 262 (z*)* (1 — (m*)Q)

r*w

Here 3wr — 4Img = 2cz*v + , therefore we must

consider only

w? —2¢ (z)? (1 — (z*)?
(Bwr — 4Img) (0) = 2 %) ( ( ))

59
59 doy; oo wx*

0
In this way (58) reads

2(6:/ Ow ov 8w)

z2 Jay Oorg o Oagy Oy
o 'ﬂﬁ43Wf@—Nmﬁ[&aﬁ ov 9z _
Wy (;1;*)2 Jday Oag Oag Oay o
2 cz* (2 +3b*)  4c? (a*)? 1 &
= + #0,

2?2 6w? (b*)? wo  dewob* (z*)? : 3wib*

which proves (48).
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