
REVUE D’ANALYSE NUMÉRIQUE ET DE THÉORIE DE L’APPROXIMATION
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ON THE NUMERICAL EVALUATION
OF CERTAIN 2-D SINGULAR INTEGRALS

LAURA GORI, LAURA LO CASCIO and ELISABETTA SANTI

Abstract. The problem of approximating certain two-dimensional Cauchy prin-
cipal value integrals is here considered, product integration formulas with multi-
ple nodes are presented and the behaviour of the remainder is analyzed. Next a
particular class of cubature rules is generated, having the peculiar property that
the set of the nodes holds fixed while their multiplicities vary. Some numerical
examples of application of the latter rules are also provided.
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1. INTRODUCTION

It is well known that the numerical evaluation of the following two-dimensional
Cauchy principal value (CPV) integrals

(1) I(Wf ; ξ, η) = −
∫ 1

−1
−
∫ 1

−1
W (x, y) f(x,y)

(x−ξ) (y−η) dx dy, |ξ| < 1, |η| < 1

is of interest in many applications; the approaches for approximating (1) are
of two types: local and global. Local methods based on the use of splines have
been considered, for instance in [2]; they are suitable, in particular, when f is
not smooth, while, when f is differentiable, global methods are probably to
be preferred. In this concern, product formulas based on the use of orthogonal
polynomials have been proposed (see, for instance, [8], [10]); it is the case of
formulas having the form

−
∫ 1

−1
−
∫ 1

−1
p1 (x) p2 (y) f(x,y)

(x−ξ) (y−η) dx dy
∼=

m∑
i=1

n∑
j=1

Cij(ξ, η) f(xi, yj)(2)

:= Qm,n(f ; ξ, η) .
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Here p1 and p2 are Jacobi weight functions, the rules are of interpolatory
type, {xi}mi=1 , {yj}

n
j=1 are the zeros of orthogonal polynomials relative to p1

and p2 respectively, or of Chebyshev polynomials of the first or second kind.
The question of the convergence of {Qm,n(f ; ξ, η)} for m, n diverging, was

also dealt with in the quoted papers. Yet, very few numerical examples for
the evaluation of (2) are provided in the literature, while one of the goals of
this paper is to provide several numerical tests showing the behaviour of the
cubature rules here proposed.

One of the difficulties which occur in handling (2), is due to the fact that
an augment of the precision degree in (1) requires to increase the number
of the nodes: this implies a twofold disadvantage, because not only all the
nodes must be evaluated again, but also numerical cancellation may occur
due to the decreasing of mini |xi − ξ| and/or minj |yj − η|, although the case
xi 6= ξ, yj 6= η, i = 1, ...,m, j = 1, ..., n is always assumed to hold.

Another general approach, which enables one to increase the precision de-
gree of an integration rule, amounts to construct formulas of Turán type, that
is having multiple nodes with odd multiplicities, say 2s + 1; in which case a
higher precision is attainable by a higher multiciplity of the nodes. The use
of Turán quadrature rules for approximating one-dimensional CPV integrals
has been developed in [7]. However, also in the case of rules based on multiple
nodes, a change in the multiplicity generally implies a change of the zeros
of the s-orthogonal polynomials involved in the construction; thus, the just
mentioned computational problems may occur, as well.

For this reason the introduction of formulas with multiple nodes assumes
a particular value in those cases in which the nodes are independent of the
multiplicity, so that the computational problems quoted before can be avoided
and the corresponding formulas are really effective.

In this context, are crucial some results concerning an invariance property
of some classes of s-orthogonal polynomials, which are briefly summarized in
Section 2. In Section 3, a general cubature rule for approximating the two-
dimensional CPV integrals (1) is given and an expression of the remainder is
provided. In Section 4, the results of [6] are exploited in order to construct
certain formulas such that the cubature sum and the remainder have partic-
ularly interesting features, which, among other things, allow one to deduce
the asymptotic behaviour of the remainder. Finally, Section 5 is devoted to
the development of some examples, which put in evidence the good numerical
performances of the integration formulas based on the zeros of s-orthogonal
polynomials enjoying a “s-invariance” property.
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2. PRELIMINARIES

We recall that, given on the real line, an interval A, finite or infinite, a
weight function w, satisfying the condition w(x) ≥ 0, ∀x ∈ A and such that
all the moments

mi =
∫
A

w(x) xi dx, i = 0, 1, 2 . . .

exist finite (in particular m0 > 0), and given a nonnegative integer s, the
monic polynomials of the sequence {Pms (w; •)}m∈N , Pms ∈ Pm (N is the set of
natural numbers and Pm denotes the set of algebraic polynomials of degree m)
are said to be s-orthogonal in A with respect to w, if they are the polynomials
minimizing the w-weighted L2s+2 norm [4, pg. 75], i.e.∫

A

w(x) [Pms(w;x)]2s+2 dx = minimum.

