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ON SOARDI’S BERSTEIN OPERATORS OF SECOND KIND

IOAN RASA

Abstract. We solve a problem, raised by Paolo Soardi, concerning the shape preserv-
ing properties of the Bernstein operators of second kind. We establish also a Voronovskaja-
type formula for these operators.

1. INTRODUCTION

Paolo Soardi [6] introduced the following Bernstein operators of second
kind: 8, : C[0,1] = C[0, 1]

o waA,
(1) ﬁnf(w):mkz:o( A )(n+1—2]~c)x
X ((1 a x)k(l +x)n+1—k iFTL :E)n_H—k(l 1 .’17)k> f <’n ;2]{:) ,

where n > 1, f € C[0,1}, z € [0, 1].

They are positive linear operators for which 8,1 =1 and 8,f(1) = f(1), "
n>1, feClo,1].

By an intensive use of probabilistic tools Soardi proved

THEOREM 1.1. Let f be continuous on [0,1]. Then, for all n > 4,

32 B
2) 1Baf — £l < (55 " ;) w(f.n 1),
where || - || is the uniform norm and w is the modulus of continuity.

In the final part of [6] Soardi raised the problem to decide which properties
of the function f are inherited by the 3, f’s.

We shall give some answers to this problem and shall establish a Voronovskaja-
type formula for the operators £,,.
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2. PRESERVATION PROPERTIES

The classical Bernstein operators have many well-known preservation
properties (see [5], [1]). Here are some similar properties of the operators £,.

THEOREM 2.1. Let f € C[0,1] and n > 1.
(i) If f is increasing, then B, f is increasing.
(i) If f is increasing and convez, then B,f is increasing and convez.

Proof. We have for z € [0,1]

[n/2)-1

® Guf) @) =527 3 pusle) (f (” = 2‘“) ~f (w» ,

7 n

(4) p§f> = (" )Ya-22F (1 +2)"2%((n—2)z — 1) +
k
+ (1 —2)" 2%((n — 2k)z + 1)) :

It is easy to prove that p,x > 0 on [0,1]; thus (i) is proved. Let now h =
[n/2) —1. For 0 < k < h let

k
(5) n, (z):=) ’I’L n—29(1 — ) (1 + )" kL.
G JZO<7>(( 7)1 —2)*(1+ =)
- ((n— 2k — 1)z? - 22) +2(1 — 2 (1 + 2)" 7).,
Then

h—1

(6) $32n+1(ﬂnf)”($) a Z(Qn,k(-’l;) - qn,k(_m)) X
k=0
2

x(f(n—n%)_zfcijJrf(n % — 4>>+
s (1 (52) - (=22)).

To finish the proof we have only to show that

(7) tnk(z) > gnp(—2z), 0<k<h, 0<z<Ll.

3 On Soardi's Bernstein Operators 193

This will be accomplished if we prove that the inequality
(8) 2((L—2f(+2)" 7 - (L+a)f(1l—2)"7) >
> (n—2j) (2w ((1 + o)1 — )"+ (- 2)* (L +2)" 1) +
+(n — 2k — 1)z? ((1 +a)F1 =) - (1 — o)+ z)" 1)

holds for 0 < k< h,0<j<k,0<z <1,
Denote m:=n—2j>0, p:=k—j, t:= H‘_;G[O 1].

Then
9) m—2p—1=n—-2k—-1>0.
The inequality (8) is equivalent to
(10) 2(1 +1) (201 + t 4 o + ™) = (P + 7 PTH)) >

> m(m —2p — 1)(E™ P —P) (1 —t).
Dividing by (1 — t)? we find that (10) is implied by
m—2p—3
1) 20+ Y (A+t+.+t) (L+t+.. +¢m 3 <
i=0
<m(m—2p— 1)1 +t4 ... +t"7P72),
Let 7 :=m — 2p — 2; (11) is equivalent to

T T
(12) 3 @i(r —i) +2r) 8 <Y mr + 1)
i=0 i=0
The inequality 4i(r — i) +2r < m(r +1) (for 0 <4 < r) is a consequence
of (9) and so (12) is true; this finishes the proof. o

Remark 2.2. Let e1(z) = z, = € [0,1]. Since Prer is not a polynomial of
degree < 1, we conclude that Bn(n > 2) does not preserve the convexily.

