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SOME GENERAL QUESTIONS OF THE THEORY OF SINGULAR
OPERATORS IN THE CASE OF A PIECEWISE LYAPUNOV
CONTOUR

VASILE NYAGA

Abstract. The theory of singular integral equations and boundary problems for ana-
lytic functions with piecewise Holder and piecewise continuous coefficients along Lyapunov
curves has been developed rather completely. Many works are devoted to this theme, among
which we mention only fundamental ones [1-6]. Further the theory of singular integral
equations and boundary problems developed intensively in such directions as, for example,
weakening conditions on the class of functions under consideration [7-8], on the coefficients
of equations and boundary problems [9-11], the extension of admissible curves [12-16], the
study of singular equations which do not satisty the condition of Hausdorff normal solvability
[17], of singular integral equations with non-diagonal singularities (with shift) [18-25], etc.

The present work is a survey of problems and results related to the influence of corner
points of integration contour on various properties of singular operators. The main atten-
tion is paid to properties obtained by the author and which differ from the corresponding
properties in the case of a Lyapunov contour. Note that the case of an unlimited contour
has been considered in the author’s work [26].

1. ON THE ESSENTIAL NORM OF SINGULAR OPERATORS

THEOREM 1.1. Let I' be a piecewise Lyapunov contour with a finite num-
ber of selfintersection points, t1, ta, ..., tn be some points on T, 61, B2, -
Br be real numbers and

n

(1.1) p(®) =[] It -t
k=1
The operator

(1.2) (Sre) (t) = —1— / ﬁ%dT (rel)

™ T—
T
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is bounded in the space Ly (T, p) if and only if the numbers B (k=1,2, .., n)
satisfy the conditions —1 < f, < p — 1 (k=1, .., n).

The sufficient part of this assertion is proved for a Lyapunov contour in
[5], for a piecewise Lyapunov contour in [12], for ' = (—o0, 00) in [27] and for
an arbitrary unbounded contour in [28] (see also (29]).

In [7] it was shown that the norm |1Sol],, in the space L, (I') (Lo = {t: |¢]

=1}) for p=2" and p = 2" (2" — 1)7! is equal to v (p), where

(o) ctanm/2p if 2 p < oo,
YT tann/2p if 1<p<o

After this result has been obtained, a series of works appeared where the
norms of singular operators in various spaces were evaluated and calculated.
In [30] the norm of the operator

27

(Co) 1) = 5- / o (y) ctan Y=

0

¢
dy

was calculated. It turned out that ICll, = v(p) (in the space Ly (0, 27)).
This permitted to prove that [150ll, = v (p) for any p € (1, 00).

In the monograph [7] the estimate of the essential norm |ST| Py = %gg
|| Sr+ T”Lp(l",p) in the space Lp (T, p) in the case of a Lyapunov contour
was obtained. In the book by F. Zigmund ([31] p. 83) it is proved that
|Srll, < [IC]|,, therefore I1Sll, = v (p). Taking also in consideration the
equality ||Sgl|, = H.S'ng’rt_tU[puz (see [11]) and M. Riesz interpolation theorem,
we obtain that if min (0,p — 2) < 8 < max (0,p — 2), then

150115116 = IS0l

The series of investigation was completed in [32].

For the first time the case of contour with corner points was considered
in [14] and the case of contour with selfintersection was considered in [33].

Let 'y have one corner point with angle ma (0 < @ < 1), then [Baly =

ctanf («) /2, = |Qaly = (sind (a))_l, where S, = Sr,, and
1
(1.3)  ctanf(a) = = max

1—x\/? 1+4x) %2
2 -1<x<1 (142) <1+x> = =) (l—x) '

1++5
2

In particular ,51/3l2 = and '51/212 =2
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THEOREM 1.2. LetT be a piecewise Lyapunov contour with corner points
n
b1 oy tn and p(t) = [T |t — x| (=1 < By < 1), then
k=1

1Sl 1,0, = e |Sak,L2(Faks|tlﬁk) ;

