REVUE D’ANALYSE NUMERIQUE ET DE THEORIE DE 1’APPROXIMATION
Tome 28, N° 2, 2000, pp. 151-160

CONVEX FUNCTIONS OF ORDER n ON UNDIRECTED
NETWORKS

DANIELA MARIAN

Abstract. In this paper we introduce the convex (nonconcave, polynomial, nonconvex,
respective concave) functions of order n on undirected networks. We study some properties
of them. Finally we frame these functions in allure theory introduced by E. Popoviciu (1983).
We adopt the definition of network as metric space introduced by P. M. Dearing and R.. L.
Francis (1974),
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1. PRELIMINARY NOTIONS AND RESULTS

The definition of network as metric space was introduced in (] and was
used in several papers (see, e.g., [2], [4], [3] ete.).

We consider an undirected, connected graph G = (W, A), without loops
or multiple edges. To each vertex we associate a point v; from an euclidean
space X. This yields a finite subset V = {wi, oy v} of X, called the vertex
set of the network. We also associate to each edge (w;,w;) € A a rectifiable
arc [v;,v;] C X called edge of the network. We assume that any two edges
have no interior common points. Consider that [vi,v;] has the positive length
l;; and denote by E the set of all edges. We define the network N = (V,E) by

N ={z € X |3 (w;,w;) € Aso that z € [vi,v4]} .

It is obvious that NV is a geometric image of G, which follows naturally from
an embedding of G in X. Suppose that for each [vi,v;] € U there exists a
continuous one-to-one mapping 6;; : [v5,v;] — [0, 1] with Oij (vi) = 0, 055 (v;) =
1 and 0;; ([v;,v5]) = [0, 1].

We denote by T;; the inverse function of e

Any connected and closed subset of an edge bounded by two points z
and y of [v;,v;] is called a closed subedge and is denoted by [z,y]. If one or
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both of z,y are missing we say than the subedge is open in z, or in y or is
open and we denote this by (z,y], [#,y) or (z,y) respectively. Using 6y, it is
possible to compute the length of [z,y] as

L[z, y)) = 1835 (z) — 035 (W) - Lij.
Particularly we have
L([viy05]) = ligy 1[ve, 2]) = 0ij (2) L
and
L[z, v5]) = (1= 045 (2)) Lij-

A path L (z,y) linking two points z and y in N is a sequence of edges
and at most two subedges at extremities, starting at = and ending at y. If
¢ = y then the path is called cycle. The length of a path (cycle) is the sum

of the lengths of all its component edges and subedges and will be denoted
by | (L (z,y)). If a path (cycle) contains only distinct vertices then we call it

elementary.
A network is connected if for any points z,y € N there exists a path

L(z,y) CN.

A connected network without cycles is called tree.

Let L* (z,y) be a shortest path between the points z,y € N. This path
is also called geodesic. One defines a distance on N as follows:

DEFINITION 1.1. [1] For any =,y € N, the distance from z to y, d(z,y)
in the network N is the length of a shortest path from x to y:

d(z,y) =1 (L7 (z,9))-
It is obvious that (N, d) is a metric space.
For z,y € N, we denote
(1) (z,y) = {z € N|d(z,2) + d(z,y) = d(z,9)},
and (z,y) is called the metric segment between z and y.
DEFINITION 1.2. [1] A set D C N s called d-conves if (z,y) C D for all
z,y € D.

We consider now two points z,y € N, D (z,y) C (z,y) a shortest path
from z to y and a function f : N — R. We consider also a nonnegative integer

n > 0, and the distinct points
(2) B3, s Tntt

such that {z1, ..., Tnt+1} C D (2,y).
n [3] E. Iacob denoted:

’Pn() {P D(my)—)RIP chd Et) CkER}

k=0

e -
|
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The elements of P, (z) are called metric polynomials. E. Iacob established that
there exists a single metric polynomial P* € Pr (z) which is equal with f on
the points (2). The polynomial P* was denoted with L (Pp (z) ;21 x f)
and was called interpolation metric polynomial of Lagrange type; o