This minimization leads to the conditions∫
A

w(x)xk [Pms(w;x)]2s+2 dx = 0, k = 0, 1, . . . ,m− 1;

every Pms has m zeros {xsi}
m
i=1 real and simple in the interior of A.

A well known result of Bernstein [3] shows that, when w is the Chebyshev
weight function of the first kind, the polynomials of minimal weighted Lp
norm, for any p ∈ [1,+∞), are the corresponding Chebyshev polynomials

{Tm (x) = cosm (arccos x)}m∈N ;

this means that the sequence of s-orthogonal polynomials is independent of s.
More recently, some other cases of invariance with respect to s have been

considered in [5] and [6]. In [5] it was introduced a particular class of weight
functions wµ, depending on a real parameter µ > −1 such that the polynomials
of second degree, s-orthogonal in [−1, 1] with respect to wµ, are invariant for
any s and any µ. In [6], this result was extended to polynomials of any degree
n, identifying a wide class Wn of weight functions, enjoying an analogous
invariance property.

This class, containing in particular the weight functions wµ, is characterized
as follows: let w∞ denote the Chebyshev weight function of the first kind; a
weight function wn is said to belong to Wn if it fulfills the relation

wn (x)
w∞ (x) =

∞∑
l=0

ρlT2nl (x) .
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In fact, in [6] it was proved that, for any given n and any wn ∈ Wn, the
polynomial Tn satisfies the following condition

min
pn−1∈Pn−1

{∫ 1

−1
wn (x) |Tn (x)− pn−1 (x)|γ dx, pn−1 ∈ Pn−1

}
=

=
∫ 1

−1
wn (x) |Tn (x)|γ dx

where γ ∈ <, γ ≥ 1. Thus, assuming γ = 2s + 2, it turns out that Tn is
s-orthogonal in [−1, 1] with respect to wn, independent of s.

A subset Wn,µ of Wn is provided by the functions wn,µ defined by:

(3) wn,µ (x) =
∣∣∣Un−1(x)

n

∣∣∣2µ+1 (
1− x2

)µ
, x ∈ [−1, 1] , µ > −1,

where Uk (x) = sin[(k+1) arccos x]√
1−x2 is the Chebyshev polynomial of the second

kind.
We observe that all the weight functions in Wn,µ are generalized smooth

Jacobi weights [9], and assuming µ = −1
2 one finds out the mentioned result

of Bernstein.

3. THE TURÁN TYPE INTEGRATION RULES FOR 2-D CPV INTEGRALS

Let us recall that the general quadrature rule of Turán type is given by

∫ 1

−1
p (x)F (x) dx =

m∑
i=1

2s∑
h=0

AhiF
(h)
(
x

(s)
i

)
+ rs (F )(4)

:= Qms (F ) + rs (F )

where
{
x

(s)
i

}m
i=1

are the zeros of the m-th degree polynomials Pms(p;x), monic,
s-orthogonal with respect to p.

Moreover, we use the notation below for the one-dimensional CPV integral:

(5) I (pf ; ζ) = −
∫ 1

−1
p (x) f(x)

x−ζ dx;

subtracting out the singularity one has:

I (pf ; ζ) =
∫ 1

−1
p (x) f(x)−f(ζ)

x−ζ dx+ f(ζ) −
∫ 1

−1

p(x)
x−ζ dx

and applying (4) to the first integral in the right hand side, yields [7]
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(6) −
∫ 1

−1
p (x) f(x)

x−ζ dx = f(ζ)Cs(ζ) +
m∑
i=1

2s∑
h=0

Bhif
(h)
(
x

(s)
i

)
+ es (f)

where

Cs(ζ) = −
∫ 1

−1

p(x)
x−ζ dx−Qms

(
1

x−ζ

)
Bhi =

2s∑
k=h

(−1)k−h
(k
h

) (k−h)!(
x

(s)
i −ζ

)k−h+1Aki

es(f) = rs
(
f(x)−f(ζ)

x−ζ

)
.

In particular, it has been proved in [7], that if f ∈ CM+1 [−1, 1] ,M =
m (2s+ 2), then

(7) es (f) = fM+1(x̃)
(M+1)!