Let 12}612” (a1 -y ay) = Oho- If o, = 1, then
4 L — |8y
15Tl Lo,y = max ctanr—
I = d 6 (ako)
fp(t) =1, then lSFle(F) = ctan 5 For the operators Pr and Qr

the equalities |Pr| = |Qr| = ([Sp|2 + 1) /2|Sr|.
In the space Lp () the estimates

]
ctan—(%‘ﬁ ifp=2on
|Sl"p <
0 7] ’
cta.n‘—(;%@ . ctanl‘t—;:%f), if 2" < p < 27l

where t = (2n+1 ~p) /p, are valid.

Consider the case when I" has selfintersection points. To formulate one
result we introduce some notations, which will be also used further. Let r
be a composite contour consisting of m simple piecewise Lyapunov closed

n
curves i, ..., Ym, which have a point ¢, in common, p(t) = J] [t—tklﬂk
k=0

(F1<Bu<p—1), by = p(1+) ™" (k=0,1, ., m), hpyy = p, Py =
max (hk,hk (hi — 1)_1), (k=0,1, .., n+1)and h = max (El, ha, ..., En—l—l)- :

THEOREM 1.3. For the essential norm of operators Pr, Qr and St in the
space Ly (T, p) the following estimates are true:

|Prl,, ,Qr‘lpp > max ((sinﬂ/h)_l, (sinﬂ'/mﬁo)—l) )

14 L
(14) ST, > max (ctanm/2h, ctanm/2mhy) .

These estimates are in concordance with the corresponding results from
[32] and embrace all the cases of boundedness of operator Sr in L, (T, p).
Remark that for one class of contours the above estimates are exact. So, if the
tangents to I' at selfintersection points are perpendicular and p(t) = 1, then
in (1.4) the equality sign takes place.

Let T' be a simple closed piecewise Lyapunov contour which bounds a
domain Gif, @ be Riemann function mapping G into G = {z |z] <1} and
t1, -.., tn be all the corner points of contour T with angles ag7m (0 < oy, < 1).
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THEOREM 1.4. Operator

1) w0 =5 [ (s - ) eear

T

!
is compact in the space Ly (T', p), if and only if 3 oy, = L.
k=

THEOREM 1.5. The operator S} acting in the space Lg (I‘,pl_q) has the
form

(1.6) St = ~VhSVHI,
where (V) (1) = ¢ (t) and h is a piecewise Holder function on T.

THEOREM 1.6. The operator Sf — St is compact on the space Ly (T) if

and only if Z ap = 1.
k=1

2. FACTORIZATION. NOETHER THEOREMS

I (T,p) = BLE (T, p); ~ L (T, p) = QrLI (T, p) + C
Let I" be a closed composite p1ecew1se Lyapunov contour which bounds
a domain G By Gr we denote the domain which complements G'+ UT to
the full plane Assume that 0 € G{ and oo € G . Let B™*™ be the set of
square matrices of order m with elements from B; Pp = |[63; (I + St) /2|

Qr=1I—"Ppr; "LP(T,p) = PrL (T, p) ;
Lyt (T, p) = QrLy (T, p) + C (C is the set of complex numbers) .

1°. Class Facty, (I'). The generalized factorization of a matriz a (e G
LmX™ () with respect to contour I' in the space LM (T, p) is defined (see [34],
[7], [35]) its representation in the form

(2.1) a=a_Day,

2,§=1"

where D = |61 (¢ — zo)”jllT, 7,8 < 1, 20 € Gt; k5 are integers (k1 > kg > ... >
km), and the factors a® satisfy the following conditions:

i) a- € “LPX™(T,p), ay € *LPm (D, pl=d), g=1 ¢ ~Lmxm (T, pi-a)
and ay' € TL7™(T,p); (p7 4+ ¢t =1);

i1) the operator aIIPI‘a_f_I 15 bounded in the space L7 (T, p).

