REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome 29, N° 2, 2000, pp. 213–219

AN APPLICATION OF THE FIXED POINT THEOREM OF BOHNENBLUST-KARLIN TO THE DARBOUX PROBLEM FOR A MULTIVALUED INCLUSION

GEORGETA TEODORU

Abstract. In this paper we consider the Darboux problem

(0.1)
$$\frac{\partial^2 z}{\partial x \partial y} \in F(x, y, z), \quad z(x, 0) = \sigma(x), \quad z(0, y) = \tau(y), \quad \sigma(0) = \tau(0),$$

where $F:D\times E^n\to 2^{E^n}$ is a multifunction, $D=[0,a]\times [0,b]$, E^n is the Euclidean n-space and $\sigma\in C^1([0,a],E^n)$, $\tau\in C^1([0,b],E^n)$. It is defined the notion of classical solution for the problem (0.1) and it is proved an existence theorem for such a solution using the fixed point theorem of Bohnenblust-Karlin for multivalued applications. The paper is an extension of [4]. The Darboux problem with F also depending of $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial x \partial y}$, $\alpha_i(x,y)$, $\beta_i(x,y)$, $i=\overline{1,\nu}$, and λ – a parameter, with solutions defined in various ways as absolutely continuous functions, with classical or generalized solutions was studied in [3], [8], [9], [10], [12], [14]–[34].

1. PRELIMINARIES

The Euclidean distance between two points $z_1, z_2 \in E^n$ will be denoted [4]

$$\rho(z_1, z_2) = |z_1 - z_2|.$$

Definition 1.1. [4], [9], [10]. If $A \subset E^n$, the distance from $z \in E^n$ to the set A is

$$\rho(z,A) = \inf\{\rho(z,a) : a \in A\}.$$

DEFINITION 1.2. [6]. A neighbourhood of the set $A \subset E^n$ is

$$N_{\varepsilon}(A) = \{ z \in E^n : \rho(z, a) < \varepsilon, \ a \in A, \ \varepsilon > 0 \}.$$

DEFINITION 1.3. [4], [6], [9], [10], [13], [15]. If A and B are compact subsets of a metric space X, the Hausdorff-Pompeiu metric h is defined thus: h is the smallest positive real number d such that A is contained in a dneighbourhood of B and B in a d-neighbourhood of A:

$$h(A, B) = \inf\{d \in \mathbb{R}_+ : A \subseteq N_d(B) \text{ and } B \subseteq N_d(A)\}.$$

THEOREM 1.1. [4], [11]. The set $\Omega^n = \text{comp}E^n$ of all nonempty, compact subsets of E^n , with the topology induced by the Hausdorff-Pompeiu metric, is a complete metric space, (Ω^n, h) .

DEFINITION 1.4. [6], [9], [10], [13]. Let X, Y be two nonempty sets. A multifunction $F: X \to 2^Y$ is a function from X into the family of all nonempty subsets of Y.

DEFINITION 1.5. [4], [6]. Let $D = [0, a] \times [0, b] \subset \mathbb{R}^2$. A multifunction $G: D \to \Omega^n$ is measurable (in the sense of Lebesque) if for every closed subset $\Delta \subset E^n$, the set

$$\Delta^{-} = \{(x, y) \in D : G(x, y) \cap \Delta \neq \emptyset\}$$

is Lebesgue-measurable.

214

Definition 1.6. [6], [9], [10]. If T is a topological space and Y a metric space, the multifunction $F: T \to 2^Y$ is upper semicontinuous (lower semicontinuous) if for every closed (open) suset $B \subseteq Y$, the set

$$\{t \in T : F(t) \cap B \neq \emptyset\}$$

is closed (open) in T.

DEFINITION 1.7. [7]. The multifunction $F: T \to 2^Y$ is continuous if it is upper and lower semicontinuous.

DEFINITION 1.8. [1], [4], [18]. Let be $G: D \to \Omega^n$. The Aumann integral of the set-valued function G is defined by

$$\begin{split} &\int_D \int G(x,y) \mathrm{d}x \mathrm{d}y = \\ &= \left\{ \int_D \int g(x,y) \mathrm{d}x \mathrm{d}y : \ g \text{ measurable}, \ g(x,y) \in G(x,y), \ (x,y) \in D \right\}. \end{split}$$

DEFINITION 1.9. [4]. For a mapping $G: D \to \Omega^n$, it is defined $\cos G: D \to \Omega^n$, to be the map from D into Ω^n taking values $\cos G(x,y)$ as the closed convexed hull of G(x,y), $(x,y) \in D$.

We shall use the notation $C(D, E^n)$ for the space of continuous n-vector valued functions, defined on D, with the uniform topology, i.e. the topology induced by $||g|| = \max\{|g(x,y)| : (x,y) \in D\}$, where |g(x,y)| is the Euclidean norm of $g(x,y) \in E^n$.

