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THE UNCENTERED TYPE INCREMENTAL UNKNOWNS FOR A
SINGULARLY PERTURBED BILOCAL PROBLEM

A. MIRANVILLE, A. C. MURESAN

Abstract. We propose some incremental unknowns which to be adopted for a singu-
larly perturbed boundary value problem.

1. INTRODUCTION

We consider the singularly perturbed boundary value problem:

—eu’ (z) +a(z)u' (z) = f(z), for z € (0,1)
(P1) { w(0) = u(l) = 0

where ¢ is a small positive parameter, a(z) > 0 for all z € [0,1], and the
functions a and f are sufficiently smooth. The solution of (P1) has a boundary
layer at z = 1.

It has long been recognized that difficulties can arise when certain “cen-
tered” finite-difference and finite-element methods are applied to (P1) when
the diffusion coefficient ¢ is small. In particular, such schemes when applied to
(P1) on a uniform grid have an inherent formal cell Reynolds number limita~
tion. Namely, with a uniform mesh length & and a(z) constant, one finds that

h
the cell Reynolds number 9 must be bounded by some constant depending

on the scheme in order to a,v%id spurious oscillations or gross inaccuracies. For
small € this requires a prohibitive number of grid points and so alternative
approaches have been developed. One approach is to use a nonuniform mesh
(which must be appropriately chosen) which is very fine “in the boundary
layer” and coarser elsewhere. Another approach has been to devise schemes
which have no formal cell Reynolds number limitation. Schemes of this type
have been constructed by using uncentered (“upwind”) differencing for the
first derivative term, or, more generally, by adding an “artificial viscosity” to
the diffusion coefficient ¢, e.g., [10].

2000 AMS Subject Classification: 65L10.



162 A. Miranville, A. C. Muresan 2

When the discretization is made by finite differences, Temam introduced
in [11] the concept of Incremental Unknowns (IU in short). The idea, which
stems from dynamical systems approach, consists in writing the approximate
solution wu; in the form u; = y; + z;, where z is a small increment. Passing
from the nodal unknowns wu; to the 1Us (y;, 2;) amounts to a linear change of
variables, that is to say, in the language of linear algebra, to the construction
of a preconditioner. Many numerical simulations have shown the efliciency of
such induced preconditioners.

Numerical solution of a problem such as (P1) using Incremental Un-
knowns has been considered in [6] and [7] but the IU’s that have been used in
these articles were connected to the Laplacian only: they were induced only
by the discretization matrix of the Laplacian.

In [3], the authors propose a construction of IUs that are more adapted
to the problem in the sense that they take into account the convection term in
the construction of the IUs, thus leading to the use of an adapted interpolator
and of a hierarchichal preconditioner.

We propose in this paper a different approach for the construction of
adapted incremental unknowns for (I’1): we first make a change of variable
(assuming that there exists a grid function, see below) and then discretize the
problem. This change of variable allows us to work on a uniform grid, which
makes the calculations (in particular via Taylor’s expansions) easier; the effects
of the grid will then be on the coeficients of the differential operators.

2. THE METHOD

Let g : [0,1] — [0,1] such that g(0) = 0, g(1) =1, I 4 (y) for all
z €[0,1] and 0 < J (y) :=¢' (y) < M, Yy € (0,1). Furthermore, in order to
obtain a finer resolution near the boundary layer, we assume that J(1) = 0.

With the change of variable z = g (y) we obtain from (P1), the following
problem:

- —e(J—zlﬁv'(y>>+a<q<y>> W =I6) W), 0<y<1
O oy

Let ¢ (y) = :fzy)

y+h y+h

/v'(s)ds: / J (s) ¢ (s)ds and /yv'(s)ds: /y J (s) ¢ (s)ds,
“h “h

Y Y Y

v' (y). By integration of this equation we obtain:

Y
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which can also be written,

(1)

(2)

y+h
v(y+h)—v(y) =

v(y)—v(y—h)= fJ

Let us consider the Taylor expansion of the function ¢:

)" (y+ 0t (s —y),

¢(5)=¢(y)+(8—y)¢'(y)+%(s
y<s<y+4+h, 0 <6 <1,

y+h

[ J(s)¢(s)ds and
y

B(s) = B+ 1) [Tt () +5 6= (1 +6 (- ),

(3)

Y
y—h<s<y, 0<0 <1.