The set of all matrix-functions a (€ GL7*™ (') admitting generalized
factorization with respect to contour I' in the space Ly"*™ (T, p) will be de-
noted by Facty ( )
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2°. Class N7 (T'). We regard measurable essentially bounded matriz-
functions a (t) as belongmg to the Noether class (denoted by Fact)) L (1)), if the
operator A = aPr + Qr is Noetherian.

THEOREM 2.1. (see [84]). Nty (I') = Facty, (T).

3°. The connection between Facty, (I') and Facty* (T)
Let h be a function from Facty' (T') such that

h=h_-hy. ,
Denote B1 = Ly (T) and Bp=L7" (T, p|h4]| "), (1 < p < 00).
THEOREM 2.2. There ezxist inversible operators B : By — By and C :

B1 — By such that for any pair of matriz-functions a,b € LT*™(T) the
equality

(2.2) B (aPp + bQI‘) C = haPr + bQr
holds.
The proof is contained in [36).

COROLLARY 2.1. The operator A = aPr+bQr (a,b € L™ (T')) is Noe-
therian in the space L} (F, |h+|“p) if and only if the operator Ap, = haP+bQr
possesses the same property in the space Lp* (I'). Then dim ker A‘Lm (F hel?) =

dim ker Ah|Lm (ry end dimker A* 'LW(F [hy | 7P0=9)) = dim ker A} 'Lm

COROLLARY 2.2. a eFactmlh -» (I') <= ah eFacty, (T).
Show (see [37-38]), that Theorem 2.2 permits to reduce the investigation
n .
of the operator A = aPr + bQr in the space p(t) = ] |t —tx]P* to the
k=1

investigation of some singular operator in the space L (F)_ (without weight).
For simplicity we assume that I' consists of v closed curves I'y, ..., T', having
a point £y in common and

n

ZHlt—tklﬂk, (-l<gr<p-—-1).

Denote by I';, (1 < < v) the curve containing point #; and set

_br
hy (£) = (t—2x)"»  for ST
1 for te P\Fik:

, _By
where zj, is a point of the domain G , bounded by the curve I';, , a (t — 2z)~ »

is a branch of this function continuous at any point ¢ € I'; different from .
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Let @1, ..., @, be some points belonging, respectively, to the domains
GY, ..., Gf, o1, ..., 0, be some real numbers and hy, () be a fixed branch of

the function (z — wy)’* defined on the complex plane C with a cut which joins
2z and oo and intersects the contour I' in one point t5. The functions hy (2),

(k =1, ..., v) are continuous at any point ¢ € ', perhaps except the point % :
hi (to = 0) # 0 and
(2.3) hi (to — 0) /By (to +0) = exp (2mioy,)

where the numbers hy, (to — 0) and hy, (to + 0) are determined by the equalities
3.1 of Chap. X of the work [7] (see also [16]). By h (t) we denote the product

(2.4) h(t)=h1 () e hn ()L (&)« oo By (2) .
THEOREM 2.3. (see [37]). Let ZV: o = —@. Then
k=1 p

a € Facty, (I') <= ah € Fact}' (T).

COROLLARY 2.3. Let A = aPr +bQr, h be a function determined by the
equality (2.6) and Ap = ahPr +bQr. Then A € Nty (T') <= Aj, € Nty (T).
By this Ind A = Ind Ay,

4°. Class M, (I') (see [39]). In this and next items we assume that T’
consists of two curves I'; and I'y, having one common point ¢y, and besides
the tangents to I' at this point are perpendicular and p(t) is the function
determined by the equality (2.4).

Let 79 be a point on I' different from #y. Denote by A (79) the closed
halfplane which does not contain the origin. By A (79) we denote the angle
with vertex at the origin and value of 7/2. To the class M), (I') refer essentially
bounded measurable functions a (t) satisfying the conditions:

(i) essinf |a ()] > 0;t €Ty

(ii) for any point ¢ € I'\ {¢o} there exist a neighbourhood w (t) (C I'\ {t0})
of the point 7 and a pair of functions g (£) such that (g (¢))™ € L (D),
(97 (t))j:1 € Lz, (T') and the range of the function g} (t)h (¢)a (t)g; (t) at
t € u(7) is contained inside A (7).