∫ 1

−1
p (x) [Pms (p;x)]2s+2 dx, x̃ ∈ (−1, 1) .

Now, considering the two-dimensional CPV integral (1) where W (x, y) =
p1(x)p2(y), and applying a product of quadrature rules (6), we have the general
integration rule for approximating (1):

I (Wf ; ξ, η) =
2s∑
h=0

m∑
i=1

2s∑
k=0

n∑
j=1

B
(1)
hi B

(2)
kj f

k
h

(
x

(s)
i , y

(s)
j

)(8)

+ C1 (ξ)
2s∑
k=0

n∑
j=1

B
(2)
kj f

0
k

(
ξ, y

(s)
j

)
+ C2 (η)

2s∑
h=0

m∑
i=1

B
(1)
hi f

h
0

(
x

(s)
i , η

)
+ C1 (ξ)C2 (η) f (ξ, η) + Es (f)

where fkh = ∂h+kf
∂xh∂yk

and

B
(1)
hi =

2s∑
p=h

(p
h

) (
Dp−h 1

x−ξ

)
x=xi

A
(1)
pi ,

B
(2)
kj =

2s∑
q=k

(q
k

) (
Dq−k 1

y−η

)
y=yj

A
(2)
qj ,

C1 (ξ) = −
∫ 1

−1

p1(x)dx
x−ξ −

2s∑
h=0

m∑
i=1

A
(1)
hi

(
Dh 1

x−ξ

)
x=xi

,

C2 (η) = −
∫ 1

−1

p2(y)dy
y−η −

2s∑
k=0

n∑
j=1

A
(2)
kj

(
Dk 1

y−η

)
y=yj

.

Here
{
x

(s)
i

}m
i=1

,
{
y

(s)
j

}n
j=1

are the zeros respectively of the s-orthogonal

polynomials Pms (p1;x) and Pns (p2; y); A(1)
•i and A

(2)
•j are the coefficients of
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the Turán type quadrature formulas related to the weights p1 and p2 respec-
tively.

The error term Es (f) in (8), vanishes if f is a polynomial of degree M in
x and N in y, where

M = m (2s+ 2) , N = n (2s+ 2) .

In the previous formulas, the existence of the derivatives of f up to the
2s-th order is required at least at the nodes. However, the presence of these
derivatives in many practical situations does not constitute a computational
problem, since in several cases recurrence relations can be established between
any two successive derivatives of the given function [1].

In order to give an explicit expression for the error term in (8), we introduce
the notation below:

D = [−1, 1]× [−1, 1] ,

m0,j =
∫ 1

−1
pj (t) dt, m−1,j = −

∫ 1

−1
pj (t) (t− ς)−1 dt, j = 1, 2,

and

Hl (pj) = 1
(L+1)!

∫ 1

−1
pj (x) [Pls (pj ;x)]2s+2 dx, L = l (2s+ 2) , j = 1, 2.

(9)

We assume that the quantities m−1,j(ς) exist finite for j = 1, 2.

Theorem 1. If f ∈ CM+N+2 (D) , the remainder term in (8) can be ex-
pressed in the form:

Es (f) =Hm (p1)
[
m0,2f

M+1
1

(
x′, y′

)
+m−1,2 (η) fM+1

0
(
x′, η

)]
+Hn (p2)

[
m0,1f

1
N+1 (x∗, y∗) +m−1,1 (ξ) f0

N+1 (ξ, y∗)
]

(10)

−Hm (p1)Hn (p2) fM+1
N+1 (σ, τ) ,

where x′, x∗, y′, y∗, σ, τ belong to (−1, 1).

Proof. We recall that an interesting result in [12] allows for giving evalu-
ations of the remainder of some approximation formulas in two variables; to
be more precise, let T1, T2 denote two linear approximation operators and set
T = T2 (T1 (•)); if R1, R2 and R denote the remainders in the approximation
of T1, T2 and T respectively, then the following relation holds:

R (T (f)) = R1 (T2 (f)) +R2 (T1 (f))−R2 (R1 (f)) .

Taking into account that in the case being examinated the linear operators
T1, T2 reduce to the integral operators I (p1f ; ξ) , I (p2f ; η) defined in (5) and
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the corresponding error terms have the form (7), we can write

Es (f) =Hm (p1) −
∫ 1

−1
p2 (y) f

M+1
0 (x′,y)
y−η dy

+Hn (p2) −
∫ 1

−1
p1 (x) f

0
N+1(x,y+)

x−ξ dx

−Hm (p1)Hn (p2) fM+1
N+1 (σ, τ) .

