MEYER-KÖNIG AND ZELLER OPERATORS
 BASED ON THE q-INTEGERS

TIBERIU TRIF

Abstract

By means of the q-integers as well as of the Gaussian binomial coefficients we introduce a generalization of the Meyer-König and Zeller operators. For a fixed number $q \in] 0,1]$, the sequence of the generalized Meyer-König and Zeller operators is denoted by $\left(M_{n, q}\right)_{n \geq 1}$. Both a theorem on convergence and a Popoviciu type theorem on the rate of convergence are proved. It is shown that if f is increasing, then $M_{n, q} f$ is also increasing, while if f is convex, then $M_{n, q} f$ is also convex and $M_{n, q} f \geq f$, generalizing known results when $q=1$. Likewise, it is shown that if f is convex, then the sequence $\left(M_{n, q} f\right)_{n \geq 1}$ is non-increasing as in the case of the classical M_{n}-operators.

1. INTRODUCTION

Let q be a number belonging to the interval $] 0,1]$ (throughout the paper q will always have this meaning). For each non-negative integer k, the q-integer $[k]$ is defined by

$$
[k]= \begin{cases}\frac{1-q^{k}}{1-q}, & \text { if } q \neq 1 \\ k, & \text { if } q=1\end{cases}
$$

while the q-factorial $[k]$! is defined by

$$
[k]!= \begin{cases}{[k] \cdot[k-1] \cdots[1],} & \text { if } k \geq 1 \\ 1, & \text { if } k=0\end{cases}
$$

By means of the q-factorial, the Gaussian binomial coefficients are defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!}
$$

for all integers $n \geq k \geq 0$.

[^0]It is easily seen that the Gaussian binomial coefficients satisfy the recurrence relations

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]=\left[\begin{array}{c}
n \\
k-1
\end{array}\right]+q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]=q^{n-k+1}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]+\left[\begin{array}{c}
n \\
k
\end{array}\right]
$$

for all integers $n \geq k \geq 1$.
Based on the q-integers and on the Gaussian binomial coefficients G.M. Phillips [10] proposed the following generalization of the classical Bernstein operators: for each positive integer n let $B_{n, q}: C[0,1] \rightarrow C[0,1]$ be the operator defined by

$$
B_{n, q} f(x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{j=0}^{n-k-1}\left(1-q^{j} x\right),
$$

where an empty product denotes 1 . For $q=1, B_{n, 1}$ reduces to the classical Bernstein operator $B_{n}: C[0,1] \rightarrow C[0,1]$

$$
B_{n} f(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} .
$$

Approximation properties of these generalized Bernstein operators, which are quite similar with those of the classical Bernstein operators, were investigated in [5], 9], and [10].

Starting from the power series expansion

$$
\begin{equation*}
\frac{1}{(1-x)^{n+1}}=\sum_{k=0}^{\infty}\binom{n+k}{k} x^{k}, \quad 0 \leq x<1, \tag{1.1}
\end{equation*}
$$

W. Meyer-König and K. Zeller [8] introduced the sequence $\left(M_{n}\right)_{n \geq 1}$ of linear positive operators $M_{n}: C[0,1] \rightarrow C[0,1]$ defined by

$$
\begin{aligned}
& M_{n} f(x)=(1-x)^{n+1} \sum_{k=0}^{\infty} f\left(\frac{k}{n+k}\right)\binom{n+k}{k} x^{k}, \quad 0 \leq x<1, \\
& M_{n} f(1)=f(1) .
\end{aligned}
$$

For approximation properties of the M_{n}-operators the reader is referred to [3] and [7].