(iii) for the point ty either there exist a neighbourhood u () and func-
tions g (t) such that (g3 (t))il € LE (T') and the range of the function
ga (B)h(t)a(t) gy (t) att € u(to) is contained inside A (to), or there exist finite
limits a (to £ 0) and h¢, (20 — 0) a (f0 — 0) /hy, (to + 0) a (tg + 0) & (—o0,0).

THEOREM 2.4. M, (I') C Facty, (T').

COROLLARY 2.4. Let a € M,(I'). Then the operator A = aP + Q is
Noetherian in the space Lo (T, p).

7 Theory of Singular Operators 63

COROLLARY 2.5. M, ()N PC (T") = Fact (T')NPC (I'), where PC (T) is
a set of all piecewise continuous functions on T.

Note that if I' is a simple closed Lyapunov contour and p () = 1, then the
class M (T') coincides with the class A (2,T) introduced by I. B. Simonenko
(see [40]). In this case, as known (see [40]), aP + bQ is Noetherian if and only
ifa € A(2,T) (= My (T)). From this and Theorem 2.4 follows

THEOREM 2.5. M, (I') = Nty, (T').

5°. Class M (T') (see [36]). To class M} (') we refer matrix-functions
a(t) = |lajk (t)”;’fk (t €I') of order m with elements a;), € Ly, (T') satisfying
the conditions: '

(i) essinf |deta (¢)| > 0, (t € T);

(ii) for any point 7 € I' except, perhaps, a finite number of points tg, T
(k=1, .., 1), there exist a neighborhood u (t) (CT) of the point 7 and a
pair of matrix-functions g such that (g (¢))™ € g mxmiIMs ()L e
“LTX™(T) and for any t € u (7)

Re(gf (t)h- (t)a(t)g () > o(t) > ¢(1) cos §(T)

where ReB = (B + B*) /2, B* is the matrix conjugate to B, 6 (r) is the
function from Theorem 1.2 and c(7) is the norm of the operator h,al in the
space L (u(7)). Note that c¢(r) coincides with sup s; (h, (£)a (t)), where
teu(r)

s1 (hra) is the greatest eigenvalue of the matrix (hTaa*h:)l/ 4

(iii) there exist finite limits ag; (agj_1) of matrix-function a (t) as ¢ tends
to to along arc I'; (j =1, 2) directed to point ¢, (from point ty) and the
spectrum of matrix e‘”iﬁ°a4a3‘ lazal“l does not intersect the negative semi-
axis R™;

(iv) at points 7j there exist finite limits on the left and on the right -
a(7r — 0) and a (7 + 0) of the matrix a (t) and the spectrum of matrix

e ™ Ma™ (7, 4 0)a (7, — 0)

does not intersect the negative semi-axis R™;

It easy to see that if all the points 7, (k =1, ..., I) at which there exist
limits a (7; +0) are ordinary (see [1], p. 16), then the conditions (iv) are
equivalent to conditions (ii). This can be deduced also from Lemma 2.1 of the
work [15].

THEOREM 2.6. Let the mairiz-function a belong to the set M7 (T), then
the operator A = aP + Q is Noetherian in the space LY (T, p).

Remark that for I' being a closed Lyapunov contour and p () = 1 this
theorem was proved by I. B. Simonenko (see [41], Theorem 8), and the set
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M7 (T') coincides with class A™(2,T) introduce‘zd in [47]. For I being a simple
Lyapunov contour Theorem 2.6 is contained in the worl.( by N. Iar.nxlnsrup-
nik [42]. Note also that from Theorem 2.6 follows that if a,b € LT (F?,
essinf|det b ()] > 0 (t € T') and b~la € M} (I), then the operator aP +bQ is

Noetherian in the space L5 (T, p).
COROLLARY 2.6. M}™*(T") C Facty, (T).

