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THE CONCAVITY OF SOME SPECIAL FUNCTIONS *

DOREL I. DUCA

Abstract. In this paper, one studies the concavity of the functions g : D — R of the
form

9(0) =) aifi(@) + (Z f; (sc)) I} fi(2)=3 fi(@)hfi(e), €D,

where D C R™ is a nonempty convex set, fi,..., fp : D —]0,00[ are concave functions and

ai,...,ap are real numbers.

As known, the necessary conditions (without any differentiability hy-
pothesis on the functions) and the sufficient conditions (with differentiability
hypothesis on the functions) for the optimal solutions of the optimization prob-
lems are formulated under concavity (or generalized concavity) assumptions
on the objective function and restrictions.

In this paper, one studies the concavity of a function by showing that its
values are the optimum values of a convex optimization problem. Using this
idea H. P. Benson and G. M. Boger, [3] show that, if D C R" is a nonempty
convex set and f1, ..., fp : D —]0,+co[ are concave functions, then the
function o : D — R defined for each z € D, by -

P l/p
o (o)
i=1

is a concave function. From this it follows that, if D C R™ is a nonempty
convex set and fi, ..., fp : D —]0,+co[ are concave functions, then the
function S : D — R, defined for each z € D by

P
B(z) =] (=)
=1

is a quasiconcave function.
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Using the same idea, D. I. Duca [4] shows that, if D C R™ is a nonempty
convex set, and fi, ..., fp : D —]0,+oo[ are concave functions, then, for each
r>1anday, -.., ap > 0, the function v : D — R defined, for each x € D, by

v(z) = <Z a; (fi (w))”r>

is a concave function.
In this paper, one studies the concavity of the functions ¢ : D — R

defined, for each z € D, by

P P P P
0(@) = i 0) + (}: p <x>) o) - 3 i (o) i (),
i=1 i=1 i=1 i=1
where D C R” is a nonempty convex set, fi, oo fp: D —]0, +o0[ are concave
functions and a1, ..., ap > 0 are real numbers.

We need the following lemma.

LEMMA 1. Let a = (ay, ..., ap) > 0 and b = (b1, ..., by) > 0 which
satisfy the following inequalities

(1) (Zai>bk2ak,ke{l,...,p}.

i=1
Then the optimization problem
(P) min (@121 + ...+ apzp) ,
subject to
bie #l + ...+ bpe” <1,
z>0,i€{l, ..., p}
has a unique optimal solution 20 = (z(l), ...,zg) € RP, given by
P
(2) 20 =1In (Zai)—l—lnbi—lnai, ie{l, ..., p}.
1=1
Proof. Let ¢ : R? — R be defined, for each z = (21, ---, %) € RP, by

o(z) =bre™ +... +he -1

Obviously, the function ¢ is convex and differentiable on RP.

Let us suppose that the problem (P) has an optimal solution z
(29, ...,20) > 0. Since the function ¢ satisfies Slater’s constraint qualification,
in view of Karush-Kuhn-Tucker necessary optimality theorem [5, pp. 109-110],

there exists a nonnegative number v, such that

(3) ai—bie_z?'U:O,z'e{l,...,p},

0
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(4) v (i be % — 1) = 0.
i=1

If v = 0, then, from (3), it follows that a; = 0, ¢ € {1, ..., p}, which
contradicts @ > 0. Hence v > 0. Then, from (4), we deduce that

(5) bie_z? =1.
i=1
Now, from (3) it follows that
b .
(6) 2 = ln%, ie {1, .., p}.

)

By substitution in (5), it implies that

P
(7) v=>_ai
i=1
Now, from (6) and (7), it follows (2). Therefore, if the problem (P) has an

optimal solution 2% = (z?, . zg) € RP, then this is unique and given by (2).

On the other hand, the problem (P) is convex and, for 20 = (z(l), ey zg) €
RP given by (2), there exists a nonnegative number v given by (7) such that

the Karush-Kuhn-Tucker conditions (3)—(4) are hold. Then, in view of the

Karush-Kuhn-Tucker sufficient optimality theorem [5, pp. 93-95], the point

2% is an optimal solution of the problem (P).

Remark 1. If by > 1, for all k € {1, ..., p} then the condition (1) is
satisfied.

Using Lemma 1, we can state the following theorem.

THEOREM 1. Let D C R" be a nonempty convez set, let fi, ..., fp: D —
10, 00| be concave functions and a1, ..., ap be real numbers such that

P
(8) ( i (x)) e™ > fi(x), for any k€ {1, ..., p} andz € D.
=1

Let g : D — R be the function defined for each x € D, by

P P P P
g(z)= Zaifi (=) + (Z fi ($)> 1112 fi(z) - Zfi (z)In f; (2).
i=1 i=1 i=1 =1

Then g is a concave function.
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Proof. Let b; =e%, i € {1, ..., p}. Then by, ..., b, > 0. Let us consider
the function h : D — R defined, for each z € D, by

9) h(z)= min{z zifi (2) : (21, .y 2p) € Z} ;

where
P
Z =< (21, - 2p) € IntRY Zbie;z" < 1} .
i=1
From Lemma 1, since fi, ..., fp are strictly positive on D, and

p
(Z fi (m)) e > fi. (z), for any k € {1, ..., p} and z € D,
i=1

it follows that the minimum in (9) exists and is finite for each z € D. If, for
each z = (21, -, %) € Z, we define the function h, : D =R,

P
b (@) =3 aifi(5), 5€ D
i=1

then, for each z € D, h (z) may also be written as

(10) h(z) = min {h, (z) : (21, ..., 2p) € Z}.

Obviously, for each (z1, ..., 2,) € Z, the function h, is concave. From
this and (10) we deduce that the function h is also concave.

To complete the proof, we will show that, for each z € D, we have
h(z) = g (x). For this aim, fix z € D and let 2 (z) = (21 (2), -, % (z)) e Z
be an optimal solution of the problem (9). From the Karush-Kuhn-Tucker
theorem, it follows that there exists a nonnegative number v (z) , such that

(11) fi(z) — b (z)e %@ =0, i € {1, ..., p},

p
(12) (Z be % (@) — 1) v (z) = 0.
=1
If v (z) = 0, then, from (11), it follows that f; (x) = 0, for each i € {1, ...,

which contradicts f; (z) > 0, for allz € D and < € {1, ..., p} . Hence v (z)
Then, from (12), we deduce that

P
(13) > b ) =1,
=1

P}y
>0
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On the other hand, from (11), it follows that
e—zi(:c) — fi (:E)

4 e {1, ... ;
By substitution in (13), it implies that
P
(15) ' v(z) =) fi(z).
1=1

Now, from (11), (14) and (15), we deduce that
P P p P
z%wwww=zum»mm+(zﬁm0m(zﬁw0—
(16) i=1 i=1 » i=1 i=1
- ;fi (z)1n f; (z) .

Since (21 (z), -, 2p (2)) € Z is an optimal solution of the problem (9),
the left-hand-side of the equality (16) coincides with h (z) . The right-hand-
side of the equality (16) is equal with g (z), because Inb; = ai, ic{l, .., p}.
The proof is complete.

Remark 2. If a; > 0 for all ¢ € {1, ..., p}, then the condition (8) is
satisfied.
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