Injecting these expressions of ¢ in (1), we find from (2) and (3):

y4h y+h
v(y+h)—v(y f J(s)ds+¢'(y) [ (s—y)J(s)ds+
1yth 5 B
= { (s =12 (s)¢" (y + 6% (s ~)) ds,
v(y) = v(y~h) f’J 5)ds+ ¢ (v) f} (5~ ) J (s) ds+
y—h y—h
1 fh (5~ )2 (5) ¢ (y + 0~ (s — ) ds.

If we denote

a” (y)= [ J(s)ds,
y—h
y+h
b (y) = / (5 ) T (s) ds,
yy
b (y) = / (s~ ) T (s)ds,
y—h
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rr) =1 [ -9t IE ¢+t -p)ds

Y
- 1 RY s) " —(a. ))ds,
== [ =9’ J(s)¢" (y+0 (s—y
’ 2/
we obtain )
ot (@) )+ W) W) =vly+h) —v@) -1 (1)

and

. B I = —v(y—h) =1 (v),
a” (y)¢(y) +b )¢ (y) =v(y)
which is a system of two equations with two unknowns ¢ (y) and ¢’ (y) whose
determinant will be denoted by 7 (y). |
PROPOSITION 1. The functions o, bt are non-negative functions and

the function r is a negative one.

Since 7 < 0 the system has the solution,

¢ (y) = b~ (5) [v(y-+h)—v(y)l- b+((%) [v(y) —v(y—h)]+
7 (y) _ _r),
b (y) I (y) —b" (y) T (y)
" @ !
e Y ~ (y)
s & - L v(y+h) —viy}+
) = CLow-ve-n - Ep bR - w)
N W) It (y) —at (W) I (y)

We consider the following approximation for ¢' (y) and ¢ (y)

W e ="DLpw-ve-m- L pern -,

r(y) 7 ()
and
v(y) —v(y—h)
(5) ¢(y) = )

i imation.
hich is a backward type approximatl . i
i If we substitute in (P2), we obtain the approximation:

_E{EE ) - oM - =Ly +h —v(y)l}+

r (y) 7 (y)
(©) M[v(y)—v(y—h)]=ﬂy)f(y)-
* a~ (y)
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1
. Let h = SN and for j = 0,1,2, ..., 2N, y; = jh. For y = y; in (1) we
have for j =1, ..., 2N — 1:

+ I

a;J; €a; ‘ €a;
7 LTI (= v51) — —d (g — wan) = s f
(7) [Gj— r; } (vj vj-1) r; (v Vjt1) ifis

where in general f; = f (y;).

Since v (y;) := u (g (y;)) = u (z;), for j = 0,1, .y 2N, we can write (7):
+
aj 45 (%41 —x51) [
(aj_ riJ; 2 (uj U]—l)
(8) _gy @ —wi)
2r;J; (g g =
- Wﬁ, for j=1, .., 2N — 1.
Remark 1. If g (y) := y then we obtain the classical upwind scheme.
- +
ea,. (xr; — T4 q EQ! . —_
Let aj = —2 (@1 = 25-1) and 3; = a—i— i | Eit —z5-1) for
27“ij aj 'r‘ij 2
j=1,..,2N —1. We obtain a finite dimensional linear system which can be

written as

Tj+1 — Tj-1

(9) B (uj = ujr) + o (uj — ujy) = =L fi, for
j=1, ..., 2N —1.
By using trapezoidal rule:
(1) + 9 (1)
9\Y5) + 9y Tj+ Tjp
~h =
g(s)ds 5 h 5
Y .
we have
' h
b = 5 (zj41 — z5);
- h
by =—5 (25— zj1);
S0,
’I'j =-h (:L‘j_|_1 a7 :Ej) (:Ej 5 mj—l) 5