Remark 2.3. From (3) and (4) we get

(13) Bl =0, (Baf) ) = 22|

where [a,b; f] is the divided difference of f corresponding to the nodes a and

b. In particular,

(14) (Bae1)'(0) =0, (Bner)'(1) =
For A > 0 and 0 < a < 1 let us consider the Lipschitz class
Lip(4,a) = {f € C[0,1] : | f(z) — f(W)| < Alz —y|* =,y € [0,1]}-

n—1
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THEOREM 2.4. For n>1 and t > 0 we have

A A
(15) BulLin(d,0)) < Lip(4 (“2) o),
2n—1
(16) w(Bpnf,t) < ¥ w(f,1).
Proof. In view of [2], Corollaries 6 and 7, we only need to show that
-1
(17) Bu(Lip(4,1)) C Lip(A=—=, 1).

Let f € Lip(A4,1). Then Ae; £ f are increasing and we conclude from
Theorem 2.1 that Afne; £ B, f are increasing as well. It immediately follows
that

[ € Lip(A]|(Brer)'ll, 1).

From Theorem 2.1 we deduce also that S,e; is increasing and convex,

hence (Bhe1)’ is positive and increasing. It follows that

1(Brer) | = (Bucr)'(1) = "=2,

n
hence f € Lip (A”T_l, 1) and the proof is complete. |

To conclude this section, let n > 1 and m = [n/2] be fixed. For0 < k <m
and 0 <z <1 set

Wy k(T) = .

(n+ 1)2ntlg m—k
] ((1 . x)m—k(l + x)n—i—l—m-{-k . (1 _ x)n-l—l—m—}—k(l + m)m~k) )
Then

,an(iv) = Zf (ﬁ_ﬁr:—+2]{'> wn,k($)-
k=0

Let 0 < ap < a1 < ... < amm; by using the Maclaurin expansion and the
basic composition formula (a generalisation of the Cauchy-Binet formula, see
[4]) we deduce that the system of functions

(sinh(aot), sinh(ait), ..., sinh(ant))

is totally positive on [0, 00); see also [3], p. 161. Now it is easy to infer that
the system

(wn,o(x), wn1(2), ..., Wnm(z))
is totally positive on [0,1]. This fact has the following consequences:

A. If { fo, f1,..., fp} C C[0,1] is totally positive, then {8y, fo, ..., Bufp} is
totally positive.
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B.If0 < p < m and {fo. f1,--->fp} C C[0,1] is a C}.lebyshev syi—
tem, then {Bnfo,--»Pnfp} 18 2 Chebyshev system; moreover, .1f f € Co,1]
is convex with respect to {fo, ..., fp}, then Bnf is convex with respect to
{:an()a 0 DI aﬂnfp}-

C. The number of strict sign changes of Bn [ is not greater than the
number of strict sign changes in the sequence

(1 it ).

(Apply Theorem 3.1 of [3].)

3. MONOTONIC CONVERGENCE

For n > 1 let ¢, € C[—1,1] be the function determined by the following
three conditions: L o e 14 o bl | [E] |

(a‘)(p’n(o):([i]-i—l) 1 ()DTL 7 - n4l1-k>? /] TR 2

(b) ¢y is afline on every interval determined by two consecutive points

from the sequence

n —2[n/2] n—4 n—2
0, - oLty ,
n n n

|

(c) pp is an even function.

n—1 > 9
Then @1 = 1,0,(1) =1,n=2,3,...andfork=12,..., ,n > 2,

7
we have
[ n — 2k K\ n—1-—2k En—l—-Z(k—l)
n :(1—;; n—1 7 n—1
n — 2k n—1—2k
(18)§90n< 2 )z(l——— ipnl( — +
k n~1—2(k—l))
| +E‘Pn—1 1

Using these relations it is easy to construct recursively the .graphs. of
2,3 Restricted to [0,1], this is a decreasing sequence of increasing
(03

concave functions. . =
Consider now the classical Bernstein operators on C[-1,1]:

Bag(®) =3 busld)g (”‘%), gecl-L1, tel-11],
k=0 .
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where

bux(t) =2"" ( : ) (1 -I-i)n—k(l - t)k, k=0,1,...,n.

We shall express g, f by means of B, and ,,.

Let f € C[0,1]. Since 8,f = Bn(f = £(0)) + £(0), we may suppose that
f(0) =0. Let fy,f5 € C[-1,1], f1 odd, f, even, fi = fp = f on [0,1]. Then
for z € [0,1] we have

[n/2]
uf (o) = 25253 on) (22 bt -

k=0 n

[n/2]
1- -
— 2x$ Z((pnf) (n n2k:) bn,k(—a:) _

k=0
1+ 1—
= ?xBn‘Pn(fl + f2)(z) — ?a: n@n(f1+ f2)(—x).