THEOREM 1.1. [3] The metric polynomial

L (Pn(2);21, sy Tnya; f) : D (z,9) = R,
o L (P ()21, ooy Tng1; £) (1) =
(3) Z (d(z,t) — d(z,21)) ... (d(
f( ’L) d > )
= (d(z,2:) —d(z,21)) ... (d (2, z;) =1d (Z; z;4 1))
(d(z,t) — d(@,zi41)) - (d(2,t) — d (2, T011))
@0 m) = d (@, 2131)) - (d(@,2:) — d (@ 5071)
belongs to the set P, (z) and satisfies the conditions
(4) L (Pn (z);21, ..., Tnt1; f) (i) = f (z3), fori= IL,n+1.
Moreover, L (P (z);z; Tpay; f) 18 i \ i ial i
over, L1, ey Try1; f) i the unique met 1
Pp (z) which satisfies the condition}r; (4). LR RERC PRTRERR LD
oy I? [5] the coefficient ¢, of L (P, (z )i %1, ooy Tny1; f) corresponding to
i ffa, was denoted by ¢, := [z1,29, ..., Tny1; f] and was called the divided
ifference of the function f on the pomts (2) relative to z. In the sequel we
only consider divided differences relative to the fixed point z.
The divided differences have the following properties.

THEOREM 1.2. [5] For every distinct points Z1, oy Tnp1 € D(z,y) we

have
[961, T2y «uvy $n+1;f] =
n+1
= €x; ]
(5) 1':21 (f( )(d(xaxi)—d(m’lml)) v (d(mm) —d (2, 301) "

(d(2,2:) — d(,3511)) .- (d (g, i) — d (z,Zny1))

As in [6] we denote with Dy, 4, ,zny1 the set of all functions defined on
the distinct points (2) and we define the functional

T1,22,...,T 1
a’l preeydbn41 .
$ ) D(Iil,‘?}z,...,mn_’_l - R

by
T1,T2400,Tn
an ? + (f):[$1a$2)'--7$n+l;f]'
THEOREM 1.3. [5] The functional atV™> %+l g linear, so
T1,T2,..0,Tn
QRFBIL (f +g) = GEAAE T () 4 gErmRani ()
respectively

?

af,vl17$2,...,$n+l (O[f) - aa’fll,(b‘z,...,wn_,_l (f)

for all f,g € ’ZDQEI,ZZ,,_.VT,hLl and o € R,

3
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THEOREM 1.4. [5] For a point T,12 € D (x,y) different from every point
T1, L9, ..., Lnp1 we have
f(zny2) — L (Pn (z);T1, 2, s Tt 1; f) ($n+2)‘ :)
(6) = (d (2, Tpr2) — d(z,21)) - (4 (5, Tnia) — d‘(fﬂ,llz)
oo B (d (‘Ta $11+2) —d (.’13, xn+l)) ’ [1;17 L2y -y Lnt23 f] .
distinct points x1, ..., T, € D(z,y)
DEFINITION 1.3. We say that the : 01Nt - bt
form a metric succession relative to z, if the following inequalities are salisfied.

d(z,z1) < d(z,z2) < ... <d(z,2n).

3 metric
COROLLARY 1.5. [5] If the points ®1,Z2, ..., Tnt1, Tntz form a
succession relative to x then the coefficient

T, Tnte) — d (z,21)) - (d (2, Tpy2) — d(z,22)) - -0
SleR i s e

1 f { ) S e,
of the divided difference [z1, %2, ..., mm_g;.j] from the relation (6) is pos
So, in these condilions, the sign of the difference

f ($n+2) L (Pn ('17) 7 L1, T2y -ony T4l f) (mn—f—?)

depends only on the sign of the divided difference [w1,T2, ..., Tni2; 11

] TV KS
2. FUNCTIONS OF ORDER n ON UNDIRECTED NETWOR

In this section we define the convex (nonconcave, polynomial, noncoivexl,
respective concave) functions of order n on undirected netxyrksi \g/hne; tewvz) J{ T
ety E 8 e a ge lization from undirected ne
is an integer number. These are a genera . ur ‘ g
real functions of order n introduced in [8] by T. Popoviciu and also studie

9], [10], [11], [12], [13], [6] etc. . 1 '
. V\;é ([:oiéider ,a network N, two points z,y € N, D '(x, y) C (z,y)a bhgrtfslt

ath from z to y, a function f : D (z,y) — R and an integer number g > )
E]\/’e consider also a system of n + 2 distinct points z1, T2, ..., Tni2 € (z,9).
We denote R = IR U {—co, +o0}. ‘

DEFINITION 2.1. The function f : D (x,y) — R is called colnlvefsln', e(résnf;
concave, polynomial, nonconvez, respective concave) of orde'/'n re a,;valm :
’ £

on the distinct points z1,%2, ..., Tny2 € D (x,y) if the following ineq y

satisfied .
(€1, 29, <y Tni2; [] > (2=, <, respective <) 0.