The q-generalization of (1.1) is the following power series expansion:

$$
\frac{1}{\prod_{j=0}^{n}\left(1-q^{j} x\right)}=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \tag{1.2}\\
k
\end{array}\right] x^{k}, \quad 0 \leq x<1
$$

Simple proofs of (1.2) can be found in [1] and [2]. Starting from (1.2) we introduce the sequence $\left(M_{n, q}\right)_{n \geq 1}$ of linear positive operators $M_{n, q}: C[0,1] \rightarrow$ $C[0,1]$ defined by

$$
\begin{align*}
& M_{n, q} f(x)=P_{n, q}(x) \sum_{k=0}^{\infty} f\left(\frac{[k]}{[n+k]}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}, 0 \leq x<1, \tag{1.3}\\
& M_{n, q} f(1)=f(1), \tag{1.4}
\end{align*}
$$

where

$$
P_{n, q}(x)=\prod_{j=0}^{n}\left(1-q^{j} x\right)
$$

It is easy to check (see [8]) that

$$
\lim _{x \neq 1} M_{n, q} f(x)=f(1)
$$

for all $f \in C[0,1]$, so $M_{n, q}$ is well-defined for each positive integer n. In fact $M_{n, q} f$ can be defined by 1.3 for each bounded function $f:[0,1] \rightarrow \mathbb{R}$. If in addition there exists $\lim _{x \nearrow_{1}} f(x)=l$, then $\lim _{x \nearrow_{1}} M_{n, q} f(x)=l$. In this case (1.4) must be replaced by

$$
\begin{equation*}
M_{n, q} f(1)=\lim _{x \nearrow 1} f(x) . \tag{1.5}
\end{equation*}
$$

In analogy with the terminology used in [10], in what follows we will call the $M_{n, q}$-operators generalized Meyer-König and Zeller operators.

It is the main purpose of this paper to investigate the approximation properties of the above introduced operators.

2. THE ORDER OF APPROXIMATION BY GENERALIZED MEYER-KÖNIG AND ZELLER OPERATORS

For each nonnegative integer i let e_{i} denote the monomial $e_{i}(x)=x^{i}$.
Lemma 2.1. For all integers $n \geq 3$ and all $x \in[0,1]$ the following relations are valid:

$$
\begin{gather*}
M_{n, q} e_{0}(x)=1, \tag{2.1}\\
M_{n, q} e_{1}(x)=x, \tag{2.2}\\
M_{n, q} e_{2}(x)=x^{2}+\frac{x(1-x)\left(1-q^{n} x\right)}{[n-1]}-R_{n, q}(x), \tag{2.3}
\end{gather*}
$$

where

$$
\begin{equation*}
0 \leq R_{n, q}(x) \leq \frac{[2] q^{n-1}}{[n-1][n-2]} x(1-x)(1-q x)\left(1-q^{n} x\right) \tag{2.4}
\end{equation*}
$$

Proof. Relation (2.1) is just (1.2), while relation (2.2) follows immediately from (1.2) taking into account that

$$
\frac{[k]}{[n+k]}\left[\begin{array}{c}
n+k \tag{2.5}\\
k
\end{array}\right]=\left[\begin{array}{c}
n+k-1 \\
k-1
\end{array}\right]
$$

for all positive integers n and k.
To prove (2.3)-(2.4) we fix an integer $n \geq 3$ as well as a number $x \in[0,1[$ (2.3)-(2.4) are trivially true for $x=1$). Taking into account 2.5 we get

$$
\begin{aligned}
M_{n, q} e_{2}(x) & =P_{n, q}(x) \sum_{k=1}^{\infty} \frac{[k]}{[n+k]}\left[\begin{array}{c}
n+k-1 \\
k-1
\end{array}\right] x^{k} \\
& =x P_{n, q}(x) \sum_{k=0}^{\infty} \frac{[k+1]}{[n+k+1]}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} .
\end{aligned}
$$

On the other hand, $(1.2$ yields

$$
e_{2}(x)=x P_{n, q}(x) \sum_{k=1}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k-1
\end{array}\right] x^{k}
$$

Consequently

$$
M_{n, q} e_{2}(x)-x^{2}=\frac{x P_{n, q}(x)}{[n+1]}+x P_{n, q}(x) \sum_{k=1}^{\infty}\left(\frac{[k+1]}{[n+k+1]}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]-\left[\begin{array}{c}
n+k-1 \\
k-1
\end{array}\right]\right) x^{k}
$$

