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A NEW CONVERGENCE THEOREM FOR THE STEFFENSEN
METHOD IN BANACH SPACE AND APPLICATIONS

IOANNIS K. ARGYROS

Abstract. We approximate a locally unique solution of a nonlinear operator equation
in a Banach space using the Steffensen method. A new semilocal convergence theorem is
provided using Lipschitz conditions on the second Fréchet-derivative of the operator involved.
Earlier results have used Lipschitz conditions only on the first divided difference. This way
our conditions are different from earlier ones. Hence, they have theoretical and practical
value. A numerical example is also provided to show that our results apply to solve a
nonlinear equation, where earlier ones fail.
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1. INTRODUCTION

In this study, we are concerned with the problem of approximating a
locally unique solution z* of the equation

(1) F(z) =0,

where F' is a twice Fréchet-differentiable operator defined on a convex subset
D of a Banach space F with values on itself.
We use the Steffensen method

(2) Tnt1 = Tn = [2n, B (20) ; F]™ F (25) (20 € D) (n > 0)

to generate a sequence {z,} (n > 0) converging to z*. Here, [z, y; F] denotes
a divided difference of order one at the points z,y € D, which is an element
of L(E, E), the space of bounded linear operators from E into itself. B is a
continuous operator defined on D with values in E, usually related to F by
B(x)=2z—-F(z) (zxe€ D).

Sufficient convergence conditions for the Steffensen method were given
in [1], [2], [4], [5], [6], [9]-[11] using mainly Lipschitz-type conditions on the
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first divided difference of F. In our study, we use Lipschitz conditions on
the second I'réchet-derivative to obtain a new semilocal convergence theorem
for the Steffensen method. This way, our convergence conditions differ from
earlier ones. Therefore our results have theoretical as well as practical value.

Finally, we complete this study by providing a numerical example to show
that the Steffensen method starting from an initial guess zo converges to z*,
whereas the same is not guaranteed by existing conditions [1], (2], [4], [5], [6],
[9)-11] .

2. CONVERGENCE ANALYSIS

From now on we will set A(z) = [z, B (z);F] z € D, and further denote
A(zy,) by Ay, (n > 0) for simplicity.

Let a, b, ¢, d, R be given nonnegative constants with ¢ € [0,1), zo € D
such that Ayt = A (zo)"" € L(E, E), f be an increasing real function, which
is continuous and nonvanishing on [0, R]. Define the polynomial p by

1 1
(3) p(t) = gazt"’ + 5bt2 —(1—ot+d,
the constants o, 8 by
2(1—
4) o= (L ,
b+ /b2 +2a (1 —¢)
1 1
(5) B=(1l—-¢c)a- Eaa3 - —2—ba2,
and the iteration {t,} (n > 0), by
p(tn)

forl =ty — o vho' > 0).

(6) nl =1t Tl 0 (n>0)

We need the lemmas:

LEMMA 1. The real polynomial p has two positive zeros vy, ro withry < rg
and a negative zero —rs (r3 > 0) if and only if

(7) d<B.
Proof. Polynomial p has a negative zero —r3, since p(0) = d > 0, and
p(t) < 0 ast = —oo. Moreover, p'(0) = —(1 —q) < 0, and p'(t) > 0 as

t — 4o00. Hence, there exists a zero of p’ in (0,00), which by the form of p is
given by (4). Thus, p has two positive zeros if and only if

(8) p(e) <0,

which is equivalent to condition (7).
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That completes the proof of Lemma, 1. O
LEMMA 2. Assume condition (7) holds, and
(9) J@) #0, f() <p'(t) for all t € [0,r4].

Then iteration {t,} (n > 0) given by (10) is monotonically increasing and
converges to rq.

Proof. Define function g by

_, plt
(10) g(t) =t— oM
Then by differentiating function g we get
o (o < LU0 =) + 1 Ope)

f @)
It follows from the proof of Lemma 1, (3) and (9) that p/(t) < 0, p(t) > 0,

f(t) <0, and f(t) > 0 for all ¢ € [0,71]. Hence, by (11) function g increases
on [0,71]. So, if ¢, € [0,r1] for some k, then

p(tx) p (k) p(r1)
tkgt,c——:tk 1, andtk St.,— <rH - =
Fl) PR T T e T
That completes the proof of Lemma 2. |

Remark 1. It can easily be seen by (11) that condition (9) can be replaced
by the weaker

F@&) #0, FOUE) —p'(®) + f'(#)p(t) > 0 for all t € [0,r1].

We can now prove the semilocal convergence theorem for Steffensen me-
thod (2).