] y) — R i vexr (non-
DEFINITION 2.2. The function [ : D(z,y) = R is c((lzlled corlLatwe(tO 1
concave, polynomial, nonconvez, respective concave) of order n re
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on D (z,y), if for any distinct POINLS T1, Tg, ..., Tpyo € D (z,y), the following
inequality is satisfied

[z1, g, ..., Tnt2; f]1 > (2, =, <, respective <) 0.

The function f which have one of the properties of this definition is called
also function of order n on D (z,y) relative to z. Using now the theorem 1.4
we obtain the following equivalent definition:

DEFINITION 2.3. The function § D (z,y) = R is called conves (non-
concave, polynomial, nonconve, respectwe concave) of order n relative to

on D (z,y) if for any distinct points Z1, 22, vy Tng2 € D (z,y) such that these
form a metric succession, the following inequality is satisfied

f (.TJ»,-H_Q) L (Pn (.’L‘) y L1, L2, ...y $n+1§f) ($n+2) > (27 = <7 respective <) 0.

In the following we present some basic properties of functions of order n
on undirected networks.

THEOREM 2.1. If f: D (z,y) > R and ¢ : D(z,y) = R, are two conves
(nonconcave, polynomial, nonconver, respective concave) functions of order
n relative to z on D(z,y) and « is a real positive number, then f + g and
af are also conves (nonconcave, polynomial, nonconvex, respective concave)
functions of order n relative to = on D(z,y).

Proof. These properties of the functions of order n are a, consequence of
the properties of the divided differences established in Theorem 1.3. |

THEOREM 2.2. 1. If {fk : D (z,y) %@}keN is a punctual convergent

sequence of convex or nonconcave functions of order n relative to z on D(z,y),
then the limit function

Ui D(m,y) HK: f(Z) :kli}H(}ofk(Z)a -

is nonconcave of order n relative to on D (z,y).

2. If {fk : D (z,y) — E}keN s a punctual convergent sequence of con-

cave or nonconvex functions of order n relative to = on D(z,y), then the limit
function

F:D(@,y) = R, f(z) = lim fi(),
k—o00
is nonconvez of order n relative to = on D(z,y).

3. If {fk ' D (z,y) — E}keN is a punctual convergent sequence of poly-
nomial functions of order n relative to on D(z,y) then the limit function

f:D(z,y) =R, f(z)= Jm fi(2),

i polynomial of order n relative to z on D(z,y)
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Proof. 1. We consider the arbitrary distinct points 21, ..., %ny2 € D (z,y)
and the sequence of punctual convergent functions

f/ng(CU,y)—)R-, k=12,...,

convex or nonconcave of order n relative to z on D(z,y), having the limit
function

f : D(a:,y) — Ra f(Z) = kll{lgofk(z)

n+2 1

=X <f =9 T TG (Ao 3 m)

' (d(z,2:) — d(@,2641)) - (d(z, ) — d(wl, Znt2))

=5\ T dE ) e - de)
@@ - d@ o)) @) — (@ ons2)) b

= L e (3, 81)) b (@@ 50) o)

@) —d@zi1) - @@ 53) — d (@, Tn12)) )

= lim [Z1, 2, -+, Tni2; f&] >0

since the convexity or nonconcavity of order n of the functions f; relative to
on D(z,y), imply the nonnegativity of the divided differences [z, 125 fi]
for any k € N.

The other two affirmations can be proved in a similar way. t

THEOREM 2.3. If Fuis a family of real convex (nonconcave, respective
polynomial) functions of order n relative to x on D(z,y), then the function

fs: D(:c,y) - vas(z) = supf(z),
feF

which is the punctual supremum of this family, is a convex (nonconcave, re-
spective polynomial) function of order n relative to x on D(z,y).

Proof. We consider the family F of convex (nonconcave, respective poly-
nomial) functions of order n relative to # on D(z,y) and the function

fs:D(z,y) = R, fs(2) =supf(2),
feF
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which is the punctual supremum of this family. Then, for arbitrary distinct

points T1,Z2,.-.,Znt2 € D (z,y), the following relations are satisfied:
(T1, %2, - -, Tnt2; fs] =
5 ((supf (@2 1
= supf (z;) - .
A\ Weaw—dme) - @@ e) - d@ e
fl
" >
(d(z,7:) — d(@,2it1)) ... - (d (@, 2:) — d (w,$n+2))> P
> (1) 1
> su i) .
“rer @ U W) —d@e) . (d(@e) - d@io0)
i
(d(m,m) —d(@,3i41)) oo (d (@) —d(2,2042)) )
= sup [xla X2y - ax'n.-i-%f] '

feF

‘Now, since the functions of the family F are convex (nonconcave, respective

polynomial) functions of order n on D(z,y), we have
[Z1, T, ..., Tnya; f] > (=, respective =) 0, for every f € F,
so we obtain

sup [z1, ®a, ..., Tnte; f] > (=, respective =) 0.

feF
This implies that f; is convex (nonconcave, respective polynomial) of order n
on D(z,y). O

We can prove the next theorem in an analogous fashion.