By a simple computation

$$
\frac{[k+1]}{[n+k+1]}\left[\begin{array}{c}
n+k \\
k
\end{array}\right]-\left[\begin{array}{c}
n+k-1 \\
k-1
\end{array}\right]=\frac{q^{k}}{[n+k+1]}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]
$$

so

$$
\begin{aligned}
M_{n, q} e_{2}(x) & =x^{2}+x P_{n, q}(x) \sum_{k=0}^{\infty} \frac{q^{k}}{[n+k+1]}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right] x^{k} \\
& =x^{2}+\frac{x P_{n, q}(x)}{[n-1]} \sum_{k=0}^{\infty} q^{k} \frac{[n+k-1]}{[n+k+1]}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right] x^{k} .
\end{aligned}
$$

Since

$$
\frac{[n+k-1]}{[n+k+1]}=1-\frac{[2] q^{n+k-1}}{[n+k+1]}
$$

we get

$$
\begin{aligned}
M_{n, q} e_{2}(x)= & x^{2}+\frac{x P_{n, q}(x)}{[n-1]} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right](q x)^{k} \\
& -\frac{[2] q^{n-1} x P_{n, q}(x)}{[n-1]} \sum_{k=0}^{\infty} \frac{1}{[n+k+1]}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right]\left(q^{2} x\right)^{k} .
\end{aligned}
$$

Relation (1.2) ensures that

$$
\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right](q x)^{k}=\frac{1}{\prod_{j=0}^{n-2}\left(1-q^{j} \cdot q x\right)}=\frac{(1-x)\left(1-q^{n} x\right)}{P_{n, q}(x)}
$$

hence

$$
M_{n, q} e_{2}(x)=x^{2}+\frac{x(1-x)\left(1-q^{n} x\right)}{[n-1]}-R_{n, q}(x),
$$

where

$$
\begin{aligned}
0 & \leq R_{n, q}(x)=\frac{[2] q^{n-1} x P_{n, q}(x)}{[n-1]} \sum_{k=0}^{\infty} \frac{1}{[n+k+1]}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right]\left(q^{2} x\right)^{k} \\
& \leq \frac{[2] q^{n-1} x P_{n, q}(x)}{[n-1]} \sum_{k=0}^{\infty} \frac{1}{[n+k-2]}\left[\begin{array}{c}
n+k-2 \\
k
\end{array}\right]\left(q^{2} x\right)^{k} \\
& =\frac{[2] q^{n-1} x P_{n, q}(x)}{[n-1][n-2]} \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-3 \\
k
\end{array}\right]\left(q^{2} x\right)^{k} \\
& =\frac{[2] q^{n-1} x P_{n, q}(x)}{[n-1][n-2]} \cdot \frac{1}{n-3}\left(1-q^{j} \cdot q^{2} x\right) \\
& =\frac{[2] q^{n-1}}{[n-1][n-2]} x(1-x)(1-q x)\left(1-q^{n} x\right) .
\end{aligned}
$$

The completes the proof of $(2.3)-(2.4)$.
From (2.4) it follows that $R_{n, q}(x) \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in[0,1]$. On the order hand, for $0<q<1$ we have $[n-1] \rightarrow \frac{1}{1-q}$ as $n \rightarrow \infty$, so

$$
M_{n, q} e_{2}(x) \rightarrow x^{2}+x(1-x)(1-q), \quad \text { as } n \rightarrow \infty
$$

