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MEYER-KÖNIG AND ZELLER OPERATORS
BASED ON THE q-INTEGERS

TIBERIU TRIF

Abstract. By means of the q-integers as well as of the Gaussian binomial coef-
ficients we introduce a generalization of the Meyer-König and Zeller operators.
For a fixed number q ∈ ]0, 1] , the sequence of the generalized Meyer-König and
Zeller operators is denoted by (Mn,q)n≥1 . Both a theorem on convergence and a
Popoviciu type theorem on the rate of convergence are proved. It is shown that
if f is increasing, then Mn,qf is also increasing, while if f is convex, then Mn,qf
is also convex and Mn,qf ≥ f, generalizing known results when q = 1. Likewise,
it is shown that if f is convex, then the sequence (Mn,qf)n≥1 is non-increasing
as in the case of the classical Mn-operators.

1. INTRODUCTION

Let q be a number belonging to the interval ]0, 1] (throughout the paper q
will always have this meaning). For each non-negative integer k, the q-integer
[k] is defined by

[k] =


1−qk

1−q , if q 6= 1

k, if q = 1,

while the q-factorial [k]! is defined by

[k]! =

[k] · [k − 1] · · · [1] , if k ≥ 1

1, if k = 0.

By means of the q-factorial, the Gaussian binomial coefficients are defined by[
n

k

]
= [n]!

[k]! [n− k]!

for all integers n ≥ k ≥ 0.
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It is easily seen that the Gaussian binomial coefficients satisfy the recurrence
relations [n+1

k

]
=
[ n
k−1
]

+ qk[n
k

]
and [n+1

k

]
= qn−k+1[ n

k−1
]

+
[n
k

]
for all integers n ≥ k ≥ 1.

Based on the q-integers and on the Gaussian binomial coefficients G.M.
Phillips [10] proposed the following generalization of the classical Bernstein
operators: for each positive integer n let Bn,q : C [0, 1] → C [0, 1] be the
operator defined by

Bn,qf (x) =
n∑

k=0
f
(

[k]
[n]

)[n
k

]
xk

n−k−1∏
j=0

(
1− qjx

)
,

where an empty product denotes 1. For q = 1, Bn,1 reduces to the classical
Bernstein operator Bn : C [0, 1]→ C [0, 1]

Bnf (x) =
n∑

k=0
f
(

k
n

) (n
k

)
xk (1− x)n−k .

Approximation properties of these generalized Bernstein operators, which are
quite similar with those of the classical Bernstein operators, were investigated
in [5], [9], and [10].

Starting from the power series expansion

(1.1) 1
(1−x)n+1 =

∞∑
k=0

(n+k
k

)
xk, 0 ≤ x < 1,

W. Meyer-König and K. Zeller [8] introduced the sequence (Mn)n≥1 of linear
positive operators Mn : C [0, 1]→ C [0, 1] defined by

Mnf (x) = (1− x)n+1
∞∑

k=0
f
(

k
n+k

)(n+k
k

)
xk, 0 ≤ x < 1,

Mnf (1) = f (1) .

For approximation properties of the Mn-operators the reader is referred to [3]
and [7].

The q-generalization of (1.1) is the following power series expansion:

(1.2) 1
n∏

j=0

(
1− qjx

) =
∞∑

k=0

[n+k
k

]
xk, 0 ≤ x < 1.
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Simple proofs of (1.2) can be found in [1] and [2]. Starting from (1.2) we
introduce the sequence (Mn,q)n≥1 of linear positive operators Mn,q : C [0, 1]→
C [0, 1] defined by

Mn,qf (x) = Pn,q (x)
∞∑

k=0
f
(

[k]
[n+k]

)[n+k
k

]
xk, 0 ≤ x < 1,(1.3)

Mn,qf (1) = f (1) ,(1.4)

where

Pn,q (x) =
n∏

j=0

(
1− qjx

)
.