As usual when an IU method is implemented, two different kinds of un-
knowns must be distinguished: those associated with the coarse grid compo-
nents which are on G, and whose indices are even and those associated with
the complementary points (odd indices) which are on Gf\G;

.0 ® 0® 0 e O,

®: points in G, o: points in G;\G..
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If we write the system at the complementary points, we obtain

) Z2i4+2 — X2
(a2i+1 + ﬁ2i+1) U2i41 — ,82i+lu2i = Q2341 U242 = —2—f2i+1-

Hence, assuming that ag;j+1 + B2i11 # 0, we have
1

————— (02iy1u2i12 + Boip1ugi) +
Qit1 + Poiy1 - ’ j '

U241 =
T2i+2 — X2
o2it1 + B2it1 2
We note that ug;y; is expressed as the sum of a convex combination of
ug; and ug;yo, which is nothing but a bilinear interpolation scheme, and a
correction term whose order is connected to the order of the interpolation
scheme. If we set

foig1.

1

——————— (2i+1U2i42 + Bair1un;)
@241 + Poit1 (czi ; ; e

(10) 22i+1 = U241 —
then the system, at the complementary points, is reduced to

1 Z2i+2 — T .
11 Z29i4+1 = fz' 1 1 =0, .., N—1.
(1) T it + Bainn 2 e Lo
so that these values are now explicit. The incremental unknowns for this
problem consist of the numbers yo; = uy;, 4 = 0, ..., N, and, at the points

2i + 1, the numbers 29;11.
At j=2i,i=1,..,N —1 (9) using (10) and (11) becomes:

BoiBai—1 012 (09541
——————— (ug — uz—2) + ————— (ug; — Ups4g) =
agici + Poic1 - ; agiq1 + Poiv1 - ’
T241 — L2451 21 X245 — T2—2
12 = It i1+
(12) 2 fai Q21 + Pai—y 2 fai
Qg T2i42 — T4 B
+1.
0241 + Boit1 2 :

Since the recurrence conditions are satisfied, we can obviously repeat
recursively the process described above using d + 1 embedded grids, that is to
say using d levels of IUs.

From the point of view of the matriceal framework, this construction can
be summarized by the determination of two matrices S and T under and
upper triangular respectively such that

tTAS

is bloc diagonal, A being the discretization matrix.
We first consider two grid levels. The discretization matrix A written
with the hierarchical ordering (considering first the coarse grisd unknowns
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and then the complementary ones) in the form
= A1 By
A=
where A;, i = 1,2 are invertible diagonal matrices.

Construction of S
We want to construct a matrix S of the form:

w0
=(a 1)

and such that AS is upper triangular. We hayve:
KS:(Al B1>(I 0):<A1+B1G1 B;
By Ay Gy 1 Ba + AyGy Ag )
Therefore the under-matrix G, satisfies
G; = —A;'B,,
5 ( —A;IB2 (I)>
Construction of T

We now want to construct a matrix 'T of the form:

tm_ [ I Gy
(5 7):

and such that *TAS is block diagonal. We have
IPAS — ( A1 +B1G; By + GaAy ) ,

hence

0 Ay
and then Gy must satisfy .
B; + G3Ay = 0.
Thus
tm_ (I —BiA;!
I'= ( 0 I ’

and then A can be written in the form

r A1 +Bi1G; 0
A = 'TAS — 1 1
. ( 0 A2>'

We note that since the linear system is non-symmetrical, these IUs lead
to a non-symmetrical hierarchical preconditioner.
The first diagonal block of A is still tridiagonal and we can and we can

repeat recursively the reduction procedure described above by using d levels
of IUs.
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We now describe two cases.