Hence $\left(M_{n, q} e_{2}\right)_{n \geq 1}$ does not converge to e_{2}. However, the following estimation turns out to be very useful in what follows:

$$
\begin{aligned}
\left|M_{n, q} e_{2}(x)-e_{2}(x)\right| & \leq \frac{x(1-x)\left(1-q^{n} x\right)}{[n-1]}+\frac{[2] q^{n-1} x(1-x)(1-q x)\left(1-q^{n} x\right)}{[n-1][n-2]} \\
& \leq \frac{1}{4[n-1]}+\frac{[2]}{4[n-1]}=\frac{2+q}{4[n]} \cdot \frac{[n]}{[n-1]},
\end{aligned}
$$

and since

$$
\frac{[n]}{[n-1]}=\frac{1-q^{n}}{1-q^{n-1}} \leq 1+q,
$$

we finally get

$$
\begin{equation*}
\left|M_{n, q} e_{2}(x)-e_{2}(x)\right| \leq \frac{(2+q)(1+q)}{4[n]} \leq \frac{3}{2[n]} \tag{2.6}
\end{equation*}
$$

for all integers $n \geq 3$ and all $x \in[0,1]$.
By proceeding like G. M. Phillips [10, in order to obtain a convergent sequence of generalized Meyer-König and Zeller operators, we let $q=q_{n}$ depend on n. More precisely, we choose a sequence $\left(q_{n}\right)_{n \geq 1}$ of real numbers satisfying

$$
\begin{equation*}
1-\frac{1}{n} \leq q_{n}<1, \quad \text { for all } \quad n \geq 1 \tag{2.7}
\end{equation*}
$$

Then we have

$$
1-\frac{r}{n} \leq q_{n}^{r}<1, \quad \text { for all } \quad 1 \leq r \leq n-1,
$$

hence

$$
[n]=1+q_{n}+q_{n}^{2}+\ldots+q_{n}^{n-1} \geq n-\frac{n(n-1)}{2 n}=\frac{n+1}{2} .
$$

Taking into account (2.6) we deduce that

$$
\left\|M_{n, q_{n}} e_{2}-e_{2}\right\| \leq \frac{3}{n+1}
$$

for all $n \geq 3$. Consequently, the sequence $\left(M_{n, q_{n}} e_{2}\right)_{n \geq 1}$ converges uniformly to e_{2} on $[0,1]$. By applying the well-known Bohman-Korovkin theorem, we can conclude that the following theorem hods:

Theorem 2.2. If $\left(q_{n}\right)_{n \geq 1}$ is a sequence of real numbers satisfying (2.7), then for each $f \in C[0,1]$ the sequence $\left(M_{n, q_{n}} f\right)_{n \geq 1}$ converges uniformly to f on $[0,1]$.

Given a function $f:[0,1] \rightarrow \mathbb{R}$ as well as a positive real number δ, let

$$
\omega(f, \delta)=\sup \left\{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|: x_{1}, x_{2} \in[0,1],\left|x_{1}-x_{2}\right| \leq \delta\right\}
$$

denote the usual modulus of continuity of f. From (2.6), by means of Theorem 2.2 in [7], we deduce the following Popoviciu-type theorem for the $M_{n, q \text {-ope- }}$ rators.

Theorem 2.3. If $f \in C[0,1]$, then for each integer $n \geq 3$ we have

$$
\left\|M_{n, q} f-f\right\| \leq \frac{5}{2} \omega\left(f, \frac{1}{\sqrt{[n]}}\right) .
$$

Likewise, from (2.6), by means of Theorem 2.4 in [7], we deduce the following Lorentz-type theorem for the $M_{n, q}$-operators.

Theorem 2.4. If $f \in C^{1}[0,1]$, then for each integer $n \geq 3$ we have

$$
\left\|M_{n, q} f-f\right\| \leq \frac{3+\sqrt{6}}{2 \sqrt{[n]}} \omega\left(f^{\prime}, \frac{1}{\sqrt{[n]}}\right) .
$$

Since the proofs of Theorem 2.3 and Theorem 2.4 are quite similar with those of Corollary 2.3 and Corollary 2.5, respectively, in [7], we omit them.