THEOREM 2.4. If F is a family of real functions defined on D(x,y),concave
(nonconvez, respective polynomial) of order n relative to x on D(z,y),” then
the function

g:N =R, g(z) = infrerf(2),

which is the punctual infimum of this family, is a concave (nonconvez, respec-
tive polynomial) function of order n relative to x on D(z,y).

3. ELEMENTS OF ALLURE THEORY ON UNDIRECTED NETWORKS

In this section we present some elements of allure theory on undirected
networks. Even if the term “allure” was used for a very long time in mathe-
matics, an exact definition was given only in 1983 by E. Popoviciu in [7]. We
recall the definition in the following.
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Consider a set X, a nonempty subset Y C X, and a partition of the
set Y
Y=YuY,Uu..UuY,
YiNnY,=@&fori#;
Let U be a set of operators of the form U : X — Y.

DEFINITION 3.1. The element = € X is said to have the allure (Y;,0) if
Uz €Y;.

DEFINITION 3.2. The element 2 € X is said to have the allure (Y;,U) if
Jor every U € U the element = has the allure (Y;,0).

From undirected networks we have immediately the next example of
allure.

Ezample 3.1. (The d-convexity allure of the subsets of an undirected
network N.) Let N = (V, E) be an undirected network. Denote X — P(N),
consider ¥ = X, and the partition of Y given by ¥; = @, Y, =P (N)\ {2}
Define the operator U : P(N) — P (N) by U (4) = [A]\A, for every A €
P (N), where the set [A4] is the union of all closed d-segments determined from
each pair of points from A. It is clear that a subset 4 of N is d-convex if and
only if this have the allure ({3}, U).

Bzample 3.2. The allure of the functions of order n on undirected net-
works.) Consider a fixed integer number = 0, a network N, two points
z,y € N, a path D (z,y) C (z,y) and the set P4, (x). For every system of
n 4 2 distinct points

(7) T1, L9,y ooy Ty

from D (z,%) we consider the interpolation operator of Lagrange type relative

to z

(8) L(Ppi1(x) 521,22, oy Tpyo;-),

which attach to a function f, defined on the points (7), the metric polynomial
L (P (z); 21,22, ..y Tnya; f).

Denote by Ln41 () the set of operators (8) when is considered all the system

of points (7) on D (z,y). We also denote by P (z), Proy1 (), Pry (2) the

set of polynomials from P, (z) for which the coefficient corresponding of the
term d"*! (z,1) is respectively positive, negative or zero. Define the partition
for Ppi1 (z):

Pri1 () =Py (2) UP, (2) UPT ) (2).
Considering now X = {f|f: D (z,y) - R}, Y = Pry1(z), we have Y C X.
If we apply Definition 3.1 we have that the function / has the allure

(731Jf+1 (), L (Pry1 (z); 31, 72, o Tnt2; '))
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if

L (Pn—l—l (.’E) Y L1y L2,y -0y T2 j) € 7)7—7!—+1 (:1’) .
In this case f is convex of order n relative to  on the points (7). If f has
the allure (P, (), Lny1(z)) then f is convex of order n relative to z on
D (z,y). The allure

( r:+1 (q’) >L (Pn+1 (77) FT1, T2y vey Tn42) ))
expresses the concavity of order n relative to « on the points (7), and the
allure

( 1 ()5 Loy (x))

expresses the concavity of order n relative to  on D (z,y). The allure
(7)””, (‘T) aL (Pn+] (iL') Y L1, X250y 423 ))
expresses the polynomiality of order n relative to = on the points (7), and the
allure
(Pn (%), Lot ()

expresses the polinomiality of order n relative to z on D (z,y).

Remark 3.1. If we want to determine other types of allures which have
the same operator of interpolation (8), we must consider some other partitions.
Another immediately partition of P, () is

With this partition the allure
(7):+1 (93) UPp(z), L (Pny1 (z); 21,30, < Tp4-25 ))

expresses the nonconcavity of order n relative to z on the points (7), and the
allure

(P;:Fl () UPn(z), Loy (»T))

expresses the nonconcavity of order n relative to z on D (z,y). -
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