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AN APPLICATION OF THE FIXED POINT THEOREM OF
BOHNENBLUST-KARLIN TO THE DARBOUX PROBLEM FOR A
MULTIVALUED INCLUSION
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Abstract. In this paper we consider the Darboux problem

9%z

(@9 dzdy

€ F(:D)y)z): Z(:C,O) = 0’(:1:), Z(an) 5 T(y)) 0(0) = T(O);

where F: D x E™ — 28" is a multifunction, D = [0,a] x [0,b], B” is the Euclidean n-space
and o € C'([0,a], E™), € C([0,b], E™). It is defined the notion of classical solution for the
problem (0.1) and it is proved an existence theorem for such a solution using the fixed point

theorem of Bohnenblust-Karlin for multivalued applications. The paper is an extension of
2
[4]. The Darboux problem with F also depending of %, g—;—, 6%8%/, a;(z,y), Bilz,y), i =

T,v, and X\ - a parameter, with solutions defined in various ways as absolutely continuous
functions, with classical or generalized solutions was studied in [3], [8], [9], [10], [12], (14]-[34].

1. PRELIMINARIES

The Euclidean distance between two points 21, 2o € E™ will be denoted
(4]

p(21, 22) = |21 — 2.

DEeFINITION 1.1. [4], [9], [10]. If A C E™, the distance from z € E™ to
the set A is

p(z, A) = inf{p(z,a) : a € A}.
DErFINITION 1.2. [6]. A neighbourhood of the set A C E™ is

N.(A) ={z € E": p(z,a) <¢, a € A, € >0}.
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DEFINITION 1.3. [4], [6], [9], [10], {13], [15]. If A and B are compact sub-
sets of a metric space X, the Hausdorff-Pompeiu metric h is defined thus:
h is the smallest positive real number d such that A is contained in a d-
neighbourhood of B and B in a d-neighbourhood of A:

hA,B) = inf{d € R, : AC Ng(B) and B C Ny(A)}.

THEOREM 1.1. [4], [11]. The set Q" = compE"™ of all nonempty, compact
subsets of E™, with the topology induced by the Hausdorff-Pompeiu metric, s
a complete metric space, (", h).

DEFINITION 1.4. [6], [9], [10], [13]. Let X, Y be two nonempty sets. A
multifunction F : X — 2Y is a function from X into the family of all nonempty
subsets of Y.

DEFINITION 1.5. [4], [6]. Let D = [0,a] x [0,b] C R*. A multifunction
G : D — Q" is measurable (in the sense of Lebesque) if for every closed subset
A C E™, the set

A~ = {(z,y) € D: G(z,y) N A # B}
is Lebesgue-measurable.

DEFINITION 1.6. [6], [9], [10]. If T is a topological space and Y a metric
space, the multifunction F': T — 2Y s upper semicontinuous (lower semicon-
tinuous) if for every closed (open) suset B CY, the set

{teT: F(t)NB # 2}
is closed (open) in T.

DEFINITION 1.7. [7]. The multifunction F : T — 2Y s continuous if it is
upper and lower semicontinuous.

DEFINITION 1.8. [1], [4], [18]. Let be G : D — Q™. The Aumann integral
of the set-valued function G is defined by

/D/G(ac,y)dmdyz
= {/D/g(m,y)da;dy: g measurable, g(z,y) € G(z,y), (z,y) € D}.

DEFINITION 1.9. [4]. For a mapping G : D — Q", it is defined coG :
D — Q" to be the map from D into Q" taking values coG(z,y) as the closed
convezed hull of G(z,y), (z,y) € D.

We shall use the notation C(D, E") for the space of continuous n-vector
valued functions, defined on D, with the uniform topology, i.e. the topology
induced by ||g|| = max{|g(z,y)| : (z,y) € D}, where |g(z,y)| is the Buclidean
norm of g{z,y) € E™.
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Lemma 1.4 of [4] can be easily extended for functions in two variables as
follows:

LEMMA 1.1. Let G : D — Q™ be measurable, with values in a ball B,(0)
centered at O-the origin of E", of radius p. Let us consider the sets

Y = {g € Loo(D,E"™) : g(£,m) € co G(§,m), (§;m) € D}

and
z oy
B ={h € C(D,E"): h(z,y) = o(,y) +/0 /0 g(¢,m)dédn, geY}.
Then B is a compact, convez subset of C(D, E™).
Then B is a compact, convex subset of C(D, E™).