Lemma 1.4 of [4] can be easily extended for functions in two variables as follows:

LEMMA 1.1. Let $G: D \to \Omega^n$ be measurable, with values in a ball $B_{\rho}(\theta)$ centered at θ -the origin of E^n , of radius ρ . Let us consider the sets

$$Y = \{ g \in L_{\infty}(D, E^n) : g(\xi, \eta) \in \operatorname{co} G(\xi, \eta), \ (\xi, \eta) \in D \}$$

and

$$\mathcal{B} = \{ h \in C(D, E^n) : h(x, y) = \alpha(x, y) + \int_0^x \int_0^y g(\xi, \eta) \mathrm{d}\xi \mathrm{d}\eta, \ g \in Y \}.$$

Then \mathcal{B} is a compact, convex subset of $C(D, E^n)$.

Then \mathcal{B} is a compact, convex subset of $C(D, E^n)$.

THEOREM 1.2. (Bohnenblust-Karlin) [4]. Let S be a compact convex subset of a Banach space X and $A: S \to CCl(S)$ [15] a continuous (in the Hausdorff topology) mapping from S into the space of nonempty closed convex subsets of S. Then A has a fixed point, i.e. there exists a $\varphi \in S$ such that $\varphi \in A(\varphi)$. See also [2], [7], [13].

If $I \subset \mathbb{R}$ is a compact interval and X is a Banach space, we denote by $C^1(I,X)$ [10] the space of all continuously differentiable functions from I into

X, endowed with the norm

$$\|\varphi\|_{C^1(I,X)} = \max_{t \in I} \|\varphi(t)\| + \max_{t \in I} \|\varphi'I(t)\|.$$

2. RESULTS

Let the following hypothesese satisfied:

 (\mathbf{H}_1) F: D × Eⁿ $\to \Omega^n$ is a multifunction with its values F(x,y,z) for $(x,y) \in D$, $z \in E^n$ as compact convex sets in E^n contained in the ball of radius L.

(H₂) The functions $C^1([0,a],E^n)$, $\tau \in C^1([0,b],E^n)$ satisfy the condition $\sigma(0) = \tau(0)$.

 (\mathbf{H}_3) The function $\alpha: D \to E^n$, defined by

(2.1)
$$\alpha(x,y) = \sigma(x) + \tau(y) - \sigma(0), \quad (x,y) \in D,$$

is bounded. There exists $\alpha_0 \in \mathbb{R}_+$ such that

$$|\alpha(x,y)| \le \alpha_0, \quad (x,y) \in D.$$

Definition 2.1. [18], [19]. The Darboux problem for the hyperbolic inclusion

(2.3)
$$\frac{\partial^2 z}{\partial x \partial y} \in F(x, y, z), \quad (x, y) \in D, \ z \in E^n,$$

consists in the determination of a solution for (2.3) satisfying conditions

(2.4)
$$\begin{cases} z(x,0) = \sigma(x), & 0 \le x \le a \\ z(0,y) = \tau(y), & 0 \le y \le b. \end{cases}$$

DEFINITION 2.2. [5], [10], [34]. A function $z:D\to E^n$ is said to be a classical solution of (2.3)+(2.4) if $z,\frac{\partial^2 z}{\partial x \partial y}$ are in $C(D,E^n)$ and for every $(x,y)\in D$, z satisfies (2.3), i.e. $\frac{\partial^2 z(x,y)}{\partial x \partial y}\in F(x,y,z(x,y))$, and also (2.4).

THEOREM 2.1. Let the hypotheses (H_1) , (H_2) , (H_3) be satisfied. Then the Darboux problem (2.3)+(2.4) has a classical solution.

Proof. Let $C_L(D, E^n)$ be the compact subset of $C(D, E^n)$ consisting of functions with Lipschitz constant L and of norm less than or equal to $\alpha_0 + Lab$.

$$C_L(D, E^n) = \{ f \in C(D, E^n) : |f(x, y) - f(x', y')| \le L(|x - x'| + |y - y'|, (x, y), (x', y') \in D, |f| \le \alpha_0 + Lab \}.$$

Let z be in $C(D, E^n)$ and $\frac{\partial^2 z}{\partial x \partial y}$ in $C(D, E^n)$. Integrating $\frac{\partial^2 z}{\partial x \partial y}$ over the domain

$$D_{xy} = \{(\xi, \eta) : 0 \le \xi \le x, \ 0 \le \eta \le y\} \subseteq D, \ (x, y) \in D,$$

and using (2.2), (2.4) one gets

(2.5)
$$z(x,y) = \sigma(x) + \tau(y) - \sigma(0) + \int_0^x \int_0^y \frac{\partial^2 z}{\partial \xi \partial \eta} d\xi d\eta =$$
$$= \alpha(x,y) + \int_0^x \int_0^y \frac{\partial^2 z}{\partial \xi \partial \eta} d\xi d\eta, \quad (x,y) \in D.$$

