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MEYER-KONIG AND ZELLER OPERATORS
BASED ON THE ¢-INTEGERS

TIBERIU TRIF

Abstract. By means of the g-integers as well as of the Gaussian binomial coef-
ficients we introduce a generalization of the Meyer-Konig and Zeller operators.
For a fixed number ¢ € ]0, 1], the sequence of the generalized Meyer-Konig and
Zeller operators is denoted by (M q),,~, - Both a theorem on convergence and a
Popoviciu type theorem on the rate of convergence are proved. It is shown that
if f is increasing, then M, 4 f is also increasing, while if f is convex, then M, 4 f
is also convex and M, f > f, generalizing known results when ¢ = 1. Likewise,
it is shown that if f is convex, then the sequence (M, qf),~; is non-increasing
as in the case of the classical M, -operators. B

1. INTRODUCTION

Let ¢ be a number belonging to the interval ]0, 1] (throughout the paper ¢
will always have this meaning). For each non-negative integer k, the g-integer
[k] is defined by

L i g Al
[k] =
k, if ¢=1,

while the g-factorial [£]! is defined by
[k]-[k—1]---[1], if k>1
4]t =
1, if k=0.

By means of the g-factorial, the Gaussian binomial coefficients are defined by

for all integers n > k > 0.
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It is easily seen that the Gaussian binomial coefficients satisfy the recurrence
relations

5 = L)+
and
[ =)+

for all integers n > k > 1.

Based on the g¢-integers and on the Gaussian binomial coefficients G.M.
Phillips [I0] proposed the following generalization of the classical Bernstein
operators: for each positive integer n let B,, : C'[0,1] — C'[0,1] be the
operator defined by

n qf Z f( ) jﬁol (1 — QjZL') 5

where an empty product denotes 1. For ¢ = 1, B, 1 reduces to the classical
Bernstein operator B, : C'[0,1] — C'[0, 1]

Zf( ) (1 —z)" k.

Approximation properties of these generalized Bernstein operators, which are
quite similar with those of the classical Bernstein operators, were investigated
in [5], [9], and [10].

Starting from the power series expansion

o0
(1.1) W = ("hat, 0<z<1,
k=0

W. Meyer-Konig and K. Zeller [§] introduced the sequence (My),,>; of linear
positive operators M, : C'[0,1] — C'[0, 1] defined by

My f () = —”“Zf DO, 0<a <,

Mnf (1) = f(1).

For approximation properties of the M, -operators the reader is referred to [3]
and [7].
The g-generalization of (|1.1]) is the following power series expansion:

oo

(1.2) b S MR, 0<az<l
I1 (1—¢z) k=0
7=0
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Simple proofs of (1.2) can be found in [I] and [2]. Starting from (1.2)) we
introduce the sequence (M, 4), -, of linear positive operators M, , : C'[0,1] —
C'[0, 1] defined by

(1'3) ,qf = Zf([n—i-k]) n+k , 0<x <1,
(1.4) Myqf (1) = f(1),
where

:ﬁ<1—qjx>.

=0
It is easy to check (see [8]) that

for all f e C[0,1], so My, is well-defined for each positive integer n. In fact
M, f can be defined by (1.3]) for each bounded function f : [0,1] — R. If in
addition there exists lifml f(z) =1, then li/rri My, of (x) = [. In this case lb

must be replaced by

(1.5 Mgf (1) = i £ (@).

In analogy with the terminology used in [I0], in what follows we will call the
M, 4-operators generalized Meyer-Konig and Zeller operators.

It is the main purpose of this paper to investigate the approximation prop-
erties of the above introduced operators.

2. THE ORDER OF APPROXIMATION BY GENERALIZED MEYER-KONIG AND
ZELLER OPERATORS

For each nonnegative integer i let e; denote the monomial e; () = z°.

LEMMA 2.1. For all integers n > 3 and all x € [0,1] the following relations
are valid:

(2.1) My 4e0 (z) = 1,
(2.2) M, q4e1 (z) = =,
(2.3) My gz () = 27 + =PI R (),
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where
n—1
(2.4) 0 < Rug (2) < piofpgzr (1 —2) (1 - q2) (1 - ¢"x).

