REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Tome 29, N° 2, 2000, pp. 191–199

ON SOARDI'S BERSTEIN OPERATORS OF SECOND KIND

IOAN RAŞA

Abstract. We solve a problem, raised by Paolo Soardi, concerning the shape preserving properties of the Bernstein operators of second kind. We establish also a Voronovskajatype formula for these operators.

1. INTRODUCTION

Paolo Soardi [6] introduced the following Bernstein operators of second kind: $\beta_n: C[0,1] \to C[0,1]$

(1)
$$\beta_n f(x) = \frac{1}{(n+1)2^{n+1}x} \sum_{k=0}^{\lfloor n/2 \rfloor} {n+1 \choose k} (n+1-2k) \times \left((1-x)^k (1+x)^{n+1-k} - (1-x)^{n+1-k} (1+x)^k \right) f\left(\frac{n-2k}{n}\right),$$

where $n \ge 1$, $f \in C[0,1]$, $x \in [0,1]$.

They are positive linear operators for which $\beta_n 1 = 1$ and $\beta_n f(1) = f(1)$, $n \ge 1$, $f \in C[0,1]$.

By an intensive use of probabilistic tools Soardi proved

Theorem 1.1. Let f be continuous on [0,1]. Then, for all $n \geq 4$,

(2)
$$\|\beta_n f - f\| \le \left(55 + \frac{32}{n}\right) \omega(f, n^{-1/2}),$$

where $\|\cdot\|$ is the uniform norm and ω is the modulus of continuity.

In the final part of [6] Soardi raised the problem to decide which properties of the function f are inherited by the $\beta_n f$'s.

We shall give some answers to this problem and shall establish a Voronovskajatype formula for the operators β_n .

²⁰⁰⁰ AMS subject classification: 41A36.

2. PRESERVATION PROPERTIES

The classical Bernstein operators have many well-known preservation properties (see [5], [1]). Here are some similar properties of the operators β_n .

THEOREM 2.1. Let $f \in C[0,1]$ and $n \ge 1$.

(i) If f is increasing, then $\beta_n f$ is increasing.

(ii) If f is increasing and convex, then $\beta_n f$ is increasing and convex.

Proof. We have for $x \in [0, 1]$

(3)
$$(\beta_n f)'(x) = x^{-2} 2^{-n-1} \sum_{k=0}^{\lfloor n/2 \rfloor - 1} p_{n,k}(x) \left(f\left(\frac{n-2k}{n}\right) - f\left(\frac{n-2k-2}{n}\right) \right),$$

where

(4)
$$p_{n,k}^{(x)} = \binom{n}{k} (1-x^2)^k \left((1+x)^{n-2k} ((n-2k)x-1) + (1-x)^{n-2k} ((n-2k)x+1) \right).$$

It is easy to prove that $p_{n,k} \geq 0$ on [0,1]; thus (i) is proved. Let now $h = \lfloor n/2 \rfloor - 1$. For $0 \leq k \leq h$ let

(5)
$$q_{n,k}(x) := \sum_{j=0}^{k} \binom{n}{j} \left((n-2j)(1-x)^k (1+x)^{n-k-1} \cdot ((n-2k-1)x^2 - 2x) + 2(1-x)^j (1+x)^{n-j} \right).$$

Then

(6)
$$x^{3}2^{n+1}(\beta_{n}f)''(x) = \sum_{k=0}^{n-1} (q_{n,k}(x) - q_{n,k}(-x)) \times \left(f\left(\frac{n-2k}{n}\right) - 2f\left(\frac{n-2k-2}{n}\right) + f\left(\frac{n-2k-4}{n}\right) \right) + \left(q_{n,h}(x) - q_{n,h}(-x) \right) \left(f\left(\frac{n-2h}{n}\right) - f\left(\frac{n-2h-2}{n}\right) \right).$$

To finish the proof we have only to show that

(7)
$$q_{n,k}(x) \ge q_{n,k}(-x), \quad 0 \le k \le h, \quad 0 \le x \le 1.$$

This will be accomplished if we prove that the inequality

(8)
$$2\left((1-x)^{j}(1+x)^{n-j}-(1+x)^{j}(1-x)^{n-j}\right) \geq \\ \geq (n-2j)\left(2x\left((1+x)^{k}(1-x)^{n-k-1}+(1-x)^{k}(1+x)^{n-k-1}\right)+\\ +(n-2k-1)x^{2}\left((1+x)^{k}(1-x)^{n-k-1}-(1-x)^{k}(1+x)^{n-k-1}\right)\right)$$

holds for $0 \le k \le h$, $0 \le j \le k$, $0 \le x \le 1$. Denote m := n - 2j > 0, p := k - j, $t := \frac{1-x}{1+x} \in [0,1]$.

(9)
$$m - 2p - 1 = n - 2k - 1 > 0.$$

The inequality (8) is equivalent to

(10)
$$2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^p+t^{m-p-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-p-1}-t^{m-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-p-1}-t^{m-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-p-1}-t^{m-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-p-1}-t^{m-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-p-1}-t^{m-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-p-1}-t^{m-1})\right) \ge 2(1+t)\left(2(1+t+\ldots+t^{m-1})-m(t^{m-1}-t^{m-1})\right)$$

Dividing by $(1-t)^2$ we find that (10) is implied by

(11)
$$2(1+t) \sum_{i=0}^{m-2p-3} (1+t+\ldots+t^i) (1+t+\ldots+t^{m-2p-3-i}) \le m(m-2p-1)(1+t+\ldots+t^{m-2p-2})$$

Let r := m - 2p - 2; (11) is equivalent to

(12)
$$\sum_{i=0}^{r} (4i(r-i) + 2r) t^{i} \le \sum_{i=0}^{r} m(r+1)t^{i}.$$

The inequality $4i(r-i) + 2r \le m(r+1)$ (for $0 \le i \le r$) is a consequence of (9) and so (12) is true; this finishes the proof.

