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THE OPTIMAL EFFICIENCY INDEX OF A CLASS OF HERMITE
ITERATIVE METHODS WITH TWO STEPS

ION PAVALOIU

Abstract. The inverse interpolatory polynomials of Hermite type with 2 nodes, all
having the same order of multiplicity ¢ € N, provide a class of iterative methods for solving
scalar equations. In this note we determine the iterative method with the highest efficiency
index: the optimal method is obtained for g = 2.

1. INTRODUCTION

As we have shown in [7], the problem of determining the Hermite interpo-
latory interative methods having the optimal efficiency index cannot be solved
in the general case. We have determined however in [7] some upper and lower
bounds for the efficiency indexes; these bounds depend on the coefficients of

. the characteristic equation whose positive root provide the convergence order
of the considered equation. A

In this note we shall consider a subclass of Hermite interpolatory meth-
ods, based on two interpolatory nodes which have the same multiplicity order
¢ € N. We shall use the efficiency index defined in [4] for determining the
method with the optimal efficiency index.

Let I =a,b], a,b€ R, a<b, f: I — R and consider the equation

(1) f(z) =0,

We assume that this equation has a unique solution €]a, b[. For solving
the above equation we consider a function ¢ : I — I and we also assume that
Z is the unique fixed point of g in I.

For approximating T there is usually taken an element from the sequence
(s)4>( generated by the iterative method:

(2) Tsy1 =g(zs), s=0,1,..., zp€ 1.

More generally, if b : I¥ — I is a function of k variables whose restriction
to the diagonal of the set I* coincides with g, then the following sequence may
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be considered for approximating z:
(3)  Tsik = h(Ts,Tst15 -, Tsph-1), §=0,1,..., To,T1,..., Tp—1 € I.

The convergence of the sequence (z;),~, generated by (2) or (3) depends on
certain properties of the functions f, g and resp. h. The time needed by a
computer to obtain a convenient approximation of T depends on the conver-
gence order of the sequence (z;),, and also on the number of elementary
operations performed at each iteration step.
While the convergence order may be determined exactly in most of the
situations, the number of elementary operations may be hard to evaluate.
For this reason Ostrowski has proposed in [4] a simplification of this
problem, by considering the number of function evaluations needed at each
iteration step. This leads to the definition of the efficiency index, which may
be naturally applied to the comparison of different methods.
Consider a sequence (), which together with f and g satisfies:
a)zs € I; for all s = 0,1, ...
b) (2s),>0 converges to T;
c) the sequence 9 ((zs)) > converges also to T;
d) f(z) =
e) fis derlvable at T;
f) for all z,y € I there exists m € R, such that 0 < [z,y;f] < m,
where [z,y; f] denotes the divided differences of f on the nodes z and y.
Concerning the convergence order of (z),sq, we shall consider the fol-
lowing definition: w

DEFINITION 1. [4], The sequence (z4),~, has the convergence order w €
R, w > 1, with respect to the function g if there exists the limit

and o = w.

LEMMA 2. [7], If the sequence (x5),~, and the functions f and g satisfy
conditions a) — f), then the necessary and sufficient condition for the sequence
(%) >g to have the convergence order w € R, w > 1, with respect to g is that

there ezists the limit
In | f (g (zs))]
=1 Sandd o L0 L iy A
= B TR ()
and f = w.

LEMMA 3. [7], If (us)s>q 18 a sequence of real positive numbers satisfying
1) the sequence (us),~q converges to 0;
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ii) there ezist the nonnegative real numbers 01,09, ...,0n4+1 6nd a bounded
sequence of real positive numbers (c;),~q, 0 < inf {cs} and the following equal-
= S
ities hold:

Us4n+1 = Csly 1ual"'u?1; §=0,1,..;
Inugyq g Inu
iil) the sequence (—H-— 18 convergent and lim ==y = oy > 0,
nus /g In g
then w is the positive root of the equatzon

—appit" — oy -—aot —a; =0.

We shall denote in the following by m the number of function evaluations
that must be performed at the step s for the iteration (2) or (3).

Taking into account Lemmas 1 and 2, the following definition becomes
natural:

DEFINITION 4. [4], The real number E is called the efficiency index of
the method (2) (resp. (3)) if there emists

=t (2 )
In If($s)'
and | =F.

Remark. If there exists so € N such that for s > s¢ the values m; are
constant, ms = r, then the efficiency index is given by relation
1

(4) E =wr.

2. TWO STEP HERMITE INTERPOLATORY ITERATIVE METHODS

Let ¢ € N, ¢ > 1 be a natural number and consider the Hermite inverse
interpolatory polynomial on two nodes with the same multiplicity order q.

We shall make the following assumptions concerning the function f:

a) f is derivable on ]a, b up to and including the 2¢-th order;

B) f'(z) #0 for all z €a, b[;

7) equation (1) has a solution Z €]a, b].

Under these assumptions, it is clear that f admits an inverse f =1 : D — I,
where D = f (I), and also that Z is given by the relation

z=/f"1(0).
Moreover, f~! is derivable up to the order 2¢ at all points from D and
the k-th derivative, for k € N, 1 < k < 2¢ is given by [9].
(5)

L)) =i = QLD @\ 6 )\ *
W = oA (LE) <T ,
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where we have denoted y = f (z), and the above sum extends on the nonneg-
ative whole solutions of the system
i2+2’i3+...+(k—1)ik=k—l
ntig+..+ip=k—1
Denote by H (yl, Gy2,q; fH y) the Hermite inverse interpolatory poly-
nomial satisfying

6) H® (y1,q95,¢; 77" |ws) = @)™, i=12 k=0, 1, o @ =1,

where [f_l (yi)](o) =Yy, i= 1,2 and y1,y9 € D.
Consider also the polynomial
wy (y) = (y — y1)? (y — y2)?.