Since ¢, f1 is odd and ¢, f2 is even, it follows thag B (pnf1) is odd and
Br(n fa2) even. We conclude that

1 .
(19) )= 3 (Bulont @)+ 1B s
foralln > 1,z €[0,1] and f € C[0, 1] with f(0) = 0.
THEOREM 3.1. If f € Co, 1] is increasing and convez, then
(20) ,anZﬂn+1fo7 n:1727

Proof. Let f € C[0,1], f(0) = 0. Then f1(0) = f(0) = 0. By virtue of
(18) we have for ¢ = 1,2 and k=0,1,...,n41,

V(ntl-2k n+1—2
@) (ounsf) (57 = Gonsy (L),

This yields But1(nt1fi) = Bn(onfi), i=1,2. Now (19) implies
(22)  2(Buf () = Bur1f(2)) = Bulpnfa)(z) — Bryi(enfo)(z) +
2 Bulonf)@) ~ Bualpnf) &), o (0,1),
On the other hand it is well-known that for g€ Cl-1,1] and t € [~1,1],

n—1
(28)Bug(t) ~ Brig(t) = F(E%ﬁ Doy ( i 7 . ) (1 +¢)n—1=k 5
k=0

n—2k—-2 n—-2k—1 n—292 J

k
X(l—t) [ - ) = ) e g -

Let z € [0, 1]; by using (22), (23) and the properties of ¢,, we find after some
calculation:

Boemf(x) = Pom+1f(z) =

1-a? 1 2m—1 "
zm(2m 4 1)22m+1 pDyiny < A ) (1 +z)?m k(1 — g)k—

—(1+z)5(1 — z)2m—Fk) x

Im—2k—1[m—-k—-12m—-2k—-1 m—k
5 i
m— k

(24)

m ’ 2m+1  m }_l_
m(2m + 1) 2m —2k —1 m—k'f
2m-k)2m—-k+1)| 2m+1 ' m ° i

Bom-1f(x) — Bom f(z) =
(555) (2l ) mss (o) - 70+

T b z? m—2 [ 2m —2
xm(2m — 1)4m k=0 k

(25) ((1 + $)2m—1—k(1 o x)k — 1+ $)k(1 b x)2m_1"k) ~

2m -2k -2 [2m -2k -3 m—-k—1 2m—2k—1_f +

2m—k—1 2m—1 m " 2m -1
m(2m — 1) m—k—1 2m—2k—1'f

(2m —-k)2m—k—1) m ' 2m-1 ’

We have proved (24) and (25) for f € C[0,1] with f(0) = 0; it is easy to infer
that they are valid for an arbitrary f € C[0,1].

If f € C[0,1] is increasing and convex, then (24) and (25) show that
Bnf 2 Bny1f,n > 1. In order to prove the last inequality in (20) we have only
to apply Theorem 1.1. a

4. A VORONOVSKAJA-TYPE FORMULA

Suppose that = € [-1,1],9 € C[—1,1] and ¢"(z) is finite; for the classical
Bernstein operators B, on C[—1,1], Voronovskaja’s formula is
: LS G
(26) lim n(Bng(a) - 9(x)) = —"—g'(x).

n—oo
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THEOREM 4.1. Let z € (0,1] and f € C[0,1] with f"(z) finite. Then

— 2 =
(21) (B (@) - §(2)) = 25 () + 122 ).
Proof. Consider the functions ¢, € C[-1,1],
_ 2t _ 201 —t)) I
(p(t)_1+ltl’ d)(t)_(l-l—ltl)Q, tE[ lal]

It is a matter of calculus to prove that
(28) nlgglon (¢n — @) = %, uniformly on [1, 1].

Now let z € (0,1] and f € C[0,1] with f”(z) finite and f(0) = 0. Then

n(Buf (@) = F(@)) = 3 Balnlion — p) =) fala) +
1
43 Balnlon — ) ~ /1) + 3Bah)@) + = Balbf)@) +
]

+5n(Balof2)@) ~ (p)(@) + s=n(Baliof1) &) — (1) (&)
By virtue of (28) we have nli_)ngan((n(tpn —@) =) fi)(z) =0, =12
Moreover, nll)IEOBn(wfz)(x) =(z)f(z), ©=1,2. From (26) we infer:

2
Jim n(Ba(efi)(=) = (05 @) = 5 (o) (@), i=1,2.
Summing up, we find
, 1-22 , 1-z
Jim (8,1 (@) - (2) = =5 "(@) + 22 e

Thus we have proved (27) for f € C[0,1] with f(0) = 0 and f"(z) finite;
it is easy to infer that (27) is true for an arbitrary f € C[0, 1] with f”(z) finite.
This finishes the proof. a
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