Theorems 2.5 and 2.6 are transferred, with corresponding changes, to the
case of an unclosed contour. ik .

6°. Class Gs, (T). Let I'be a closed piecewise Lyapunov cpntour with
corners t1, ..., t, and p (t) be the weight determined by the eguahty (1.1). By
Gsp (I') denote the set of all matrices a of LTX™ (T') satisfying the following
conditions:

(i) essinf |det a ()] > 0, (t € I'); o .

(ii) for each point 7 € I'\ {t1, ..., ts} (s > n), there exist a neighbour-
hood u (1) (CT), there exist a neighbourhooc_} u(r) (CT') of point 7 a.tjl:(ll a
pair of matrix-functions g such that (g7 (t))jL' € (+L‘§,§'Exm} (T'), (g7 (t))+ €
— [mxm (T) and for any t € u (7) , the matrix gjag%‘ is unitary a_md o (g; agl) C
A, (8) , where A (6) (0 < ¢ < 2m) denoted angle with vertex of the point z =0
and value less than 4. —

(iit) for the points ¢ (k =1, ..., n) there exists finite limits a (¢ £ 0) and
det (i () a (b +0) + (1= fi () a (te — 0) # 0 (0 < pp < 1), where

sinOpuexp (0ct) 5 _ 0 on (14 ) fp, if 04 #0,

)= { Smtyexp (%) el

(iv) there exist a neighbourhood u (ty) (k =n+1, ..., s) and a pair of ma-
oy + *1 mxm (T - t))il € Jmxm (F)
trix functions g; , g, such that (g5 7 € LA hL); (g3 ( .
for any t € u (f), the matrix g3 agj, is unitary and

o (gpagl) C Ak (6) (teu® (th), o <9;Zagi§ez_w;%) C Ak (8) (teu (t),

where ut (tx) = {t € u (), t > tx} and ut (t) = {t€ulty), t <t}

THEOREM 2.7. (see [15]). Let a € Gy, (I'), where

. 2-p ™ 132;2 ¢ T
tand/2 = min | m *¢ tan—ZE, m 2 C an% |
then the operator aP + @ is Noctherian in the space L3 (T, p).-

COROLLARY 2.7. Gy, (I') CFact? (I').
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3. THE DEPENDENCE OF NOETHERIAN PROPERTY OF SINGULAR
INTEGRAL OPERATORS WITH SHIFT AND CONJUGATION ON THE
EXISTENCE OF A CORNER POINTS ON CONTOUR

1°. Singular operators with shift. Let I" be a closed piecewise Lya-
punov contour, v : I' = I', (V) (t) = ¢ (v (t)). In the space L, (T') consider
a singular integral operator with shift v (¢) of the form A =a () I +b(t) S +
(c(t)I+d(t)S)V, where a(t), b(t), c(t) and d(t) are bounded measurable
functions on I'. Assume that the mapping v satisfies the following conditions:

() v () =1

(ii) the derivative ¢’ (t) has on T" a finite number of discontinuity points of
the first kind and on arcs I, joining discontinuity points it satisfies the Holder
conditions;

(i) v(t£0) #£0 (t€T).

Together with the operator A of the form (3.1) consider also the operator
A determined in the space L2(I') = Ly (T') x Ly (T') by the equality

al +b8 I +dS H
0

(
G0 A Tlllarbetds” arigs ||

0 b
it H dJ(V,V —€S) B(V,V —€8) H‘A“R’

wheref (t) = f (v (t1)) and € = 1 (¢ = —1), if the mapping v preserves (re-
verses) orientation on I'. As is known [4], if a, b, ¢ and d are continuous
functions and v/ (t) € H (T'), then the operator R is compact in Lf) and the
following theorem is true.

THEOREM 3.1. A € Nt,, () <= Ay € Nt2(T), by this Ind A = LIndAy.