It is easy to check (see [8]) that

lim
x↗1

Mn,qf (x) = f (1)

for all f ∈ C [0, 1] , so Mn,q is well-defined for each positive integer n. In fact
Mn,qf can be defined by (1.3) for each bounded function f : [0, 1] → R. If in
addition there exists lim

x↗1
f (x) = l, then lim

x↗1
Mn,qf (x) = l. In this case (1.4)

must be replaced by

(1.5) Mn,qf (1) = lim
x↗1

f (x) .

In analogy with the terminology used in [10], in what follows we will call the
Mn,q-operators generalized Meyer-König and Zeller operators.

It is the main purpose of this paper to investigate the approximation prop-
erties of the above introduced operators.

2. THE ORDER OF APPROXIMATION BY GENERALIZED MEYER-KÖNIG AND

ZELLER OPERATORS

For each nonnegative integer i let ei denote the monomial ei (x) = xi.

Lemma 2.1. For all integers n ≥ 3 and all x ∈ [0, 1] the following relations
are valid:

(2.1) Mn,qe0 (x) = 1,

(2.2) Mn,qe1 (x) = x,

(2.3) Mn,qe2 (x) = x2 + x(1−x)(1−qnx)
[n−1] −Rn,q (x) ,
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where

(2.4) 0 ≤ Rn,q (x) ≤ [2]qn−1

[n−1][n−2]x (1− x) (1− qx) (1− qnx) .

Proof. Relation (2.1) is just (1.2), while relation (2.2) follows immediately
from (1.2) taking into account that

(2.5) [k]
[n+k]

[n+k
k

]
=
[n+k−1

k−1
]

for all positive integers n and k.
To prove (2.3)–(2.4) we fix an integer n ≥ 3 as well as a number x ∈ [0, 1[

((2.3)–(2.4) are trivially true for x = 1). Taking into account (2.5) we get

Mn,qe2 (x) = Pn,q (x)
∞∑

k=1

[k]
[n+k]

[n+k−1
k−1

]
xk

= xPn,q (x)
∞∑

k=0

[k+1]
[n+k+1]

[n+k
k

]
xk.

On the other hand, (1.2) yields

e2 (x) = xPn,q (x)
∞∑

k=1

[n+k−1
k−1

]
xk.

Consequently

Mn,qe2 (x)− x2 = xPn,q(x)
[n+1] + xPn,q(x)

∞∑
k=1

(
[k+1]

[n+k+1]
[n+k

k

]
−
[n+k−1

k−1
])
xk.

By a simple computation

[k+1]
[n+k+1]

[n+k
k

]
−
[n+k−1

k−1
]

= qk

[n+k+1]
[n+k−1

k

]
,

so

Mn,qe2 (x) = x2 + xPn,q (x)
∞∑

k=0

qk

[n+k+1]
[n+k−1

k

]
xk

= x2 + xPn,q(x)
[n−1]

∞∑
k=0

qk [n+k−1]
[n+k+1]

[n+k−2
k

]
xk.

Since
[n+k−1]
[n+k+1] = 1− [2]qn+k−1

[n+k+1] ,
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we get

Mn,qe2 (x) = x2 + xPn,q(x)
[n−1]

∞∑
k=0

[n+k−2
k

]
(qx)k

− [2]qn−1xPn,q(x)
[n−1]

∞∑
k=0

1
[n+k+1]

[n+k−2
k

] (
q2x

)k
.

Relation (1.2) ensures that
∞∑

k=0

[n+k−2
k

]
(qx)k = 1

n−2∏
j=0

(
1− qj · qx

) = (1−x)(1−qnx)
Pn,q(x) ,

hence
Mn,qe2 (x) = x2 + x(1−x)(1−qnx)

[n−1] −Rn,q (x) ,

where

0 ≤ Rn,q (x) = [2]qn−1xPn,q(x)
[n−1]

∞∑
k=0

1
[n+k+1]

[n+k−2
k

] (
q2x

)k
≤ [2]qn−1xPn,q(x)

[n−1]

∞∑
k=0

1
[n+k−2]

[n+k−2
k

] (
q2x

)k
= [2]qn−1xPn,q(x)

[n−1][n−2]

∞∑
k=0

[n+k−3
k

] (
q2x

)k
= [2]qn−1xPn,q(x)

[n−1][n−2] · 1
n−3∏
j=0

(
1− qj · q2x

)
= [2]qn−1

[n−1][n−2]x (1− x) (1− qx) (1− qnx) .