Proof. Relation (2.1)) is just (1.2)), while relation (2.2]) follows immediately
from (|1.2]) taking into account that

k] pntk) _ ntk—1
(25) o [E] = ]
for all positive integers n and k.
To prove ([2.3)—(2.4) we fix an integer n > 3 as well as a number = € [0,1]
((2.3)—(2.4) are trivially true for x = 1). Taking into account (2.5) we get

o0
k] n+k 1
M g€ (z Z TE]
k=1
o~ [ker1]
+1 n+k
= 2P ( Z n+k+1
k=0

On the other hand, (|1.2)) yields

o0
62( _:Bpnq Z TL+I€ 1
k=1

Consequently

z Py g\T — k n n —
My geo (z) —a? = [n-’u(]) +aPog(r) ) ([nuc_ﬂu[ 2= ?:gl]) z”.

k=1
By a simple computation
[k+1] [n—i-k] . [n—i-k:—l} g [n-‘rk—l]
[n+k+1] k=1 1 7 ntk+1 L & D
SO
[e¢] & k
2 -1
My g€z (x) = 2" 4+ 2P g (2) Z [nfkﬂ} [n+k ]xk
2 Py q(x) k [n+k— 1] +k—2
=27+ Z [n+k+1] Tt
Since

[ntk—1] _ 4 [2)g"tht
[n¥k+1] — = [n¥k+1]
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we get

My ges (z) = 2? + 22el 3™ (M2 (o)
k=0

2q" 1Py q(x d n+k— k
- B2 Ra@ N o ) (P0)”

Relation (1.2)) ensures that

. n+k— k 1-z)(1—q"x
Z [ +k 2] (q2)" = 7= : , = P,)fq(xc)l )7
k=0 [T (1-¢-qx)
§=0
hence
M, e () = 2% + 735(1_[”2(_11?%) — R q(2),
where
n—lg n,q (T = ntk— k
0 < Fing (@) = BERER 3 mbeg [0 (0P)
k=0
2]q" " La Py 4 (x — n+k—2 k
< B =) = e ] (@)
2]q" 1a Py q(x S ntk— k
= e X 1 @)
_ [2¢" P g(2) 1
[n—1][n—2] n—3 S,
I1(1-¢ ¢
j=0
n—1
= g (1= 2) (1 —q2) (1 = ")
The completes the proof of (2.3)—(2.4]). O
From (2.4) it follows that R, ,(xz) — 0 as n — oo for all z € [0,1]. On the
order hand, for 0 < ¢ < 1 we have [n — 1] —>1—q as n — 00, SO
My gea () = 2+ 2 (1 —2) (1 — q), as n — oo.

Hence (M 4e2),,~, does not converge to ez. However, the following estimation
turns out to be very useful in what follows:

z(l—x)(1—q"x 2lg" lz(1—=)(1—qz) (1—¢"z
My ges (2)—es (2) | < 20=0"0) | 120" 200 qn) (g
<. 2 _ 2tq. In]

Tt T AT = A e
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and since
[n[:l}l] = 1:1:%: <1l+gq,
we finally get
(2.6) | M ge2 () — €2 (z) | < % < 3

for all integers n > 3 and all x € [0,1].

By proceeding like G. M. Phillips [I0], in order to obtain a convergent
sequence of generalized Meyer-Konig and Zeller operators, we let ¢ = ¢,
depend on n. More precisely, we choose a sequence (gy),~; of real numbers
satisfying B

(2.7) 1-1<g, <1, forall n>1
Then we have
1--<gq,<1, forall 1<r<n-—1,
hence
] =14qgn+@@+...+q >0 200 - ntl,
Taking into account (2.6)) we deduce that

1M g, 02 — €2l < 735

for all n > 3. Consequently, the sequence (Mp, g4, €2),~, converges uniformly to
ez on [0,1]. By applying the well-known Bohman-Korovkin theorem, we can
conclude that the following theorem hods:

THEOREM 2.2. If (¢n),>; is a sequence of real numbers satisfying (2.7),
then for each f € C[0,1] the sequence (My. g, f),~, converges uniformly to f
on [0,1]. -

Given a function f : [0,1] — R as well as a positive real number §, let
w(f,0) =sup{|f(z1) — f(x2)] : 21,22 € [0,1], |21 — 22| < &}

denote the usual modulus of continuity of f. From ({2.6]), by means of Theorem
2.2 in [7], we deduce the following Popoviciu-type theorem for the M, 4-ope-
rators.

THEOREM 2.3. If f € C'[0,1], then for each integer n > 3 we have
_ 5} 1
My f — fIl < Qw(f7 \/m)

Likewise, from ({2.6]), by means of Theorem 2.4 in [7], we deduce the following
Lorentz-type theorem for the M, ;,-operators.
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THEOREM 2.4. If f € C1[0,1], then for each integer n > 3 we have

. 3+6 71
Hanqf fl < 2\/mw<f ) \/m)

Since the proofs of Theorem [2.3] and Theorem [2.4] are quite similar with
those of Corollary 2.3 and Corollary 2.5, respectively, in [7], we omit them.