Show (see [43]), that the assertion ceases to be true if I has corner points. -
In such case, usually, the derivative v/ (t) has on I’ discontinuity point, and it

turns out that if the operator A is Noetherian, then the operator Ay is also
Noetherian but the converse does not hold.

THEOREM 3.2. If the operator A (a, b, ¢, d € C(I')) is Noetherian in the
space Ly, (T'), then the operator Ay is also Noetherian in the space Lg (T).

Indeed, the operator Zfo is Noetherian if and only if

M) =(a®)+b() (G0 +eb®) — (c()) +d@®) (E0) +=d (1) (1)) #0

and

82 (8) = (a(®) = b() (TW) =B D) - () — ) (E() —ed () (1)) #0
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herian, then the determinant of its
for any t € I'. Let the operator A be Noet s :
symbol (see [22]) is not equal to zero: det A (t1,£) # 0. One can check directly

that
det A (£, —o0) - det A (¢, +00) = Ay (t) - Ag (t).

Therefore, the operator Ay is Noetherian in Lzz, (I'). The theorem is

prover%.he following example shows that the converse Of. Theorem 3.2.is not
true. Let v reverse orientation on I' and the corner point (eT) w1.th the
angle 8 (0 < 6 < ) be a fixed point of the.mappmg viv (to) = to. II-I this cas(e::1
it is easy to see that the derivative V' (t) is discontinuous at. the point ¢y an
V' (t+0) = exp (if + o), ¥/ (t — 0) = exp (i0 — o), where o is a real number.
Consider the operator

A=1+4465V,
where § is complex number. The operator A has the form
o I S 0 0 i +R
A= —ss 1 H+ 5(VSV +5) 0 H 7 Ao

If § # =i, the operator A is Noetherian. Let A (t,¢) be symbol of the
operator A at the point ¢g. One can check directly that

det A (tg,¢) = 0° + 2 (e + B) § + 1, where
g el ri0) €+ 1)

exp (6+1)—1 exp(é+2) -1
From this, due to Theorem 1.1 from [22], it follows that for any ¢ =

o it exp [(2m — 0 — o) (ﬁ—i—ﬁ)]

—(a+B) £4/(a+ B)? — 1 the operator A is Noetherian in the space Ly (T').
Thus, the conditions for operator A being Noetherian depend on angle 6.

COROLLARY 3.1. Let v/ (t) ¢ H (T'), then the operator V.SV — €S is not
compact in Ly (I').

COROLLARY 3.2. If the operator A, determined by the equolity 3.1 is
Noetherian, then the operators gNand Agy determined by the equality 5.2 are
also Noetherian and Ind A =Ind Ay.

COROLLARY 3.3. If the operator A s Noetherian, then Ag is also Noe-
therian. The converse is not true, in general.

Note that the corresponding example of non-Noetherian operator A for
which the operator Eg is Noetherian can be given also in the case when v
preserves the orientation of contour I'.
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2°. Singular operators with conjugation. Singular integral opera-
tors with conjugation have the form

A=aP+bQ+ (cP+5Q)V,

where a, b, ¢, d € PCr (T'), P=(I+5) /2, Q=1- P, (Vo) (t) = o (¢) and
[ is a closed piecewise Lyapunov contour.

By constructing Nether theory of operator A in the monograph [4] an
essential role was played by the fact that if at each point of contour I' the
Lyapunov condition is satisfied, then the operator V.SV + § is compact in the

space Ly (T', p). In this case the operator A is (see[4]) Noetherian if and only
if the operator

Q

possesses the same property in the space Lg (T,p) = Ly (T, p) x L, (T, p) .

It is quite different if the contour T' has corner points. It turns out that
in this case the operator V.SV + § is not compact in L, (T, p) and if A is
Noetherian, then Ay is also Noetherian but the converse ceases to be true.
It is these facts which constitute significant difference between a, piecewise
Lyapunov contour and a Lyapunov contour.

it
ca

THEOREM 3.3. The operator

_ 1 fo(r)dr l/W(T)dT
PRl 2he = ﬂi/ B il VT
IN

s compact in the space Ly, (T, p) if and only if T is a Lyapunov contour.

