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SOME SEQUENCES SUPPLIED BY INEQUALITIES AND THEIR,
APPLICATIONS

STEFAN M. SOLTUZ

Abstract. In order to prove the convergence of Ishikawa and Mann iterations, the
convergence of one type of sequences is needed. Qur purpose, in this note, is to give a new
proof of the convergence for one of them. We also give generalizations for the sequences.
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1. INTRODUCTION

The convergence of Mann, Ishikawa iterations are studied in the papers
(3], [4], [5]. This iterations are approximating the fixed point of strictly psedo-
contractive mapping. One role in the convergence of them is given by some
real nonnegative sequences, which are verifying one type of inequalities.

In Proposition 2.1, we give another proof to Lemma 2.1 from [4]. The
proof from [4] of Lemma 2.1 is similar to that of Lemma 1.2 from [5]. Lemma,
2.1 is used to prove the convergence of the Ishikawa iteration in [4]. ’

In Proposition 2.2 we will study the convergence of the real, nonnegative
sequence (ay,), given by the following recurrence:

ant1 < (1 —w)a, + apM,

where w € (0,1], M > 0 are fixed numbers, and a;, € (0,1), Vn €N, o, — 0.

Proposition 2.3, (see [3]), is a generalization of Proposition 2.2, but the
sequence isn’t necessary convergent to zero. The sequence (ay,) is given by the
following recurrence:

nt1 < (1 - an)an + an M,

where 3%° | oy, = 00, o, € (0,1), Vn €N, and M > 0 is fixed.

In another context, Proposition 2.4 generalizes Proposition 2.2. The se-
quence (ay,) is given by the recurrence:

Ont1 < (1 = an)an + ancp,
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where o, € (0,1), Vn €N, D ome 0y = 00, and
sequence, 1ncreasing and bounded.

Proposition 2.5 is another izati
-5 1s ¢ generalization of Proposition 2.2 i
text the sequence (a,) 1s given by the recurrence: uc% g con-

api1 < (1 = an)an + ancp,

where o
n € (0,1), VneN, 2 one1 @n = 00, and (c,) is a nonnegative real

2. MAIN RESULTS

Below we will give a new proof to Lemma, 2.1 from [4].

PROPOSITION 2.1. [4]. Let (an), (b
N 2.1. [4]. , and (c;) b ;
real sequences which verify the foll:wingni)nequalgt;) ? Rimgennegalive ey

ant1 < V(1 — w)a2 + bpt, + o

where t, € [0, 1], ¥n € N d L
an =0, as n = oo. enR S UM 18 fized, by, — 0, cn, = 0, Then

Proof. From our assumptions there exist the following numbers:

¢l ="sup{t,: n>'1},
Sin= sup{%t:nZl},

{4cn }
Supq—:n>1;,
w

2
m” = max{a?,s;,s}.

i We will prove th@t an < m, Yn € N. We can see that a; < m. We
uppose that a,, < m is true, and we prove that ant1 < m. We have l

ant1 < 1J(L= wyme 4 UL, , w2 w
. ( wml+2tr+4 < u—wMﬂ+§mﬂ+Em=

4
_ (/l_w w
2 m+Zm§m.

The last inequality is true because

Y
3 Tgst

.
< . < — wa. il . o
a + XD Ile“(e a LV l a I ll”S a 0 D

Il

$2

2
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(cn) is a nonnegative real

The proof of the next result is similar to the proof of Proposition 2.1.

PROPOSITION 2.2. Let (a,) be a nonnegative and real sequence which
verifies the following inequality
apt1 < (1 —w)ap + anM,
where w € (0,1], M > 0 are fized numbers, and o, € (0,1), Vn €N, an = 0.
Then a, — 0 as n — oo.

Proof. From our assumptions there exist the following numbers:

a, M

8§ = sup{——
nEN{ & },

m = max{a,s}.

We will prove that a, < m, Vn € N. We can see that a; < m. We

suppose that a, < m is true, and we prove that a,y1 < m. We have
1 < (l—wm+sw<(1-wym+mw=m.

The sequence (a,) is bounded. Then there exists a = limsup,,_, @, and
a < +oo. Hence a < (1 —w)a +0. Thus a = 0. O

The next result is Lemma 1 from [3]. Here, instead of w, we have the
sequence (o).

PROPOSITION 2.3. [3]. Let (ay) be a nonnegative and real sequence which
verifies the following inequality
(1) ant1 < (1 — ap)an + anM, )
where Y o 1 o = 00, 0 € (0,1), Vn €N and M > 0 is fized. Then

0 < lim supa, < M.

n—oo
Proposition 2.3 is used to prove the convergence of the Mann iteration
in [3].
Remark 2.1. Under the same assumptions as in Proposition 2.3, even if
on — 0, we can have limp, 000y 7# 0.

in Proposition 2.3, we see that

For M =1, ap = L an
n
an41 verifies the recurrence relation and the inequality (1).