THEOREM 1.2. (Bohnenblust-Karlin) [4]. Let S be a compact conver
subset of a Banach space X and A : S — CCI(S) [15] a continuous (in the
Hausdorff topology) mapping from S into the space of nonempty closed convex
subsets of S. Then A has a fized point, i.e. there exists a ¢ € S such that
© € A(p). See also [2], [7], [13].

If I C R is a compact interval and X is a Banach space, we denote by
CY(I, X) [10] the space of all continuously differentiable functions from I into
X, endowed with the norm

lollcrr,x) = rgnglltp(t)ll + rglg;Xllso’I(t)ll-

2. RESULTS

Let the following hypothesese satisfied: 4
(H;) F: D x E* — Q" is a multifunction with its values F(z,y,z) for (z,y) €
D, z € E™ as compact convex sets in E™ contained in the ball of radius L.
(Hy) The functions C'([0,a], E"), T € C1([0,b], E™). satisfy the condition

a(0) = 7(0).

(H3) The function o : D — E", defined by

(2.1) a(z,y) = o(@) +7(y) —o(0), (z,y) €D,
is bounded. There exists g € Ry such that

(2.2) la(z,y)| < a0, (2,9) € D.

DEFINITION 2.1. [18], [19]. The Darbousz problem for the hyperbolic in-
clusion

0?2
0xzdy

(2.3) € F(z,y,2), (z,y) €D, z€ E™,
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consists in the determination of a solution for (2.3) satisfying conditions

2(z,0) =0(z), 0<z<a
2(0,y) =7(y), 0<y<b.

DEFINITION 2.2. [5], [10], [34]. A function z : D — E" is said to be
2

(2.4)

a classical solution of (2.8)+(2.4) if z, 883 are in C(D,E™) and for every
0
(z,y) € D, z satisfies (2.8), i.e. %zyy)— € F(z,y,2(z,y)), and also (2.4).

THEOREM 2.1. Let the hypotheses (Hy), (Hs), (Hs) be satisfied. Then
the Darbouz problem (2.8)+(2.4) has a classical solution.

Proof. Let Cr(D, E™) be the compact subset of C(D, E™) consisting of
functions with Lipschitz constant L and of norm less than or equal to g+ Lab.

CL(DaEn) S {f € O(DvEn) B lf(way) - f($’71l)] <
Llz — 2| + |y — '], (z,v), (', ') € D,|f] < g + Lab}.

2 2

8m8zy in C(D, E™). Integrating e

over the

Let z be in C(D, E™) and

domain

Doy ={(&m):0<¢<2,0<n<y}CD, (sy)eD,
and using (2.2), (2.4) one gets

(2.5) z(z,y) = o(z) + 7(y //agd

m (B /0 /0 363?7

For Z € Cr(D, E™) let us take
Y(2) = {f € Loo(D, E") : f(§,n) € F(&,m,2(§,m)), (€,m) € D}

(z,y) € D

and
T 1y
AR) = (he O, B o) =alwy)+ [ [ flemian, feY(@)
Since F has convex values, Lemma 1.1 shows that A(z) is a compact
convex subset of Cr, (D, E™). Also, A considered as a map
A:Cp(D,E"™) — comp Cr(D, E")

of Cr(D, E™) into the nonempty compact subsets of Cp(D, E™), is continuous
in the Hausdorff topology. By the Bohnenblust-Karlin fixed point theorem, A
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has a fixed point ¢ and ¢ is therefore a solution of the problem (2.3)4-(2.4).
Indeed

Y(p) = {f € Loo(D, E") : f(§,1) € F (& m,0(&m), (&,m) € D}

and

A(g) = {h € C(D,B™ : hiz,y) = ofz,y) + /0 ’ / " (6, mdedn, feY()}-

From A(p) = ¢ it follows

o(o,9) = ba) =alon) + [ [ 1€ maean

hence
T2 (0,4) = £(z,9) € Fa,,0(@,1)), forle,y) € D
910y ,Yy) = J\&Yy T, Y, P\, Y)), JOr\T, Y, & L
i.e. (2.3) is satisfied, and (2.4) obviously holds. One has
d
—;’?(w,O) =to(z);ih0 <A dl
©
—(0,y) = <y <
ay( W) =7(), 0<y<b
The theorem 2.1 is thus proved. 0
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