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VECTORIAL OPTIMIZATION IN LOCALLY CONVEX SPACES
ORDERED BY SUPERNORMAL CONES AND EXTENSIONS

VASILE POSTOLICA

Abstract. This research work was conceived as a completion of [27] with existence
results for efficient (Pareto) points in locally convex spaces ordered by supernormal cones,
significant comments and recent extensions.
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1. INTRODUCTION

It is known that the concept of supernormal (nuclear) cone was intro-
duced in Hausdorff locally convex spaces by G. Isac [7] in 1981 and published
in 1983 [8]. In every nuclear space (18] a convex cone is supernormal if and
only if it is normal (Proposition 6 of [8]) and this is the reason for which such a
convex cone was initially called “nuclear cone”. The subsequent properties and
implications of this notion especially in infinite dimensional Pareto optimiza-
tion (8], [12], [22-24], [26], the fixed point theory [11], the study of conically
bounded sets [1], [2], [9], [10], the geometry of cones [19], the best approxima-
tion and optimization in locally convex spaces [13], the vectorial optimization
programs with multifunctions and duality [20], [21], Grothendieck’s nuclearity
[2] and so on show that the nuclear cone is a reinforcement of the normal
cone and this fact justifies the definitive name of “supernormal cone”. For
normed spaces, M.A. Krasnoselski and his colleagues defined the notion of su-
pernormal cone in their important theory concerning with the pointed, closed,
convex cones in Banach spaces (see, for instance, [3], [15] and the connected
subsequent works). Afterwards, G. Isac [7] extended this concept to its proper
framework offered by the separated locally convex spaces and the applications
of this extension show that the supernormality has as suitable background
the Hausdorff locally convex spaces identically with the nuclearity defined by
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Grothendieck. A study of Grothendieck’s nuclearity using supernormal cones
) glvl?l? [12117][2\3/'6 find many examples of supern.ormal cones togethfar wtith ptro;:zl_v
remarks (Section 2) and we gave an exter{smn of supe'rno%"mahfty o set Isn =
companied by its immediate connections with a gener'ahzatlon of approxi :
subdifferential used by J.B. Hiriart—Uruty (6] (Sectlon- 3). Here we preie.znh
some of our existence results for the efficient (Pareto mlnlmgm) pom!:s w 1cd
generated their corresponding implications for Pareto maximum points an

recent and best extensions.

2. EXISTENCE RESULTS FOR EFFICIENT POINTS INjHAUSDORFF
' - ORDERED LOCALLY CONVEX SPACE

It is known that, in general, to solve a vector optimizati.on problen.l in
an ordered vector space means to find the efficient (Pareto opt.lmunlls) potl.nts
of an adequate non-empty set. For this reason, we selef:ted in thlsc,1 slec 1;)1n
some illustrative existence results of the efficient points in separate doli:ia z
convex spaces ordered by supernormal cones and by the recent con‘.es" e1 ned
and studied in [4], [5]. In fact, these cones and a g}‘eat Part of the origina and
beautiful existence results on the efficient points given m the a,bov.e _mentlo-net
research works were suggested by the existence results of the efficient p012n2 S
obtained through the agency of supernormal cones (see [8], [;2], [13], ([)njé
[24], [26] and other conected papers) anq by .the largest classdo ﬁcor(liv.ex [% £
ensuring the existence of the efficient points 1n compe?ct sets define in L .d

Let X be a real Hausdorff locally convex space with the topology mKuc.et
by a family P = {pa: @ € I'} of seminorms ordered by a convex cone K, 1ts

topological dual space X*, A a non-empty subset of X and @ € A.

DEFINITION 2.1. We say that @ is an efficient po'int (Pa.reto minimum,)
for A with respect to K, in notation, a € MINg (A) if @ satisfies one of the
following equivalent conditions 3

(i) An(@—K)Ca+K; (u) (A—l—K)_ﬂ(E—K)Qa—;{K;
(i) KN(@a—A) C—K; (w) Kn(@—-A-K)C-K.

We recall that K is pointed if K N (—K) = {0} an.d acu‘te if.its closllllre
K is pointed. Clearly, MINg (4) =MINg (K + A) and if K is pointed, t eil

@ eMINg (A) if and only if AN(a — K) = {a}, or eql%ivalentlyZ Kn@—A) =
{0}. In a similar manner one defines the Pareto maximum points.

DEFINITION 2.2. [7] We say that K 1is supernormal or nuclear if for every
p € P there exists f € X* such thal p (z) < f (z) for allz € K.
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Remark 2.1. It is clear that every supernormal cone is pointed and the
closure of any supernormal cone is also a supernormal cone. If X is a H-
Fréchet space, that is, the family PP is countable and every seminorm P 18
generated by a scalar semiproduct (-,-),, a € I, then the Theorem 2.8 in [26]
says that a convez cone K is supernormal in (X, PP) if and only if for every
seminorm po € PP, there exists yo € X such that the subdifferential of p,, at
the origin of the space is contained in the translation of the polar cone to K
by some linear and continuous functional (.,ya)ﬂ, pBel.