For $Z \in C_L(D, E^n)$ let us take

$$Y(z) = \{ f \in L_{\infty}(D, E^n) : f(\xi, \eta) \in F(\xi, \eta, z(\xi, \eta)), (\xi, \eta) \in D \}$$

and

$$A(z) = \{ h \in C(D, E^n) : h(x, y) = \alpha(x, y) + \int_0^x \int_0^y f(\xi, \eta) d\xi d\eta, \ f \in Y(z) \}.$$

Since F has convex values, Lemma 1.1 shows that A(z) is a compact convex subset of $C_L(D, E^n)$. Also, A considered as a map

$$A: C_L(D, E^n) \to \text{comp } C_L(D, E^n)$$

of $C_L(D, E^n)$ into the nonempty compact subsets of $C_L(D, E^n)$, is continuous in the Hausdorff topology. By the Bohnenblust-Karlin fixed point theorem, A

has a fixed point φ and φ is therefore a solution of the problem (2.3)+(2.4). Indeed

$$Y(\varphi) = \{ f \in L_{\infty}(D, E^n) : f(\xi, \eta) \in F(\xi, \eta, \varphi(\xi, \eta)), (\xi, \eta) \in D \}$$

and

$$A(\varphi) = \{ h \in C(D, E^n) : h(x, y) = \alpha(x, y) + \int_0^x \int_0^y f(\xi, \eta) d\xi d\eta, \quad f \in Y(\varphi) \}.$$

From $A(\varphi) = \varphi$ it follows

$$\varphi(x,y) = h(x,y) = \alpha(x,y) + \int_0^x \int_0^y f(\xi,\eta) d\xi d\eta,$$

hence

$$\frac{\partial^2 \varphi}{\partial x \partial y}(x, y) = f(x, y) \in F(x, y, \varphi(x, y)), \quad for(x, y) \in D.$$

i.e. (2.3) is satisfied, and (2.4) obviously holds. One has

$$\begin{cases} \frac{\partial \varphi}{\partial x}(x,0) = \sigma(x), & 0 \le x \le a \\ \frac{\partial \varphi}{\partial y}(0,y) = \tau(y), & 0 \le y \le b. \end{cases}$$

The theorem 2.1 is thus proved.

REFERENCES

[1] AUMANN, R. J., Integrals of set-valued functions, J. Math. Anal. Appl., 12, pp. 1-12, 1965.

[2] BOHNENBLUST, H. F. and KARLIN, S., On a theorem of Ville, Contrib. to theory of games, I. Ann. Math. Studies, 24, Princeton University Press, Princeton N.J., pp. 155-160, 1950.

[3] DE BLAS, F.S. and MYJAK, J., On the set of solutions of a differential inclusion, Bulletin of the Institute of Mathematics, Academia Sinica, 14, no. 3, pp. 271-275, 1986.

[4] HERMES, H., The generalized differential equation $\dot{x} \in RR(t,x)$, Advances in mathematics, 4, pp. 149–169, 1970.

[5] HERMES, H., On continuous and measurable selections and the existence of solutions of generalized differential equations, Proceedings of the American Mathematical Society, 29, no. 3, pp. 535-542, 1971.

[6] HIMMELBERG, C. J. and VAN VLECK, F. S., Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova, 48, pp. 159-169, 1973.

[7] ISTRĂŢESCU, V. I., Introducere în teoria punctelor fixe, Editura Academiei Române, Bucureşti, 1973.

[8] KUBIACZYK, I., Existence theorem for multivalued hyperbolic equation, Annales Societatis Mathematicae Polonae, Series I: Commentationes Mathematicae, 27, pp. 115 – 119, 1987.

- [9] MARANO, S. A., Generalized solutions of partial differential inclusions depending on a parameter, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di
- [10] MARANO, S. A., Classical solutions of partial differential inclusions in Banach spaces, Applicable Analysis, 42, no. 2, pp.127-143, 1991.

matematica 107⁰, **13**, 18, pp. 281–295, 1989.