3. CONVEXITY AND GENERALIZED MEYER-KÖNIG AND ZELLER OPERATORS

For any real sequence a, finite of infinite, we denote by $v(a)$ the number of strict sign changes in a. Given a function $f:[0,1] \rightarrow \mathbb{R}$, let $V(f)$ be the number of sign changes of f in $[0,1]$, i.e.

$$
V(f)=\sup v\left(f\left(x_{1}\right), \ldots, f\left(x_{m}\right)\right)
$$

where the supremum is taken over all increasing sequences $0 \leq x_{1}<\ldots<$ $x_{m} \leq 1$, for all positive integers m.

An operator L assigning to each function $f:[0,1] \rightarrow \mathbb{R}$ the function $L f$: $[0,1] \rightarrow \mathbb{R}$ is said to be a variation diminishing operator (cf. [11) if

$$
V(L f) \leq V(f), \quad \text { for all functions } f:[0,1] \rightarrow \mathbb{R}
$$

Theorem 3.1. For each positive integer n, the generalized Meyer-König and Zeller operator $M_{n, q}$ is a variation diminishing operator.

Proof. By means of the well-known Descartes' rule of signs it is easy to prove that if $a=\left(a_{k}\right)_{k \geq 0}$ is a sequence of real numbers such that the power series $\sum_{k \geq 0} a_{k} x^{k}$ converges uniformly on $[0,1]$ to a function g, then

$$
V(g) \leq v(a) .
$$

Taking this into account we have

$$
\begin{aligned}
V\left(M_{n, q} f\right) & =V\left(\sum_{k=0}^{\infty} f\left(\frac{[k]}{[n+k]}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}\right) \\
& \leq V\left(\left(f\left(\frac{[k]}{[n+k]}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right]\right)_{k \geq 0}\right) \\
& \leq V(f)
\end{aligned}
$$

for all continuous functions $f:[0,1] \rightarrow \mathbb{R}$. This proves the assertion of the theorem.

Remark 3.1. From (1.5) it follows that $V\left(M_{n, q} f\right) \leq V(f)$ for every bounded function $f:[0,1] \rightarrow \mathbb{R}$ for which there exists $\lim _{x \nearrow 1} f(x)$. Taking account of (2.1) and (2.2), by the above theorem we deduce that

$$
\begin{equation*}
V\left(M_{n, q} f-p\right)=V\left(M_{n, q}(f-p)\right) \leq V(f-p) \tag{3.1}
\end{equation*}
$$

for every bounded function $f:[0,1] \rightarrow \mathbb{R}$ for which there exists $\lim _{x \nearrow 1} f(x)$ and every linear polynomial p. A standard reasoning based on (3.1) (see, for instance, [5], [11], [6]) yields the following theorem.

Theorem 3.2. For each positive integer n the following assertions are true:
1^{0} If $f:[0,1] \rightarrow \mathbb{R}$ is an increasing (decreasing) function, then $M_{n, q} f$ is also increasing (decreasing).
2^{0} If $f:[0,1] \rightarrow \mathbb{R}$ is a convex function, then $M_{n, q} f$ is also convex and $M_{n, q} f(x) \geq f(x)$ for all $x \in[0,1]$.

Like in the case of the classical Meyer-König and Zeller operators, we have the following.

Theorem 3.3. If $f:[0,1] \rightarrow \mathbb{R}$ is a convex function, then for each $x \in[0,1]$ the sequence $\left(M_{n, q} f(x)\right)_{n \geq 1}$ is non-increasing.