The first existence result for the efficient point is based on supernormal-
ity of K, the boundedness and completeness of conical (extension) sections
induced by non-empty sets and the following important theorem of [8].

THEOREM 2.1. [8] If K is a supernormal cone in a Hausdorff locally
convez space E and S is a non-empty subset of E having the property that
there exists a bounded and complete set Sy C S with S N (K +2z) C Sy for
every « € Sy, then there exists zo € S such that SN (K + zo) = {xo}.

THEOREM 2.2. [26] Let A C B C A+ K. If K is supernormal and

BN (Ag — K) is bounded and complete for some non-empty set Ag C A then
MINg (A) * .

Proof. Let A" = BN (Ap — K) with Ag C A such that A’ is bounded and
complete. Since A' N (o' — K) C A’ for every o’ € A’, by virtue of Theorem
2.1. it follows that MINg (A') # @. But MINg (A') CMINg (A). Indeed,
if 'z eMINg (A') and we assume that © ¢ A, then there exist a € A and
k € K\ {0}, such that z = a4+ k. On the other hand, z = ag — k; with ag € Ay
and ki € K, therefore a = 2 — k = ag ~ (k+ k1). Consequently, a € A’ and
z —a € K\ {0}, a contradiction. Hence MIN (4’) C A. -

Suppose now that there exists  €MINg (A') \MINg (A). Then, there
exists a; € A such that z —a; € K\ {0}. Therefore a; € z — K C Ay — K and
a; € AC B, that is , a; € A', a contradiction. Consequently, MIN (A4') # @
and MINg (A') CMINg (A). This completes the proof. .

Remark 2.2. The proof of the above theorem shows that if K is super-
normal and AN (a— K) or (A+ K) N (a - K) is bounded and complete for
some a € A, then MINy (A) # &. When this boundedness and completeness
property holds for every a € A, that is, every section or conical section of
A is bounded and complete, then we have the following domination property

A CMINk (A) + K which is very useful to establish properties concerning the
structure of MINg (A).

COROLLARY 2.2.1 [26] If A is a non-empty, bounded and closed sub-

set of X and K is well based by a complete set then, MINg (A) # & and
A CMINK (A) + K.
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Proof. Since A is bounded and K is supernormal (Proposition 5 of [8],
by Theorem 2.2), it is sufficient to prove that every section of A with respect
to K is complete. Let a € A be an arbitrary element and let (a;);., be a
Cauchy net in AN (a — K). Because K is well based by a complete set, there
exists a non-empty, convex, bounded and complete set B such that 0 ¢ B and

K = |J AB. Hence, for each a; (j € JJ, there exist A\; > 0 and b; € B with
A>0 |
a; = a — \jbj. Therefore ()\jbj)jeJ is a bounded Cauchy net. Since the set B

is closed, bounded and 0 ¢ B, there exists a convex and closed neighbourhood
V of the zero element in X and o > 0 such that VN B = @ and B C aV.
If p, is the Minkowski functional of V, then 1 < p, (b) < « for every b € B
and there exists M > 0 with A; < py (Aj0;) < M for all Aj, that is, (Aj);c;
is bounded. When (Aj) ey contains at least a subnet convergent to zero, then
it is clear that a; tends to a; otherwise, because it is bounded, we can find a
subnet (As),cg convergent to Ag > 0. Since (as),cg is a Cauchy net, (bs)se.s
is a Cauchy net in B. Therefore (b;),.g converges to by € B and (as),cg is
convergent to a — Agbg which implies that () jes converges to a — Aobo. So,
we have proved the corollary. O

COROLLARY 2.2.2 [26] If A is a non-empty, bounded and closed subset
of X and K is pointed closed and locally compact, then MINg (A) # @ and
ACMINg (A)+ K.

Proof. This follows from the above corollary because in a Hausdorff lo-
cally convex space a pointed cone is locally compact if and only if it has a
compact generating base. D

DEFINITION 2.3. A non-empty set B C X is K-bounded [20] if there
extsts a bounded set By C X such that E_C By + K and B is said to be
K-closed [16] if the conical extension B + K is closed.

We recall that X is called quasi-complete if every non-empty, bounded
and closed subset in X is complete.

THEOREM 2.3. [26] Let X be quasi-complete. If K is a closed and super-
normal cone in X, then '

(i) for every non-empty K-bounded and K -closed subset A in X we have
MINg (A) # @ and A C MINg (A) + K;

(i) if the set BN (Ag — K) is K-bounded and K-closed for some non-
empty subsets B and Ay with AC B C A+ K and Ay C A, then MINg (A)
+ o

(111) for every K-bounded and K-closed set A C X, MINg (A)+ K =
A+ K and MINg (A) is K-bounded and K -closed.
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Proof. (i), (ii). In the conditions of the theorem every conical extension
section of A is bounded and closed and the results follows by Theorem 2.2
and Remark 2.2. (iii) is based on the inclusion 4 C MINg (A) + K for every
K-bounded and K-closed subset A. a

Before we give an extension of this theorem to ordered Hausdorff topo-
logical vector spaces, we recall two basic definitions.