- [11] MICHAEL, E., Topologies on spaces of subsets, Am. Math. Soc. Transl., 71, pp. 152–182, 1951.
- [12] PRUSZKO, T., Topological degree methods in multivalued boundary value problems, Non-linear Analysis, Theory, Methods & Applications, 5, no. 9, pp. 959-973, 1981.
- [13] RUS, I. A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
- [14] SOSULSKI, W., Existence theorem for generalized functional-differential equations of hyperbolic type, Annales Societatis Mathematicae Polonae, Series I: Commentationes Mathematicae, 25, pp. 149–152, 1985.
- [15] SOSULSKI, W., On neutral partial functional-differential inclusions of hyperbolic type, Demonstratio Mathematica, 23, no. 4, pp. 893-909, 1990.
- [16] STAICU, V., Well posedness for differential inclusions, Ph. D. Thesis, SISSA, TRI-ESTE, 1989/1990.
- [17] STAICU, V., On a non-convex hyperbolic differential inclusion, Proceedings of the Edinburgh Mathematical Society, 35, pp. 375–382, 1992.
- [18] TEODORU, G., Studiul soluțiilor ecuațiilor de forma $\partial^2 z/\partial x \partial y \in F(x, y, z)$, Teză de doctorat, Universitatea "Al. I. Cuza" Iași, 1984.
- [19] TEODORU, G., Le problème de Darboux pour une équation aux derivées partielles multivoque, Analele Şt. Univ. "Al. I. Cuza" Iaşi, 31, S.I.a Mat., no. 2, pp. 173-176, 1985.
- [20] TEODORU, G., Sur le problème de Darboux pour 1'équation $\partial^2 z/\partial x \partial y \in F(x, y, z)$, Analele Şt. Univ. "Al.I. Cuza" Iaşi, **32**, S.I.a Mat., no. 3, pp. 41–49, 1986.
- [21] TEODORU, G., A characterization of the solutions of the Darboux problem for the equation $\partial^2 z/\partial x \partial y \in F(x,y,z)$, Analele Şt. Univ. "Al.I. Cuza" Iaşi, 33, S.I. a Mat., no. 1, pp. 33–38, 1987.
- [22] TEODORU, G., Approximation of the solution of the Darboux problem for the equation $\partial^2 z/\partial x \partial y \in F(x,y,z)$, Analele Şt. Univ. "Al.I. Cuza" Iaşi, **34**, S.I. a Mat., no. 1, pp. 31–36, 1988.
- [23] TEODORU, G., Continuous selections for multivalued functions, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, pp. 273-278, 1986.
- [24] TEODORU, G., Continuous selections for multifunctions satisfying the Carathéodory type conditions. The Darboux problem associated to a multivalued equation, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, pp. 281–285, 1987.
- [25] TEODORU, G., Continuous selections for multifunctions and the Darboux problem for multivalued equations, Itinerant Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, pp. 297-304, 1989.
- [26] TEODORU, G., An application of Fryszkowski selection theorem to the Darboux problem for a multivalued equation, Studia Univ. Babeş-Bolyai, Cluj- Napoca, Mathematica, 34, no. 2, pp. 36-40, 1989.

[27] TEODORU, G., An application of the contraction principle of Covitz and Nadler to the Darboux problem for a multivalued equation, Analele Şt. Univ. "Al.I. Cuza" Iaşi, 36, no. 2, pp. 99-104, 1990.

[28] TEODORU, G., The Darboux problem associated with Lipschitzian hyperbolic multivalued equation, Bul. Inst. Polit. Iaşi, 36 (50), f. 1, Secţia I, Matematică, Mecanică

teoretică, Fizică, pp. 35-40, 1990.

[29] TEODORU, G., Classical solutions of partial functional-differential inclusions in Banach space, 4th International Conference in Applied Mathematics and Mechanics, Cluj-Napoca, June 7–12, 1994, Acta Tech. Napocensis, seria Mat. Apl. şi Mecanică (to appear).

[30] TEODORU, G. and DRĂGAN, V., The Darboux problem for random hyperbolic multivalued equations, Bul. Univ. Tehnică "Gh. Asachi", Iași, 40 (44), Secția I, Matematică,

Mecanică teoretică, Fizică, 1994 (to appear).

[31] TEODORU, G. and DRĂGAN, V., Continuous dependence of parameter of the solutions for differential hyperbolic inclusions, Memoriile Secțiilor Științifice ale Academiei Române, 1994, (to appear).

[32] TEODORU, G., Classical solutions of partial functional-differential inclusions in Banach space, Studia Univ. Babeş-Bolyai, Cluj-Napoca, 40, 1995 (to appear).

[33] TEODORU, G., Generalized solutions for partial differential functional inclusions depending on a parameter, Bul. Univ. Tehnică "Gh. Asachi", Iași, 41 (45), Matematică, Mecanică teoretică, Fizică, 1995 (to appear).

[34] VITIUC, A. N., On the existence of a class of multivalued partial differential equations. Boundary value problems (Russian), VINITI, 1982, pp1-31, "Kraevâie zadaci" (Russian), pp. 131-133, pp. 162-163. Perm. Politekh. Inst. Perm., 1984.

Received July 20, 1995

Technical University
"Gh. Asachi" of Iaşi
Department of Mathematics
6600, Iaşi, ROMANIA