Proof. The assertion of the theorem being trivially true for $x=1$, we may assume that $0 \leq x<1$. Let n be any positive integer. We have

$$
\begin{aligned}
\frac{M_{n, q} f(x)-M_{n+1, q} f(x)}{P_{n, q}(x)}= & q^{n+1} x \sum_{k=0}^{\infty} f\left(\frac{[k]}{[n+k+1]}\right)\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right] x^{k} \\
& -\sum_{k=1}^{\infty} f\left(\frac{[k]}{[n+k+1]}\right)\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right] x^{k} \\
& +\sum_{k=1}^{\infty} f\left(\frac{[k]}{[n+k]}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} .
\end{aligned}
$$

Using the recurrence formula

$$
\left[\begin{array}{c}
n+k+1 \\
k
\end{array}\right]=q^{n+1}\left[\begin{array}{c}
n+k \\
k-1
\end{array}\right]+\left[\begin{array}{c}
n+k \\
k
\end{array}\right]
$$

in the second sum we get

$$
\begin{aligned}
& \frac{M_{n, q} f(x)-M_{n+1, q} f(x)}{P_{n, q}(x)}= \\
& =x \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}\left\{q^{n+1} \frac{[n+k+1]}{[n+1]} f\left(\frac{[k]}{[n+k+1]}\right)-q^{n+1} \frac{[n+k+1]}{[n+1]} f\left(\frac{[k+1]}{[n+k+2]}\right)\right. \\
& \left.\quad-\frac{[n+k+1]}{[n+1]} f\left(\frac{[k+1]}{[n+k+2]}\right)+\frac{[n+k+1]}{[k+1]} f\left(\frac{[k+1]}{[n+k+1]}\right)\right\} .
\end{aligned}
$$

As a simple computation shows, the expression between the braces equals to

$$
\frac{q^{n+2 k+1}}{[n+k+1][n+k+2]}\left[\frac{[k]}{[n+k+1]}, \frac{[k+1]}{[n+k+2]}, \frac{[k+1]}{[n+k+1]} ; f\right] \geq 0
$$

because f is convex. Consequently, $M_{n, q} f(x) \geq M_{n+1, q} f(x)$.

REFERENCES

[1] Askey, R., Ramanujan's extensions of the Gamma and Beta functions, Amer. Math. Monthly, 87, pp. 346-359, 1980.
[2] Bailey, W. N., Generalized Hypergeometric Series, Hafner, New York, 1972.
[3] Cheney, E. V. and Sharma, A., Bernstein power series, Canad. J. Math., 16, pp. 241-253, 1964. 즈
[4] Cimoca, G. and Lupaş, A., Two generalizations of the Mayer-König and Zeller operator, Mathematica (Cluj), 9 (32), pp. 233-240, 1967.
[5] Goodman, T. N. T., Oruç, H. and Phillips, G.M., Convexity and generalized Bernstein polynomials, Proc. Edinburg Math. Soc., 42, pp. 179-190, 1999. 저
[6] Lorentz, G. G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[7] Lupaş, A. and Müller, M. W., Approximation properties of the M_{n}-operators, Aequationes Math., 5, pp. 19-37, 1970. 즈
[8] Meyer-König, W. and Zeller, K., Bernsteinsche Potenzreihen, Studia Math., 19, pp. 89-94, 1960.
[9] Oruç, H., Phillips, G.M. and Davis, P.J., A generalization of the Bernstein polynomials, Proc. Edinburg Math. Soc., 42, pp. 403-413, 1999. [^
[10] Phillips, G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 4, pp. 511-518, 1997.
[11] Schoenberg, I. J., On variation diminishing approximation methods, in On Numerical Approximation, R. E. Langer (editor), Madison, pp. 249-274, 1959.

Received September 2, 1999.
"Babeş Bolyai" University
Faculty of Mathematics and Computer Science
1, M. Kogălniceanu St.
3400 Cluj-Napoca, Romania
E-mail: ttrif@math.ubbcluj.ro

Added in proof. After the paper had been sent to the typography, the author found out that the sequence of generalized Meyer-König and Zeller operators considered here, had already been introduced and investigated by Luciana Lupaş, A q-analogue of the Meyer-König and Zeller operator, Anal. Univ. Oradea, 2, pp. 62-66, 1992. Thus, part of the results in the present paper (Theorem 2.2 and Theorem 3.3) were established for the first time in the previously quoted article by Luciana Lupaş.

[^0]: 1991 AMS Subject Classification: 41A36, 41A25.