3. CONVEXITY AND GENERALIZED MEYER-KONIG AND ZELLER OPERATORS

For any real sequence a, finite of infinite, we denote by v (a) the number
of strict sign changes in a. Given a function f : [0,1] — R, let V (f) be the
number of sign changes of f in [0,1], i.e.

V(f):Supv(f(:l:l)""af(mm))

where the supremum is taken over all increasing sequences 0 < 1 < ... <
Tm < 1, for all positive integers m.

An operator L assigning to each function f : [0,1] — R the function Lf :
[0,1] — R is said to be a variation diminishing operator (cf. [I1]) if

V(Lf) <V (f), for all functions f:[0,1] — R.

THEOREM 3.1. For each positive integer n, the generalized Meyer-Konig
and Zeller operator M, 4 is a variation diminishing operator.

Proof. By means of the well-known Descartes’ rule of signs it is easy to
prove that if a = (ax),~, is a sequence of real numbers such that the power

series ) x> apx® converges uniformly on [0, 1] to a function g, then

V(g) <wvla).

Taking this into account we have

V(Mpof) =V <,§f () (4] xk)
< V( f(ism) [nm)kzo)
<V(f)

for all continuous functions f : [0,1] — R. This proves the assertion of the
theorem. O
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REMARK 3.1. From it follows that V (M, ,f) < V (f) for every
bounded function f : [0, 1] — R for which there exists hmx 1 f (z). Taking
account of . and . ), by the above theorem we deduce that

(3.1) V(Mn,qf -p)= V(Mn,q (f—=p)<V(f-p)

for every bounded function f : [0,1] — R for which there exists lim, ~ f ()
and every linear polynomial p. A standard reasoning based on (3.1]) (see, for
instance, [5], [11], [6]) yields the following theorem. O

THEOREM 3.2. For each positive integer n the following assertions are true:

19 If f : [0,1] — R 4s an increasing (decreasing) function, then My ,f is
also increasing (decreasing).
20 If £ : [0,1] = R is a convex function, then M, ,f is also conver and

My qof () > f(2) for all z € ]0,1].

Like in the case of the classical Meyer-Konig and Zeller operators, we have
the following.

THEOREM 3.3. If f : [0,1] — R is a convex function, then for each x € [0, 1]
the sequence (My qf (x)),~, 95 non-increasing.

Proof. The assertion of the theorem being trivially true for x = 1, we may
assume that 0 < x < 1. Let n be any positive integer. We have

Mnol (& 1)31;( W)AFLQf Z f ( n+k+l]> [
N Zf([m[z]ﬂ]) MQH]-T]‘:
-

£ 55 (ol 10
k=1

Using the recurrence formula

[nHin] n+1 [n—s—k} + [n—i—k]

=4q k-1 k

in the second sum we get

Maof (@) = Mygrgf (z) _
Poq (2)

= n+k n n+k+1 n n+k+1 k41
:"EZ[ ;er ]xk{ +1l :+J1r]]f(n+k+1]> q +1[[Z+Jlr]}f<[n[+z_£2])

_ [ntk41] k+1] [n+k+1] [k+1]
] ([n+k+2 ) + S ([n+k+l]> }
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As a simple computation shows, the expression between the braces equals

to

nt2k+1 (k] [k+1] [k+1] .
[n+lg+1][n+k+2] In+k+1]° [n+k+2]° [n+k+1]° f} >0

because f is convex. Consequently, My, ,f () > Myt1,4f (x). O

(1]

[10]

[11]
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Added in proof. After the paper had been sent to the typography, the
author found out that the sequence of generalized Meyer-Konig and Zeller
operators considered here, had already been introduced and investigated by
Luciana Lupas, A q-analogue of the Meyer-Konig and Zeller operator, Anal.
Univ. Oradea, 2, pp. 62-66, 1992. Thus, part of the results in the present
paper (Theorem 2.2 and Theorem 3.3) were established for the first time in
the previously quoted article by Luciana Lupas.


http://dx.doi.org/10.4153/CJM-1964-023-1
http://dx.doi.org/10.4153/CJM-1964-023-1
http://dx.doi.org/10.1017/S0013091500020101
http://dx.doi.org/10.1017/S0013091500020101
http://dx.doi.org/10.1007/BF01819267
http://dx.doi.org/10.1007/BF01819267
http://dx.doi.org/10.1017/S0013091500020332
http://dx.doi.org/10.1017/S0013091500020332

	1. Introduction
	2. The order of Approximation by Generalized Meyer-König and Zeller operators
	3. Convexity and generalized Meyer-König and Zeller operators
	References