THEOREM 1. Let F : D C E — E be a twice Fréchet-differentiable
operator. Assume:

(a) there exists To € D such that At =A(zo) el (E,E);

(b) for all z € U (xo,R) = {z € E|||z — zo|| < R} there exist constants
a,b,c such that

(12) 145" (F" () = F" (20))|| < alle = wo],
(13) |45 F" (z0)]| < b,
(14) |45 (F' (2) = A(@))]| < &

(c) conditions (7) and (9) are satisfied for some continuous monotonically
increasing and nonvanishing function f on [0,71] such that

(15) || 45" (A(2) — Ao)|| < £ Ul — mol[ +1) <1, forall = €T (o, r1)
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and

(16) d < [|4g F (o) s
(d) the following hold:

(17) c€0,1),
(18) T2 < R,

(19) U(m(),R) - Da

where T, and o are the positive zeros of equation p(t) = 0, and polynomial p
is given by (3).

Then, the Steffensen method {zn} (n > 0) generated by (2) is well defined,
remains in U (zg,71) for alln > 0, and converges to a solution z* € U (o,71)
of equation F(z) = 0. If ri < ry the solution z* is unique in U (zg,T2),
whereas if T, = ro, x* is unique in U (29,71).

Moreover, the following error bounds hold for alln > 0

(20) lZnt1 — zn|| < tnt1 —tn
and
(21) lzn — z*|| < 71 — ta.

Proof. We first show linear operator A (z) is invertible for all z € U (zy, c),
where « is given by (4). It follows from (15) the Banach lemma, on invertible
operators [4], [8], the estimate

|45 (A(z) — Ao)|| < F(llz — mol)) +1 < 1,
that A (z)™' € L (B, E1) and

(22) 4@ 4] <=£ Uz = 2ol) ™ < ~F (07"
We must show that estimate (20) holds for all n > 0. First, note that z; is
defined, and by using (2), (6), and (16) we get ||z — zo|| = ”—AalF (:1:0)” =

d = t; — to, which shows (20) for n = 0. It follows from (22) that linear
operator A (z,)”" € L(E,E), and hence 7 can then be defined by (2). Let
T € [zo,z1] = {z : 2 = Az1 + (1 — X) 2o, 0 < X < 1}. By Taylor’s formula [3],
[4], [7] for a twice Fréchet-differentiable operator G on D, we can write

(23)  G@) = Gla)+C (@) (o —20) + 56" (a0) (& — )’ +

. / (6" (5) - G (z0)] (z — v) dy.

Zo
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Using approximation (23) for G (z) = Ay F (z) (z € D), we can get
(24) AJ'F(z) = AFYF (20) + (z — z0) + Ayt (F' (zq) - Ap) +
1
+§A51F" (z0) (z — m0)% +

+ [ 45 (P )~ P 00) (2 = )

Let Ad = s, then by using (3), (12)-(14), (16), approximation (24) gives
1
(25) 457 F (@) < 1 = N)d +cAd + %bx’%ﬂ + Ea,\3d3 =p(s)

(since z — zp = A (31 — 20) = —AAFF (z0)).
Moreover, by (2), (22) and (25), we get

lz2 — z1|| < ”A (:101)_1 AO“ . “AalF (xl)“ < ~p(t2) =ty — 1.

f(t1)
Similarly, we can show (20) for all n > 0. Estimate (20) and Lemma 2 imply
that Steffensen method {z,} (n > 0) is Cauchy in a Banach space E, and as
such it converges to some z* € U (z, s) (since U (zo, s) is a closed set). From
(25) and the continuity of F we get F (z*) = 0. Furthermore, estimate (21)
follows immediately from (20) by using standard majorization techniques [3],
[4], [8]. To show uniqueness, let z € U (o, r3) with F(z) = 0. Using (24) for
z = 0, we obtain,

11—z = Ayt (F'(z0) — Ag) (2 — o) + -;—AEIF" (o) (2 — z0)* +
(26) + [ 45 P @)~ P (@)] (- ) dy. 7

We get ||z — zol| <r1—to if 2 € U (zg,71), and ||z — zo| = p (ro—1t0),0 < pu <
1, if 2 € U (o, 72). Hence, by (21) and (26), we get for all n > 0: |z — 2, <
7L — tn, if 2 € U (xg,71), and |z — zn|| < p"(re—t,), if z € U (zg,7r2). In
either case, we get nli)nolo Zp = z, which yields z* = 2.

That completes the proof of Theorem 1. ]
We now state a theorem by Pavaloiu [9] for comparison:

THEOREM 2. Let B,F : D C E — E be continuous operators with divided
differences of order one [z,y; B] and [z,y; F] respectively. Assume:

(a)
(27) B(z)=2z—F(z)(z € D);
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(b) There exists zo € D such that To = [0, B (z0) ; F™' € L(E,E) and

(28) IToll < h1;
(c)

(29) max {||z1 — zoll, [|#1 — B (z0)ll} < ho;
(d)

(30) [z, v; B) — [y,v; Blll € hallz — vl for all z, y,v € D;
(e)

(31) PR R < %;

and

U (zo,2ho) C D.

