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A NOTE ON THE QUADRATIC CONVERGENCE
OF THE INEXACT NEWTON METHODS∗

EMIL CĂTINAŞ

Abstract. We show that a new sufficient condition for the convergence with
q-order two of the inexact Newton iterates may be obtained by considering the
normwise backward error of the approximate steps and a result on perturbed
Newton methods.

This condition is in fact equivalent to the characterization given by Dembo,
Eisenstat and Steihaug.
AMS Subject Classification: 65H10.

1. INTRODUCTION

The inexact Newton (IN) method is given by the algorithm

Choose an initial approximation y0 ∈ D
For k = 0, 1, . . . until ”convergence” do

Find sk such that F ′ (yk) sk = −F (yk) + rk

Set yk+1 = yk + sk,

and it constitutes a classical model for the practical solving of nonlinear sys-
tems F (y) = 0 by the Newton method, where F : D ⊆ Rn → Rn. The error
terms (the residuals) rk represent the amounts by which the approximate so-
lutions sk fail to satisfy the exact linear systems F ′ (yk) s = −F (yk).

Under certain conditions, the IN iterates converge to a solution y∗ of the
mentioned nonlinear system, the convergence order being given by the mag-
nitude of the residuals (see [9]).

We are interested in the high convergence orders of the iterates, namely in
the convergence with q-order two (for the definitions of the convergence orders
see [13, ch.9], and also [16], [15]). The (standard) assumptions on F for this
case are the following:

- there exists y∗ ∈ D such that F (y∗) = 0;
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- the mapping F is differentiable on a neighborhood of y∗, with the
derivative F ′ Lipschitz continuous at y∗:1∥∥F ′ (y)− F ′ (y∗)

∥∥ ≤ L ‖y − y∗‖ , for some L ≥ 0, when ‖y − y∗‖ < ε;

- the Jacobian F ′ (y∗) is nonsingular.
Dembo, Eisenstat and Steihaug proved the following result.

Theorem 1. [9] Suppose that F obeys the standard assumptions and that
for some initial approximation y0 ∈ D, the sequence (yk)k≥0 given by the IN
method converges to y∗. Then its q-convergence order is at least two if and
only if ‖rk‖ = O(‖F (yk)‖2) as k →∞, or, equivalently,

(1) ‖rk‖
‖F (yk)‖ = O (‖F (yk)‖) , as k →∞.

In our recent paper [1] (see also [3]) we have introduced the inexact per-
turbed Newton methods, characterizing their convergence orders in terms of
perturbations and residuals. In the following analysis we shall consider the
perturbed Newton (PN) iterates:(

F ′ (yk) + ∆k

)
sk = −F (yk) + δk

yk+1 = yk + sk, k = 0, 1, . . . , y0 ∈ D.

The matrices ∆k and the vectors δk are some arbitrary perturbations to
the linear systems F ′ (yk) s = −F (yk) , the perturbed linear systems being
verified by the exact solutions sk (it is implicitely assumed that the perturbed
Jacobians F ′ (yk) + ∆k are invertible for k = 0, 1, . . .). We have obtained the
following result: 2

Corollary 2. [1], [8] Suppose that F obeys the standard assumptions and
that for some initial approximation y0 ∈ D, the sequence (yk)k≥0 given by the
PN method is well defined and converges to y∗. If

‖∆k‖ = O (‖F (yk)‖) and ‖δk‖ = O(‖F (yk)‖2), as k →∞,

then (yk)k≥0 converges with q-order at least two.

In the following section we shall show that the sufficient condition (1) may
be expressed in an equivalent form.

1We shall use the symbols ‖·‖ and ‖·‖2 for an arbitrary, resp. for the Euclidean norm on
Rn, and for their induced operator norms.

2The same result can be found in [8]; we have obtained independently this Corollary in
the manuscript of [1], before [8] was published.
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2. MAIN RESULT

Let A ∈ Rn×n be a nonsingular matrix, b ∈ Rn an arbitrary vector, and
consider an approximate solution x̃ ∈ Rn of the linear system Ax = b. The
normwise backward error of x̃ was introduced by Rigal and Gaches [17] and
is defined by:

Π (x̃) = min {ε : (A+ ∆A) x̃ = b+ ∆b, ‖∆A‖F ≤ ε ‖E‖F , ‖∆b‖2 ≤ ε ‖f‖2} ,

where the parameters E ∈ Rn×n and f ∈ Rn are arbitrary, and ‖·‖F denotes

the Frobenius norm: ‖Z‖F =
( ∑

i,j=1,...,n
z2

ij

)1/2
. The value of Π (x̃) is

Π (x̃) = ‖b−Ax̃‖2
‖E‖F · ‖x̃‖2 + ‖f‖2

,

and the minimum is attained by the backward errors

∆A = ‖E‖F · ‖x̃‖2
‖E‖F · ‖x̃‖2 + ‖f‖2

(b−Ax̃) zt, with z = 1
‖x̃‖2

2
x̃,

∆b = − ‖f‖2
‖E‖F · ‖x̃‖2 + ‖f‖2

(b−Ax̃) .

With these relations we can prove the following result.

Theorem 3. Suppose that F obeys the standard assumptions and that for
some initial approximation y0 ∈ D, the sequence (yk)k≥0 given by the IN
method converges to y∗. If

(2) ‖rk‖2
‖sk‖2 + ‖F (yk)‖2

= O (‖F (yk)‖2) , as k →∞,

then the iterates converge with q-order at least two.

Proof. For each k, consider the normwise backward errors of the approxi-
mate steps sk, choosing the parameters E and f such that ‖E‖F = ‖F (yk)‖2
and ‖f‖2 = ‖F (yk)‖22 . Corollary 2 and the inequality ‖Z‖2 ≤ ‖Z‖F , true for
all Z∈ Rn×n (cf., e.g., [11]), lead to the stated result, provided that the ε’s are
uniformly bounded. This condition is written as

Π (sk) = ‖rk‖2
‖sk‖2 · ‖F (yk)‖2 + ‖F (yk)‖22

≤ K, for some fixed K > 0,

which is exactly relation (2). �

Remarks. 1. Condition (2) is in fact equivalent to condition (1). Indeed,
Theorem 3 shows that relation (2) implies the quadratic convergence. For the
converse, assuming that the IN iterates converge quadratically, we notice that

‖rk‖2
‖sk‖2 + ‖F (yk)‖2

≤ ‖rk‖2
‖F (yk)‖2

≤ K ‖F (yk)‖2 , k = 0, 1, . . . ,
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which shows that quadratic convergence implies (2) (the right inequality above
is ensured by Theorem 1).

2. It is easy to prove that the Euclidean norm from (2) may be replaced by
an arbitrary norm on Rn, since all norms are equivalent on a finite dimensional
normed space.

3. Condition (2) has been obtained in a natural fashion by considering
the normwise backward errors of the approximate steps. One can also obtain
it taking into account that under the standard assumptions, the sequences
(yk − y∗)k≥0 and (sk)k≥0 converge quadratically to zero only at the same time,
with limk→∞ ‖yk − y∗‖ / ‖yk+1 − yk‖ = 1 (see [18]). The same situation ap-
pears concerning (yk − y∗)k≥0 and (F (yk))k≥0, since the standard assumptions
ensure that there exists α > 0 such that ‖y − y∗‖ /α ≤ ‖F (y)‖ ≤ α ‖y − y∗‖
when y is sufficiently close to y∗ (see [9]). �
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