The sufficient part of this assertion has been proved in [4]. Prove the
necessity. Let V.SV + S be compact, then the operator Ay = VSV + 8 — \J
is Noetherian for all A € C\ {0} . Therefore, due to Theorem 1 of work [48],
det Ay (2, &) #O0forall k+1, ..., s and —oo < ¢ < 00, where te(k=1, ..., s)
are all corner points of contour I'. From this we obtain that

27l'—l9k ok
z, — % _ hid 1+ B
“Z’%" L = (zk exp (§ +i » !
The last is possible only for 6, = 7. The theorem is proved.
The condition for operator A being Noetherian, unlike singlar operators
not containing the operator V' (i.e.aP + bQ) depends essentially on contour.
For example, the operator A = (1 + \/5) P+ (1 == \/5) Q +V is Noetherian in

all spaces Ly (I, p) if T is a Lyapunov contour and is not Noetherian in Lo ()
if ' has one corner point with angle /2.

3°. Generalized Riemann problem. Consider the generalized bound-
ary Riemann problem: to find analytically representable by Cauchy integral
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in F and Fj; functions ot (z) and @~ (z) .limit values of which on I" belong
to the space Ly (T, p) and satisfy the conditions

ST (1) =a(t)® (1) +b(t) 2 (t) +c(t),
i i dec(t)e L, (T, p).
h t), b(t) are defined on I' continuous functions an p

" er?\lgét%ler t(h)eory of this problem in the case of a Lyapqnov contour hgs
been constructed in the works [45], [46], [4]. In particular, in these works it
is established that a necessary and sufficient condition for .the problem being
Noetherian is that the inequality |a (t)| > 0 should be satisfied for all ¢ € T
In the case of a piecewise Lyapunov contour the following theorem is true
(see [47], [49]). |

THEOREM 3.4. In order that the generalized boundary Riemann pmblem
in Ly, (T', p) be Noetherian it is necessary and sufficient that the following con-
ditions be satisfied: I

] >0 (tel);
(i) o ()] >0 ( e

i =1, .., n, wh
(ii) |a (t)* — |6 (t)]? (J_;E“'——T_) # 0 for all k =1, ..., n, where

2 = exp (§+il+ﬂk>,—oo§£§oo, 6 = 0 (1) and By = B ().
D

This, in the case of a piecewise Lyapunov contour th.e Noetherian.prop—
erty of Riemann problem depends not only on the coefﬁqlent a(t), as it was
in the case of a Lyapunov contour, but also on the coefficient b (t)

The results of this section can be extended, without_esser}tlal changes,
to the case when T’ consists of a finite number of closed piecewise Lyapunov

curves without common points.

4. PERTURBATION OF SINGULAR INTEGRAL OPERATORS

In this section we will show that the Noetherian property of operators
aP +bQ is stable under perturbation by some nqt compact operators.'Ren}a:rk
that analogous questions have also been studied in [53] and [54]. For simplicity
assume that I'(= {¢: |¢| = 1}) is a unit circle. I.Jet ar(k=1, ..., s) be some
complex numbers. Introduce the following notations:

P={¢:é=t—ag tel} and Ty ={£:{=t+ oy, teT}.
Assume that ['; N T NT=0 (G,k=1,...,5).
THEOREM 4.1. Let a, b, ¢ € Loo (T') (k=1,...,s). In order that the
operator
b(t) [ w(r) - 1[_en 4
(41) (A(,O) (t) = (],(t)(p(t) + —,—/de—l—;ck (t) = —_T Ty o T
4 =

Tl
r
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be Noetherian in the space Ly (T, p) it is necessary and sufficient that the
operator

(42) () () =a () + L2 [ 20y,
r

possesses the same property. If the operator Ay is Noetherian, then IndA =
ITLdAO

In particular, if a, b € C (T'), the condition a2 (t)—b*(t) #0(tel)is a
necessary and sufficient condition for the operator A being Noetherian and

o a(t)+b(t)

In the general case (a,b € Lo, (I')) one can apply the criteria from Section 2
to the operator A. Note that the operator Ay is (see [1]) the characteristic
part of the operator A.