If: '
1) o (55) ~ g(yj+1)2—hg (Yi-1) _ $j+12—h$1—1 then,
€ G @i =)y
3 g S o 2 (Zil=aT;= 1)
(8a) € L & fﬁj_—_l_f.
o = U S
) j
and
5
oY el
T+l oLy
g € aj (zj41 — zj-1)
T ay i 2(z5 - mj-1)

(1)

DEFINITION 1. The Ul incremental unknowns are the numbers Zgi41s
§=0, .., N—1 defined by
1 1 O
zé}i‘l s U2_j+1 - (1) (1) <,8§]2|_1/U2] + a2j+1’l)2]+2v) =
i1+ Baji
These Ul-IUs are Uncentered Incremental Unknowns defined in [3].
g (yj+1) —9g (yj) Tjt1 — T4 then,

2) g' (y;) = - = Sy
2 + ] B (- ) +
(8by LlEi =)@ —z-1) © 20mj-zi)] 2
ZTij+l — Tj—1 () — wjp1) = T+l — Tj-1 fis
2@ —wg) 0 T 2
and
(2) ... Zi+l — 51
I 2 (fi?j+1 i i“j)?
O _ £ i aj ] Tjtl = Tj-1
J (zj+i — @) (@5 —2j—1) 2 (25 — z5-1) 2

(2)

DEFINITION 2. The U2 incremental unknowns are the numbers 235415
j=0,.., N—1 defined by
! 2) () i
e = Yy = @) ?) ('B?Ej+lu2j + O‘2j+1“2]+2> '
iy + Byjpn
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3. CONCLUSION

Since the discretization points will be more dense in the boundary layer
(near z = 1) we may assume that:

T2i4+2 ~ T2i+1 < Toip1 — Ty for i =0, ..., N —1.

For example, if g (y) =1 — (1 = )P p nonnegative integer, this condition is
satisfied. '
In this case, assuming that a (z) > 0, we have:

(2)

(13) ZZi—i—l. <

1
zél-)l—l . )

hence we can expect that U2-IUs are better (for preconditioning) than Ul—
IUs, for this type of convection-diffusion problem (a (z)) > 0.
For U1-1Us we have the following a priori estimates [3].

PROPOSITION 2. The Ul incremental unknowns satisfy the following a
priori estimates:
N-1
) Z22i+1 < C- Ag,
Nt
2} (Y2142 —y21)” < C'- Aw,
j=

where Az = max Zjr1 —x5) and C is a constant independent of the
j€{0,...,2N—1}( 541~ %) o /

mesh.

Using (13) and this result we can obtain a priori estimates for U3-IUs.

The numerical example.
We consider the following problem:

—eu" (z) + ' (z) = 1, for z € (0,1)
u(0) =u (1) =0,

which have the exact solution u (z) = +z—1L

We make the change of variable by using function g (y) =1— (1 —y)P*!
1 ]
and we consider p = 2, h = oN and € = 0,0001. We have in the following table

the spectral condition number of the matrix A¢ obtained by using d levels of
1Us.
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Condition number of the matrix A? using
U1-1Us respective U2-1Us.
d U1l-1Us | U2-IUs
d=2(N= 3) | 2075.077 834.843
d=3 (N =4) | 1433.189 662.926
d=4 (N =5) | 1004.740 | 601.321
d=5 (N =6) | 2149.346 1961.929
1 14
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
g 0.2 0.4 0.6 0.8 1 4 0.2 0.4 0.6 08 1
Fig. 1. Fig. 2.

In Fig. 1 the exact solution and the approximate solution, in the first
case is presented (N = 4).

In Fig. 2 the exact solution and the approximate solution, in the second
case, is presented (N = 4).

We remark that the results obtained by two different methods are very
close.
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