The completes the proof of (2.3)–(2.4). �

From (2.4) it follows that Rn,q (x)→ 0 as n→∞ for all x ∈ [0, 1] . On the
order hand, for 0 < q < 1 we have [n− 1]→ 1

1−q as n→∞, so

Mn,qe2 (x)→ x2 + x (1− x) (1− q), as n→∞.

Hence (Mn,qe2)n≥1 does not converge to e2. However, the following estimation
turns out to be very useful in what follows:∣∣Mn,qe2 (x)−e2 (x)

∣∣ ≤ x(1−x)(1−qnx)
[n−1] + [2]qn−1x(1−x)(1−qx)(1−qnx)

[n−1][n−2]

≤ 1
4[n−1] + [2]

4[n−1] = 2+q
4[n] ·

[n]
[n−1] ,
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and since
[n]

[n−1] = 1−qn

1−qn−1 ≤ 1 + q,

we finally get

(2.6)
∣∣Mn,qe2 (x)− e2 (x)

∣∣ ≤ (2+q)(1+q)
4[n] ≤ 3

2[n]

for all integers n ≥ 3 and all x ∈ [0, 1] .
By proceeding like G. M. Phillips [10], in order to obtain a convergent

sequence of generalized Meyer-König and Zeller operators, we let q = qn

depend on n. More precisely, we choose a sequence (qn)n≥1 of real numbers
satisfying

(2.7) 1− 1
n ≤ qn < 1, for all n ≥ 1.

Then we have

1− r
n ≤ q

r
n < 1, for all 1 ≤ r ≤ n− 1,

hence
[n] = 1 + qn + q2

n + . . .+ qn−1
n ≥ n− n(n−1)

2n = n+1
2 .

Taking into account (2.6) we deduce that

‖Mn,qne2 − e2‖ ≤ 3
n+1

for all n ≥ 3. Consequently, the sequence (Mn,qne2)n≥1 converges uniformly to
e2 on [0, 1]. By applying the well-known Bohman-Korovkin theorem, we can
conclude that the following theorem hods:

Theorem 2.2. If (qn)n≥1 is a sequence of real numbers satisfying (2.7),
then for each f ∈ C [0, 1] the sequence (Mn,qnf)n≥1 converges uniformly to f

on [0, 1] .

Given a function f : [0, 1]→ R as well as a positive real number δ, let

ω (f, δ) = sup
{
|f (x1)− f (x2)| : x1, x2 ∈ [0, 1] , |x1 − x2| ≤ δ

}
denote the usual modulus of continuity of f. From (2.6), by means of Theorem
2.2 in [7], we deduce the following Popoviciu-type theorem for the Mn,q-ope-
rators.

Theorem 2.3. If f ∈ C [0, 1] , then for each integer n ≥ 3 we have

‖Mn,qf − f‖ ≤ 5
2ω
(
f, 1√

[n]

)
.

Likewise, from (2.6), by means of Theorem 2.4 in [7], we deduce the following
Lorentz-type theorem for the Mn,q-operators.
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Theorem 2.4. If f ∈ C1 [0, 1] , then for each integer n ≥ 3 we have

‖Mn,qf − f‖ ≤ 3+
√

6
2
√

[n]
ω
(
f ′, 1√

[n]

)
.

Since the proofs of Theorem 2.3 and Theorem 2.4 are quite similar with
those of Corollary 2.3 and Corollary 2.5, respectively, in [7], we omit them.

3. CONVEXITY AND GENERALIZED MEYER-KÖNIG AND ZELLER OPERATORS

For any real sequence a, finite of infinite, we denote by v (a) the number
of strict sign changes in a. Given a function f : [0, 1] → R, let V (f) be the
number of sign changes of f in [0, 1] , i.e.

V (f) = sup v
(
f (x1) , . . . , f (xm)

)
where the supremum is taken over all increasing sequences 0 ≤ x1 < . . . <
xm ≤ 1, for all positive integers m.