The residual in the interpolation formula, becomes then
R(fTHy) = 7' W) - H (1, Gysng; £ y) =

(—2}1—)! [F~1 0] %9 wy (y),

where 6; belongs to the smallest open interval determined by the points y, y;
and ys.

Let 5, 2541 € I be two approximations of the solution Z. Then the next
approximation may be determined by

(7) Tsy2 = H (Y51 4 Ys1,4 f1]0), s =0, 1...,.

We shall assume that all the elements of the sequence (z;),., generated

by (7) belong to the interval I.
Taking into account the above assumptions we easily get for s = 0, 1,...
that

’ I [f—l (es)] (29) , A
|f($5+2)| = ,f (as), ___(%)T__lf(xs-l-l), 'f(:ES)l '8 =0,1, -=0y

where oy belongs to the open interval determined by the points T and zg,
and 6; is contained in the open interval determined by 0,ys, Ysi1.

Assuming that e (y)](zq) # 0 for all y € intD, denoting
“f—l (05)] (24)] 5

___(_2q_)!—'_, S —0,1,...

and applying Lemma, 2, we obtain the following equation for determining the
convergence order of method (7):

Cs = 'fl (as)l

tz—qt—q=0.
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It follows that the convergence order is

¢tV +4q

2

w =

3. THE OPTIMAL EFFICIENCY INDEX

We remark that in order to generate the elements of the sequence (z;) §>0

given by (7), at each iteration step s, s > 2, the following function evaluations
are needed:

P et
all at z,, since their values at Ts—1 are known from the previous step. Hence
there are needed ¢ function evaluations.

Remark. Taking into account that the Hermite inverse interpolatory poly-
nomial is computed with the aid of the succession derivatives of f~1, which,
by (5) have a rather complicated form, then it becomes necessary to take into
account ¢ — 1 more function evaluations. On the other hand, the evaluation of
the Hermite polynomial determined by (6) may lead us to the consideration
of a one more function evaluation. We can therefore conclude that at each
iteration step there is necessary an amount of 2¢ function evaluations. These
considerations may affect the value of the efficiency index, but we shall see in
the following that the optimal efficiency index is not affected by considering a
number of function evaluations proportional with q.

Indeed, considering the number of function evaluations as being equal to
dq, & being a positive constant, then by (4), the efficiency index of method
(7) is 1

0+ VP Tag) "
(8) E=9(q)= [#J -

The value of g for which E attains the upper bound is given by the
solution of ¢’ (¢q) = 0, and we see below that this solution does not depend
on

By (8) we get

!
1 1. g++/¢%+4q
¢ (0)=Z¢(g) [-In "X T
) q 2
Since ¢ (g) > 0, it follows that equation ¢’ (g) = 0 is equivalent with the

following one
/
(lqur Y q2+4q) =0
q 2 ’
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whence we get

¥ (q) = \/q2+4q+q+2_lnq+\/q2+4q B

q =
V@ +4g+q+4 2

For solving this equation denote ¢t = g + \/(? + 4q and we notice that

0.

(9)

dt
3 > 0 for ¢ > 0. By this substitution, equation (9) becomes

t+2 t
= —_— —l —} =
Wi= g ingisio;
and since 7' (t) < 0 for ¢ > 0, it follows that equation 7 (u) = 0 has a unique
positive solution £. We also notice that 7 (2) = % > 0 and 7 (2¢) = % -1«
e

0, l.e. 2 < E < 2e, which lead us to the conclusion that the positive root g of
equation ¢’ (q) = 0 satisfies

2<G+ VP +47 < 2e,

1 e?
10 S <3 :
) 5 iz qn

We also remark that 7 () > 0for 1 <¢ <7 and () <0 for £ <, so it

1
follows that ¢’ (q) > 0 for 3 <94<79 and ¢’ (¢) < 0 for ¢ > . The function

E = ¢ (q) has at ¢ = § a maximum value. It remains to compute the maximum
value of E in the set of natural numbers from the neighborhood of the real
number g. By (10), the value of g for which F attains the maximum belongs
to the set {1,2,3}. One can easily check that ¢ (1) < ¢ (2) and ¢ (2)=421(8))
which implies that F attains the maximum value for q=2.

We have proved the following theorem:

and whence

THEOREME 5. Among all the iterative methods (7), the method with the
highest efficiency indez is the one corresponding to q = 2, being given by

(11) Ts42 = H (ysa2§ys+1,2; f—ll 0) 120, T1 € I) s = 0’ 1) ddag)c

Finally we give for H an expression based on the divided differences on
double nodes (see [6]).

H (ys, 29541, 2 F70) = @4~ [ys,ys; ] ws +
(12) + W Ys Usars F T 92 -
— [Yss Ys» Yst1s Yst1; F v2ysa,
where ys = f (25), Ysr1 = f (z541) -

7 The Optimal Efficiency Index 89

For computing the divided differences from (12) one can use the re-
currence formula for divided differences with the aid of the following table:

Ys f_l (yS)

ys | F7 (Ws) | [ys,ys; f7T]

Ys+1 f—l (ys—H) Ysy Ys+1, f‘lj [y37ys; Ys+15 f—lJ

Yot | F7H (Ysr1) | [Wst1sUsass U | (s Yorts Ysrs £ [ys,.ys,_?{sﬂ,

Ys+1; .f ]
where
v = £ (5), o1 = £ (5s41), [3r0i f Y] =
- S - 8y _
) ? Y f, (1‘3),
1
ar=li 4.
[ysays+1a f ] [-'Es,l's—l—l; f]
and

1
N A .
[yS"'l’ yS+1’ f ] f’ (xs—|—1) :
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