Subtracting out the singularities in the above CPV integrals and by the hy-
pothesis on f , the relation (10) follows. �

4. ON THE EFFICIENCY OF A CLASS OF INTEGRATION RULES

The evaluation of both the cubature sum and the remainder term in (8)
becomes particularly simple when p1 and p2 belong to the class of the weight
functions recalled in Section 2; indeed, assuming for instance p1 ∈ Wm and
p2 ∈Wn not only one has

x
(s)
i = cos 2i−1

2m π, i = 1, . . . ,m , y
(s)
j = cos 2j−1

2n π , j = 1, . . . , n,

for any s, but also the coefficients Ahi in (4) can be given explicitly, as shown
in [6].

Furthermore, in this case, it is possible to state a convergence result of the
integration rules (8), for s diverging.

Let DT (J) be the set of Dini type functions, defined on any interval J of
length l (J), by

DT (J) :=
{
g ∈ C (J) :

∫ l(J)

0
ω (g; t) t−1dt <∞

}
,

where ω(g; •) denotes the modulus of continuity of the function g; and, for
some δ > 0, let us consider the subinterval Nδ(ς) = [ς − δ, ς + δ] ⊂ [−1, 1].

We denote by ti,j the singularities of pj , i = 1, 2, ..., qj , j = 1, 2 belonging
to (−1, 1) and with Uj the set

Uj =
qj⋃
i=0

[ai, bi] , [ai, bi] ⊂ [ti,j , ti+1,j ] ∀i = 0, 1, ..., qj

where t0,j = −1, tqj+1,j = 1.
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If the singularities ξ, η are such that ξ ∈ U1 and η ∈ U2 then,

pj ∈ L1 [−1, 1] ∩DT (Nδ (ς)) , ς =
{
ξ if j = 1
η if j = 2

and the associated values m−1,j (ς) are finite (see, for instance, [11]).

Theorem 2. Let f ∈ C∞ (D) ,
∣∣∣fkh (X)

∣∣∣ ≤ V k
h for X ∈ D and assume

lim
s→∞

VM+1
j

(M+1)!2(m−1)(2s+2) = 0,

lim
s→∞

V jN+1
(N+1)!2(n−1)(2s+2) = 0, j = 0, 1;

lim
s→∞

VM+1
N+1

(M+1)!(N+1)!2(m+n−2)(2s+2) = 0,

then
lim
s→∞

Es (f) = 0.

Proof. By (9) and for the assumption on p1 and p2, there results

|Hl (pj)| = 1
(L+1)!

∣∣∣∣∫ 1

−1
pj (x) [Tl(x)]2s+2

2(l−1)(2s+2)dx

∣∣∣∣ ≤ m0,j
(L+1)!2(l−1)(2s+2) , j = 1, 2.

Next the following estimate yields

|Es (f)| ≤K0,2V
M+1

1 +K−1,2V
M+1

0
(M+1)!2(m−1)(2s+2) + K0,1V 1

N+1+K−1,1V 0
N+1

(N+1)!2(n−1)(2s+2)

+ KVM+1
N+1

(M+1)!(N+1)!2(m+n−2)(2s+2)

where Kh,l = m0,lmh,j , h = 0,−1, l = 1, 2, j = 1, 2 and l 6= j, K = m0,1m0,2.
Therefore, by the above hypotheses, the claim follows. �

Moreover, it is also interesting to point out that if p1 and p2 belong to the
subset Wn,µ of Wn, then the terms (9) involved in the expression (10) of the
remainder, can be often evaluated in closed form. For instance, when m = 2,
there results

H2 (w2,µ) = 1
(4s+5)!22s+2

∫ 1

−1
|x|2µ+1

(
1− x2

)µ
[T2 (x)]2s+2 dx

= 1
(4s+5)!22s+2µ+3B

(
s+ 3

2 , µ+ 1
)
.