DEFINITION 2.4. [4] We say that K has property (x) if the set (M +K)n
(N ~ K) is bounded whenever M and N are bounded subsets in X.

DEFINITION 2.5. [4] We say that K has the property (xx) if one of the
Jollowing equivalent conditions holds:

(i) any bounded increasing net which is contained in K and in a complete
subset of X has a limit;

(i) any bounded monotone net which is contained in a complete subset
of X has a limit.

Remark 2.3. Every supernormal cone has properties (*) and (x*) but there
exist convex cones having the properties (%), (x*) which are not supernormal.
Thus, in the classical Banach spaces LP ([a,b]) (p > 1) the usual positive cone
is closed, convez, it has the properties (%) and (*x) but it is not supernormal.
The same conclusion is valid for the cone of nonnegative functions in an Orlicz
space (see Ezample 8 given in Section 2 of [27] ).

Remark 2.4. Under appropriate conditions, in [5] it is shown that in every
separated topological vector space the largest class of convex cones ensuring the
ezistence of the efficient points in any bounded and complete subset coincides
with the class of cones having the property (*x).

The announced generalization of Theorem 2.3 is

n

THEOREM 2.4. [4] . Let X be a Hausdor[f topological vector space, K C
X a convex cone and A C X a non-empty set. Suppose that the following
conditions hold:

(i) X is quasi-complete;

(ii) the cone K has the properties () and (xx);

(iii) the set A is K-bounded and K -closed.

Then MINk (A) # @. If in adition K is correct, that is, K+K\(-K)C
K, then the domination property@A CMINg (A) + K holds.

Following the final remark of Ha T.X.D. in [5] we must mention here that
each of the conditions (i)-(iii) in the above theorem cannot be weakened.

Through the agency of the natural extensions with respect to convex
cones of upper semicontinuity, boundedness and completeness for multifunc-
tions, the above theorem leads in [4] to obtain a criterion for the existence of



186 Vasile Postolica 6

the solutions of the vectorial optimization programs

where F': Y — X is a multifunction defined on a topological space Y, U is a
non-empty set in Y and X is a topological vector space ordered by a convex
cone K.

Let dom (F) = {y € Y : F (y) # @} be the domain of F. One says that F¥
is upper K-continuous at yg € dom (F) if for each neighbourhood V of F(yq)
in X, there exists a neighbourhood W of yo in Y such that F(y) C V + K,
Yy € Wnidom (F). If F(y) is K-bounded (K-closed) for every y € dom (F),
then F is called K-bounded (K-closed) valued.

Taking into account the Theorem 7.2. in [16), if U is a compact set in
Y and F : Y — X is an upper K-continuous, K-bounded, K-closed valued
multifunction, then #'(U) is K-bounded and K-closed (this is a generalization
to ordered topological vector spaces of the known result which shows that
any upper semicontinuous point compact multifunction is compact preserving)
we have

THEOREM 2.5. [4] . If X is quasi-complete, U is a compact set in' Y,
F Y — X is an upper K-continuous, K-bounded and K-closed valued
multifunction and the cone K has the propertics (x) and (++), then (P) has
solutions.

Remark 2.5. When X is a Hausdorff locally convez space ordered by a
closed and supernormal cone K, then the Theorem 2.5 is an immediate con-
sequence of Theorem 7.2 in [16] and Theorem 2.3. Since the cones having
properties (x), (+*) were concetved as extensions of supernormal cones in or-
der to ensure the existence of efficient points under the same hypotheses on
the considered sets, several results of Chapter 4 in [13] concerning the duality
Jor wvectorial optimization programs with multifunctions taking values in quasi-
complete locally convex spaces ordered by closed and supernormal cones can be
extended using such cones as these.

When (X, |[.[}) is a real linear normed space, P is a closed convex cone in
X with its polar cone P = {2* € X : 2* (z) <0, Vz € P}, and S is a closed,
convex set in X, then taking into account Theorem 3.1 [29] and Theorem
3.3 [27] we obtain through the agency of usual subdifferential the following
characterization of Pareto points. '

THEOREM 2.6. An element xy € S is an efficient point with respect to P
if for every e € (0,1), there exists * € PY such that

O (Il =2%) (0) C (s +¢) (z0 = 5)°, Vs > 0.
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Clearly, an equivalent form of the above condition can be obtained using
Hiriart-Urruty’s calculus rules on the subdifferential (see, for example, [6]).

A generalization of this result to separated locally convex spaces will
be given in a subsequent research work which we prepare now together with
Professor Dr. G. Isac, Royal Military College of St. Jean, Québec, Canada.

3. OPEN PROBLEMS

3.1. If K is a pointed convex cone in a quasi-complete locally convex
space such that any K-bounded and K-closed non-empty subset has efficient
points with respect to K, then K is supernormal?

3.2 [5] Let E be a quasi-complete Hausdorff topological vector space and
K an acute convex cone in E having the property that every non-empty, K-
bounded and K-closed subset of E has efficient points. Is it true that K has
the properties () and (x*)?
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