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A UNIFIED TREATMENT OF BOUNDARY LAYER AND
LUBRICATION APPROXIMATIONS IN VISCOUS FLUID
MECHANICS

CALIN IOAN GHEORGHIU

Abstract. It is a matter of every day experience to find the boundary layer and
lubrication approximations exposed as if they had nothing in common. It is the aim of
this note to show that, in fact, they come from the Navier-Stokes system and that they
correspond to some distinguished limits of the Reynolds number.
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1. INTRODUCTION

lot of literature does exist concerning the concepts of viscous flows in
boundary layers and in thin layers (films). Sometimes, a rather confusing
situation may occur when people try to consider flows such that viscous effects
are important in thin layers. One could ask: what is the ground on which it ig
possible to choose between these two approximatons? Only the conventional
wisdom or empirical data?

It is the goal of this approach to underline the idea, that boundary layer
approximation and lubrication approximation, called also thin layer (film)
theory, correspond to two distinguished limits of Reynolds number in Navier-
Stokes system, provided that, the thickness & of boundary layer and thin layer
are comparable (have the same order of magnitude).

We will use the method of dominant balance in order to reach these
distinguished limits. The method is available in the important work of Bender
& Orszag [2]. A lot of results obtained using this method are scattered in a
huge number of articles and in some books devoted to the so-called applied
mathematics. We refer here to Lin and Segel [9], Fowkes and Mahony [3] and
Fowler [4], to quote but a few.

There are also many books on fluid mechanics which pay attention to
these concepts.

AMS Classification Scheme 2000: 76A20, 76D08, 76D10, 76Mb5.



136 Célin Ioan Gheorghiu 2

The book of Schlichting [12] is a classic and voluminous engineering ap-
proach to boundary layer theory. In the Romanian literature the same is
Oroveanu [11].

For the lubrication theory we should mention the book of Acheson [1],
which is a nice introduction not only in this topic, and the book of Ockendon
and Ockendon [10] which is a short gloss with some novel applications and
insights.

2. BOUNDARY LAYER APPROXIMATION VS. LUBRICATION
APPROXIMATION

If a typical flow velocity is U, and a typical flow geometry is of dimension
[, then if we nondimensionalize the variables as follows:

u~U, x~l,p—poo~pﬁ2,t~l/U

Le. write u = Uux, etc., substitute in Navier-Stokes system and drop asterisks,
we get

(1) V-u=09,

1
ut+(u-V)u=—Vp+§~V2u.

The dimensionless parameter Re is Re = Ul/v, and the sign ~ stands for
asymptotic equivalent.

Here p, is an ambient pressure, for example, at infinity.

Let us consider now a more specific situation, namely a two dimensional
configuration, where the transverse y length scale, denoted d, relative to the
longitudinal 2 one, denoted | ; is small. The fluid to be taken into account is
viscous and incompressible. Let us denote by e the aspect ratio, i.e. € := §/I,
and consider 0 < ¢ < 1.

We have to remark that from the mathematical point view the parameter
€ has an asymptotic meaning.

With respect to the boundary layer concept, a lot of empirical (experi-
mental) as well as numerical estimations for ¢ are available.

Lubrication approximation, on the other hand, is frequently used in
physico-chemical hydrodynamics. It is typical there, that the thickness § of
layers where viscous effects are important is small compared to the dimension
of the bulk flow. It is well suited to quote here, beyond the classics Levich 18],
or Landau and Lifshitz [7] (Ch.VII, Surface phenomena), our contributions
[5], [6] where flows driven by surface tension gradients are considered and the
recent study of Wilson, Davis and Bankoff [13].
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Thus, if we rescale the Navier-Stokes system (1) by writing

(2) y~e v~e, p~1/e?Re
with u= (u,v), these equations become:

Uz + uy =0,
(3) e*Re (du/dt) = —p, + Uyy + €2ugy,

£'Re (du/dt) = —py + € (v + £20,,) .

Consequently, if Reynolds number does not exceed a quantity of order 0

(l)a the system (3) leads to Reynolds’ equations of lubrication theory, which
€

determines the flow solution given 6 and a flow rate (flux) (see for example
Fowler [4], Ch. 6, Viscous flow).

1
If Reynolds number becomes larger, more exactly, Re = 0 =) the
same system (3) produces the boundary layer equations, i.e.

(4) eyt S O
Ul + VUg = Uyy + U - U,

where U(z) := u(z, co).

It is now clear that the two distinguished limits of Reynolds number cor-
responding to lubrication approximation and boundary layer approximation
are respectively 1/e and 1/¢2.

It is also worth noting that, the only way the second equation in (3) will
not reduce to a triviality as € — 0 is the case when the pressure is rescaled Witl}
1/e2. This is why in (3) we choose the scale 1/e2Re for pressure. With this
rescaling the pressure field becomes p = 0(1) in boundary layer approximation
and p = 0(1/e), 0 < e <« 1 in lubrication approximation.

3. CONCLUDING REMARKS

The above discussion is independent with respect to various boundary
conditions that would be specified for boundary layer equations (4) or lubrica-
tion equations. A no-slip boundary condition on a solid boundary is common
for both approximations. In the first one, conditions for velocity and pressure
away from the solid boundary and in the later, shear stress conditions, kine-
matic boundary conditions or even Navier slip conditions on interfaces, are to
be imposed to close the differential system.

Unfortunately, our analysis restricts itself to two dimensional flows.

Last but not least, we have to observe that lubrication theory is a linear
one, or in other words, even at high Reynolds numbers, when the flow is
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shallow, the inertia (convective) terms are negligible. For higher Reynolds
numbers, the boundary layer system remains essentially nonlinear.
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