When m = 3 and 2µ is a nonnegative integer, then

H3 (w3,µ) = 1
(6s+7)!32µ+142s+2

∫ 1

−1
|U2 (x)|2µ+1

(
1− x2

)µ
[T3 (x)]2s+2 dx

= 2
(6s+7)!32µ+142s+2

(2µ)!!(2s+1)!!
(2s+2µ+3)!! .
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In order to give an idea of the magnitude of the terms Hm in (9), we report
in the Tables 4.1 - 4.3 some values of Hm (wm,µ) corresponding to some weights
of type (3), for given values of µ and m.

m = 2 µ = −1/2 µ = 0 µ = 1/2 µ = 1
s = 0 0.163 · 10−01 0.347 · 10−02 0.102 · 10−02 0.347 · 10−03

s = 1 0.183 · 10−05 0.310 · 10−06 0.761 · 10−07 0.221 · 10−07

s = 2 0.320 · 10−10 0.466 · 10−11 0.100 · 10−11 0.259 · 10−12

s = 3 0.161 · 10−15 0.208 · 10−16 0.402 · 10−17 0.944 · 10−18

Table 1.

m = 3 µ = −1/2 µ = 0 µ = 1/2 µ = 1
s = 0 0.136 · 10−03 0.193 · 10−04 0.379 · 10−05 0.857 · 10−06

s = 1 0.960 · 10−11 0.109 · 10−11 0.178 · 10−12 0.345 · 10−14

s = 2 0.374 · 10−19 0.363 · 10−20 0.520 · 10−21 0.896 · 10−22

s = 3 0.211 · 10−28 0.182 · 10−29 0.231 · 10−30 0.368 · 10−31

Table 2.

m = 4 µ = −1/2 µ = 0 µ = 1/2 µ = 1
s = 0 0.609 · 10−06 0.647 · 10−07 0.952 · 10−08 0.162 · 10−08

s = 1 0.138 · 10−16 0.117 · 10−17 0.144 · 10−18 0.209 · 10−19

s = 2 0.604 · 10−29 0.439 · 10−30 0.472 · 10−31 0.610 · 10−32

s = 3 0.195 · 10−42 0.126 · 10−43 0.122 · 10−44 0.143 · 10−45

Table 3.

5. NUMERICAL RESULTS

The integration rules presented in Section 3 have been tested for several
functions and for different choices of the weight functions of type (3). We
emphasize the very good performances of such cubatures, when the weight
functions are p1 ∈Wm,µ1 , p2 ∈Wn,µ2 as the following Tables illustrate.

• Table 1 refers to the function f (x, y) = e3x−y, assuming p1 = p2 =
wm,−1/2 = w∞, ξ = −0.2, η = 0.5; the results obtained assuming
m = n = 2 and m = n = 3 are compared.
• Table 2 shows the results when f (x, y) = ex

y2+25 , assuming p1 =
wm,0, p2 = wn,−1/2 and m = 2, n = 3 for two different positions
of the singular point (ξ, η).

Finally the case of oscillating functions is considered:
• Table 3 refers to the function f (x, y) = sin (x+ y), the weight func-

tions are p1 = wm,−1/2, p2 = wm,0, the singularity is (ξ, η) = (−0.1, 0.25) ;
we consider the values m = n = 2 and m = 2, n = 3.
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• Table 4 shows the results for the function f (x, y) = sin (2x+ 3y),
when p1 and p2 are as in the previous example, m = n = 2 and
(ξ, η) = (−0.95, 0.90) .

s m = n = 2 m = n = 3
0 −40.1796987881 −42.7919904372
1 −42.9178803324 −42.9304171601
2 −42.9304088530 −42.9304207223
3 −42.9304207187
4 −42.9304207223

Table 4. f (x, y) = e3x−y, ξ = −0.2, η = 0.5

s ξ = 0, η = 0.25 ξ = 0, η = 0.99
0 −1.334 185 174 340 · 10−03 −5.096 768 029 771 · 10−03

1 −1.335 067 155 027 · 10−03 −5.100 137 315 429 · 10−03

2 −1.335 067 198 346 · 10−03 −5.100 137 480 914 · 10−03

3 −1.335 067 198 347 · 10−03 −5.100 137 480 915 · 10−03

Table 5. f (x, y) = ex

y2 + 25 , m = 2, n = 3

s m = n = 2 m = 2, n = 3
0 −2.067 887 525 787 · 10−01 −6.812 202 145 283 · 10−01

1 −2.070 973 210 785 · 10−01 −6.815 485 070 316 · 10−01

2 −2.070 973 402 908 · 10−01 −6.815 485 220 557 · 10−01

3 −2.070 973 402 910 · 10−01 −6.815 485 220 558 · 10−01

Table 6. f (x, y) = sin (x+ y) , ξ = −0.1, η = 0.25

s m = 2, n = 2
0 −4.639773465749
1 −4.232307580999
2 −4.230525126503
3 −4.230525126044

Table 7. f (x, y) = sin (2x+ 3y) , ξ = −0.95, η = 0.90

We point out that also in the case when the singularity is close to the
boundary of the integration interval, the rules here proposed have a good
performance.
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