_ Then, Steffensen method generated by (2) is well defined, remains in
U (z0,2ho) for alln > 0, and converges to a solution «* of equation F (z) = 0.
Moreover, the following error bounds hold for all n 2 0:

* hO
2% - zn|l < on—1

and
o* = @all < ATa 12* — 2atllle* = B (@)l
where
hl = l [t F]"IH (n>0).
Furthermore,

(g) if lz,y; Blll < ha <1 for all z,y €€ U (z0,2hg), then z* is the
unique solution of equation (1) in U (w0, 2ho)-

We provide an example to show that under the conditions of Theorem 1,
Steffensen method converges to a solution z* of equation (1), whereas the same
is not guaranteed under the conditions of Theorem 2.

Example. Let E =R, D = [-1, 1], zo = 0. Define function F on D by

L, VB 1

1
(32) F(z) = 633 + 5% T §" +

and the divided difference [z,y; F] by

. F(y)—-F
[z, y; F]=—(—y£-__—x(i), z,y €D, z#y.
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Set also B (z) = # — F (z) (z € D). Then, using (4), (5), (12) — (16),
(27) — (30) and (33), we obtain

2
by = 11566265, hy = 3, ho = 5391566, hs = 4157352 > .25,

o = 1.1566265, b = 3855422, ¢ = .0119947, d = .2891566
, a = 1.0155688, 8 = .5392822.

Condition (31) of Theorem 2 does not hold. That is, Theorem 2 cannot guar-
antee that Steffensen method starting from zo = 0 converges to a solution of
equation F(z) = 0, where function I is given by (32). However all conditions
of Theorem 1 are satisfied. Indeed from the above we have that condition (7)
is satisfied.

Define function f so that 14 f () = lAal (A(t) — Ao)‘ (te D). It can
easily be seen that the left-hand side inequality in (15) is satisfied as equality,
whereas the right-hand side is smaller than 1. Furthermore it is simple algebra
to show that condition (9) holds also. Conditions (18) and (19) are needed
to show uniqueness of the solution z* in U(zo,m2). They can certainly be
replaced by r; < R and Ul(xo,m) € D. Uniqueness is then guaranteed only
in U(ze,r1). Since p(0) =d >0 and p(1) = —.3133065, it follows that for
r = R, U(z,,m1) € D. That is the hypotheses of Theorem 1 are satisfied.
Hence, Steffensen method (2), indeed starting from zg = 0, converges to a
solution z* € U(z,,71) C D of equation F(x) = 0, where F is given by (32).
Similar favorable comparisons can be made with the results in [1], 2], [5], [6],
[10], [11].

Remark 2. Condition (7) can be replaced by a stronger, but easier to check
Newton-Kantorovich type hypothesis (4], [8] as follows: Define polynomials p1,
f1 by pi(t) = %tQ —(1—¢)t+d, fL(t) = bit — by, where by = %ad +b and

by =1 —c. It can easily be seen that the conclusions of Theorem 1 hold in the

balls U(zg,74), Ulzo,75), provided that the Newton-Kantorovich hypothesis

2b1d < (1 —¢)°

holds, and 4, 15 (r4 < r5) are the nonnegative zeros of the equation p1(t) = 0.
Since p () < p1 (¢) for allt € [0,79], we have r1 < T4 <75 S T2

Remark 3. The results obtained in Theorem 2 can be extended for Steffensen—

Aitken method
(33) Yni1 = Yn — 1Bt (Yn), Ba (¥2) ; FI7'F(yn) (n>0),

where By, Bz : D C E = E are continuous operators related to F [4], [10],
[11). Simply replace A(z) = [z, B (z); F] (z € D) to obtain a Theorem 1!
holding for method (33).
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Remark 4. Condition (14) can be replaced by
“Ao—l (F' (z) — A(x)) ” <o+t ||z — x| for some co =0, ¢; >0

and allU(zy, R). We can also set ¢ = co+ci1R. Condition (18) can be replaced
by a < R, but uniqueness is then guaranteed only in U(zg, ).

Remark 5. The results obtained in Theorem 1 can be extended so as to
hold a more general setting as follows:

(a) Let cy, c1 be monnegative constants; vy, vy be positive monotonically
increasing functions of one variable on [0, R] with %l—% v (t) = %E)rol ve (t) =0
such that

|45 (B (z) = F" (20)) || < v1 (2 — mol),
and
[45" (F' (2) = A ()| < co + crvz ([l2 = mo])

for oall z € U (0, R).

(b) Function D given by

" :
5 (1) :/(t—r)vl (r) dr + %th (1 o 2 éyva ()t k- d.on [0, R,
0

has a unique zero ey € [0, R], and p(R) < 0.

Moreover, set g9 = r1, and R = ry. Furthermore, replace conditions (12),
(14) by (a), (7) by (b), and polynomial 5 by function p above. Then, under the
rest of the hypotheses, as it can easily be seen from the proof, the conclusions
of Theorem 1 hold in this more general setting. Call such a result Theorem 1.

Finally, note that for v1(t) = at, o = ¢, and v1(t) = 0 (or ¢; = 0),
t € [0, R] function p reduces to polynomial p and Theorem 1” to Theorem 1.
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