It turns out that the operators with kernels (r—1t— ak)_l are not, in
general, compact in the space Ly, (T, p) (see [51]). Proof of theorem 4.1 is based
on a series of properties of operators with kernels (7 — ¢ — o)”* and their

compositions with operator S and operators aI. The conditions Fkﬂfﬂfj =0
is essential. For example

43 A0 =el)+ - [ D gry L 20
r r

A € C is a Noetherian in Ly (T') for A = 2i, whereas (Aop) () = A () is
invertible for all \ # 0.

DEFINITION 4.1. The subset (t1,t2), (to,t3), ..., (tm,t1) of the setI"'x T
is called m-link if t; # ty, for j # k [53].

DEFINITION 4.2. The set M C I' x T" is called admissible if there exists a
neighborhood of this set which does not contain m-links for any m.

DEFINITION 4.3. Let

(4.4) (e / h(r,t)p(r)dr (teT)
r

We say that the essential singularity of the kernel h(7,t) is contained in the
set M if the integral operators with the kernel

ﬁ( £ = 0 in a neighborhood of the set M,
ST T (7,t) at other points of I x T,

s compact.
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In [53] the following assertion is proved.

THEOREM 4.2. Let the essential singularity of the kernel h(7,t) of the
; ; ssible set M.
integral operator (4.4) be contained in an admissi )
B engonpz al +bS € N, () = A=al+ bS + H € Ny, (I') and IndAo =
IndA.

i T for which 71—t —og =0
Denote by M the set of pairs (7, t) € I' x
(k=1,...,s). Assume that the numbers oy, are such that M # (). Then the set
M con,sists of finite number of points (71,%1), -, (v, tn) and the operator

S
1 (1)
= = [l iy
(4.5 Koy =300 [ 7B
k=1 0
is not compact in the space Ly (T', p) . From Theorem 4.2 one can deduce (see
[53]) the following proposition.

in m-links (m=1, ..., N). In

THEOREM 4.3. Let the set M do not contain m e NV
order that the operator A =al +bS+K (a,b€ PC (T)) be Noetherian in tlflse
space Ly (I',p) it is necessary and sufficient thal? the opemtor Ay = aI—xt;1 2
possess the same property. If the operator Ag is Noetherian, then IndA =

I ndA() 2

The above example proves that the restrictions on the set of singula.rities
are. in some sense, exact. In this connection the question of the necessity of
?

conditions of Theorem 4.3 arises naturally.
To be more exact, whether there exists an operator of the form (4.6) sat-

ing conditions: 1) t ins an m-link; 2) Jei (1) >
isfving the following conditions: 1) the set M contains an m !
:SS );11’1[8; (k=1, .., s) on the set M; 3) the operator A = al +b5 + K €

Nt,, (D) & Ag = al +bS + K € Nty (T) -
- éuch operators exist (see [52]). As operator K we take the operator

acting by the rule

1 ¢ (7) 11, / ?(1) 4.
(%9 00 =5 [ 7550+ 5 [ 7o
r it

Note that the operator K is not (see [51]) compact in the space L, (T,p).
The set M corresponding to the operator K consists of two Pomts (—1,1) and
(1, 1), forming two links. Denote by N the set of all functions from PC (D)
co7ntinuous in some neighborhood of the points 7 = +1.

THEOREM 4.4. Let a,b €N

A=al +bS + K € Nip, (T') & Ao =al +bS € Nty, (T).

If Ag € Nt,, (1), then IndA = IndA,.

15 Theory of Singular Operators 71

In conclusion remark that the results of this section can be transferred to
case where [ is an arbitrary piecewise Lyapunov contour which has no straight-
line parts as well as to operators of the form (4.1) with matrix coefficients.
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