An operator L assigning to each function f : [0, 1] → R the function Lf :
[0, 1]→ R is said to be a variation diminishing operator (cf. [11]) if

V (Lf) ≤ V (f) , for all functions f : [0, 1]→ R.

Theorem 3.1. For each positive integer n, the generalized Meyer-König
and Zeller operator Mn,q is a variation diminishing operator.

Proof. By means of the well-known Descartes’ rule of signs it is easy to
prove that if a = (ak)k≥0 is a sequence of real numbers such that the power
series

∑
k≥0 akx

k converges uniformly on [0, 1] to a function g, then

V (g) ≤ v (a) .

Taking this into account we have

V (Mn,qf) = V

( ∞∑
k=0

f
(

[k]
[n+k]

) [n+k
k

]
xk

)

≤ V
((
f
( [k]

[n+k]
)[n+k

k

])
k≥0

)
≤ V (f)

for all continuous functions f : [0, 1] → R. This proves the assertion of the
theorem. �
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Remark 3.1. From (1.5) it follows that V (Mn,qf) ≤ V (f) for every
bounded function f : [0, 1] → R for which there exists limx↗1 f (x) . Taking
account of (2.1) and (2.2), by the above theorem we deduce that

(3.1) V (Mn,qf − p) = V (Mn,q (f − p)) ≤ V (f − p)

for every bounded function f : [0, 1] → R for which there exists limx↗1 f (x)
and every linear polynomial p. A standard reasoning based on (3.1) (see, for
instance, [5], [11], [6]) yields the following theorem. �

Theorem 3.2. For each positive integer n the following assertions are true:
10 If f : [0, 1] → R is an increasing (decreasing) function, then Mn,qf is

also increasing (decreasing).
20 If f : [0, 1] → R is a convex function, then Mn,qf is also convex and

Mn,qf (x) ≥ f (x) for all x ∈ [0, 1] .

Like in the case of the classical Meyer-König and Zeller operators, we have
the following.

Theorem 3.3. If f : [0, 1]→ R is a convex function, then for each x ∈ [0, 1]
the sequence (Mn,qf (x))n≥1 is non-increasing.

Proof. The assertion of the theorem being trivially true for x = 1, we may
assume that 0 ≤ x < 1. Let n be any positive integer. We have

Mn,qf (x)−Mn+1,qf (x)
Pn,q (x) = qn+1x

∞∑
k=0

f
(

[k]
[n+k+1]

) [n+k+1
k

]
xk

−
∞∑

k=1
f
(

[k]
[n+k+1]

) [n+k+1
k

]
xk

+
∞∑

k=1
f
(

[k]
[n+k]

) [n+k
k

]
xk.

Using the recurrence formula[n+k+1
k

]
= qn+1[n+k

k−1
]

+
[n+k

k

]
in the second sum we get

Mn,qf (x)−Mn+1,qf (x)
Pn,q (x) =

= x
∞∑

k=0

[n+k
k

]
xk

{
qn+1 [n+k+1]

[n+1] f
(

[k]
[n+k+1]

)
− qn+1 [n+k+1]

[n+1] f
(

[k+1]
[n+k+2]

)
− [n+k+1]

[n+1] f
(

[k+1]
[n+k+2]

)
+ [n+k+1]

[k+1] f
(

[k+1]
[n+k+1]

)}
.
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As a simple computation shows, the expression between the braces equals
to

qn+2k+1

[n+k+1][n+k+2]

[
[k]

[n+k+1] ,
[k+1]

[n+k+2] ,
[k+1]

[n+k+1] ; f
]
≥ 0

because f is convex. Consequently, Mn,qf (x) ≥Mn+1,qf (x) . �
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Added in proof. After the paper had been sent to the typography, the
author found out that the sequence of generalized Meyer-König and Zeller
operators considered here, had already been introduced and investigated by
Luciana Lupaş, A q-analogue of the Meyer-König and Zeller operator, Anal.
Univ. Oradea, 2, pp. 62-66, 1992. Thus, part of the results in the present
paper (Theorem 2.2 and Theorem 3.3) were established for the first time in
the previously quoted article by Luciana Lupaş.
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