=11 ) n_l—l- LD
Ont1 = — n n+l n+l’

The sequence (a,,) does not converge to zero, limy,_,coa, = lim sup,_,oan = 1.
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COROLLARY 2.1. Let (an) be a nonnegative and real sequence which per-
ifies the following inequality
apy1 < (1 - a)an + aay,

where o € (0,1] is a fived number and oy € (0,1), Vn € N, on — 0. Then
an =0 asn — co.

Proof. We put a:= M = w in Proposition 2.2. (]

LEMMA 2.1. Let (Br)n be a nonnegative and real sequence such that B €
(0,1], Vn e N. If > ot B = 00, then 2.1 -4,) =o0.

Proof. For n =1 we get 1 — B <

1
TTa Suppose the following is true

1
(1_ﬁ1)...(1“16n)§1_,_514—...'{‘,371’

For n + 1 we have

1—/371-{-1 al 1 =
I=8)...(1=B)A = Bay1) < 148+, 48, 1+/+..¥F5,
,Bn-l—l

<

—————.m il L

1+,31+...+,Bn -
1

I+ b+ 4+ B+ Barr
Obviously, the last inequality holds. Indeed, we have
1 < ﬁn-{-l + 1 o
1+614+...48, 1+61+...4 B, 1+,31+...+,3n+ﬁn+1
SLEBi+ i+ Bt fugr <
< ,Bn—f-l(l‘|‘,61-l-...—l-ﬁn““ﬂvﬁl)""(1‘1‘51‘f‘---‘i‘ﬂn)<:>
0 < Prt1(Br+... + By + Buyr);

the latter is, of course, true, Vf; € (0,1), and 4 € {1,...n,n+1}. Thus, one
obtains

n

1 1
1- < <
/cl;ll( ﬁk) 1+ E/TCL:]_ Br ~ 22:1 Br

, Vn €N,

O

PROPOSITION 2.4. et (an)n be a nonnegative and real sequence which,

satisfies the following inequality

Gnt1 < (1 - an)an + apcy,
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where ap, € (0,1), Vn € N, > o, = oo, and (c,) is a nonnegative real
sequence, increasing and bounded. Then

(2) 0 < lim supa,, < nli)n;o Cn.

n—00

Proof. By mathematical induction, we shall have
(3) i1 < (L —ap)(l-ap-1)...(1 —ai)ay + cg.

Indeed, for n = 1, we get ax < (1 —a1)a; + ajc; < (1 — o)ag + ¢y
Suppose the inequality holds for n. Then

pt2 < (1 — a’n+1)an+1 + apti1cny1 <
< (T—on) [ —an)(I —an_1) ... (1 —a1)ar + cu] + angicnsr <
< (I-app1)l—an)... (1 —ar)ar + (1 — ant1)en + ongicngr <
< (l—an+1)(1 —Oln)(l —oq)al + Cpya.

As (cn) is increasing, we have (1 — apqpi)e, < (1 — an+1)cn§1. WFrorrn

w by -

Lemma 2.1, we have: > >° o, = oo = Hn_:l(l — Qpy1) = 0:3 y el:;eve

strass’s theorem, there exists lim,_,o.c,. Taking n — oo from (3), we ar s
to conclusion (2).

PROPOSITION 2.5. Let (an)n be a nonnegative and real sequence which
satisfies the following inequality

ant1 < (1 — Ozn)an + apcyp,

where an € (0,1), Vn € N, Y>> an, = oo, and (c,) is a nonnegative real
sequence and Y .0 | ancy = 1. Then

(4) 0 < lim supa, < 1.

n—+00

Proof. By mathematical induction, we shall have

o n
(5) ant1 < H(l — olay + Zo‘kck'
k=1 k=1
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Indeed, for n = 1, we get az < (1—aj)a; + aicy. Suppose the inequality
holds for nn. Then

Ony2 < (1 - a’n+1)an+1 + OUpt1Cpy1 <

n n
< (1I-apy) H(l —ag)a; + Z QkCk | + Qpyicpyy <
k=1 k=1

n+? n
< JTa-aa+a - Oni1) D OkCh + Gpyippy <

n+t1 n+1
< H(l —ag)ay + Z Q. Cl.

k=1 k=1

As (1-apq1) € (0,1), we have (I—an1) S opep < > k=1 @kex. From
Lemma 2.1, we have: Y ome Qp = 00 = 21— ay) =o0. Taking n — oo
from (5), we arrive to conclusion (4). O
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