Remark 2.2. Let $e_1(x) = x$, $x \in [0,1]$. Since $\beta_n e_1$ is not a polynomial of degree < 1, we conclude that $\beta_n (n \ge 2)$ does not preserve the convexity.

Remark 2.3. From (3) and (4) we get

(13)
$$(\beta_n f)'(0) = 0, \quad (\beta_n f)'(1) = \frac{n-1}{n} \left[\frac{n-2}{n}, 1; f \right],$$

where [a, b; f] is the divided difference of f corresponding to the nodes a and b. In particular,

(14)
$$(\beta_n e_1)'(0) = 0, \quad (\beta_n e_1)'(1) = \frac{n-1}{n}.$$

For A > 0 and $0 < \alpha \le 1$ let us consider the Lipschitz class $\operatorname{Lip}(A, \alpha) = \{ f \in C[0, 1] : |f(x) - f(y)| \le A|x - y|^{\alpha}, x, y \in [0, 1] \}.$

195

Theorem 2.4. For $n \ge 1$ and t > 0 we have

(15)
$$\beta_n(\operatorname{Lip}(A,\alpha)) \subset \operatorname{Lip}(A\left(\frac{n-1}{n}\right)^{\alpha},\alpha),$$

(16)
$$\omega(\beta_n f, t) \le \frac{2n - 1}{n} \omega(f, t).$$

Proof. In view of [2], Corollaries 6 and 7, we only need to show that

(17)
$$\beta_n(\operatorname{Lip}(A,1)) \subset \operatorname{Lip}(A\frac{n-1}{n},1).$$

Let $f \in \text{Lip}(A,1)$. Then $Ae_1 \pm f$ are increasing and we conclude from Theorem 2.1 that $A\beta_n e_1 \pm \beta_n f$ are increasing as well. It immediately follows that

$$f \in \operatorname{Lip}(A||(\beta_n e_1)'||, 1).$$

From Theorem 2.1 we deduce also that $\beta_n e_1$ is increasing and convex, hence $(\beta_n e_1)'$ is positive and increasing. It follows that

$$\|(\beta_n e_1)'\| = (\beta_n e_1)'(1) = \frac{n-1}{n},$$

hence $f \in \text{Lip}\left(A^{\frac{n-1}{n}},1\right)$ and the proof is complete.

To conclude this section, let $n \ge 1$ and $m = \lfloor n/2 \rfloor$ be fixed. For $0 \le k \le m$ and $0 \le x \le 1$ set

$$w_{n,k}(x) = \frac{n+1-2m+2k}{(n+1)2^{n+1}x} \binom{n+1}{m-k} \cdot \left((1-x)^{m-k} (1+x)^{n+1-m+k} - (1-x)^{n+1-m+k} (1+x)^{m-k} \right).$$

$$\beta_n f(x) = \sum_{k=0}^m f\left(\frac{n-2m+2k}{n}\right) w_{n,k}(x).$$

Let $0 < a_0 < a_1 < ... < a_m$; by using the Maclaurin expansion and the basic composition formula (a generalisation of the Cauchy-Binet formula, see [4]) we deduce that the system of functions

$$(\sinh(a_0t), \sinh(a_1t), ..., \sinh(a_nt))$$

is totally positive on $[0,\infty)$; see also [3], p. 161. Now it is easy to infer that the system

$$(w_{n,0}(x), w_{n,1}(x), ..., w_{n,m}(x))$$

is totally positive on [0,1]. This fact has the following consequences:

A. If $\{f_0, f_1, ..., f_p\} \subset C[0, 1]$ is totally positive, then $\{\beta_n f_0, ..., \beta_n f_p\}$ is totally positive.

B. If $0 \leq p \leq m$ and $\{f_0, f_1, \ldots, f_p\} \subset C[0,1]$ is a Chebyshev system, then $\{\beta_n f_0, \dots, \beta_n f_p\}$ is a Chebyshev system; moreover, if $f \in C[0,1]$ is convex with respect to $\{f_0, \ldots, f_p\}$, then $\beta_n f$ is convex with respect to $\{\beta_n f_0,\ldots,\beta_n f_p\}.$

C. The number of strict sign changes of $\beta_n f$ is not greater than the number of strict sign changes in the sequence

$$\left(f\left(\frac{n-2m}{n}\right), f\left(\frac{n-2m-2}{n}\right), \ldots, f(1)\right).$$

(Apply Theorem 3.1 of [3].)

3. MONOTONIC CONVERGENCE

For $n \geq 1$ let $\varphi_n \in C[-1,1]$ be the function determined by the following three conditions:

(a) $\varphi_n(0) = \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right)^{-1}; \quad \varphi_n\left(\frac{n-2k}{n} \right) = \frac{n+1-2k}{n+1-k}, \quad k = 0, 1, \dots, \left\lceil \frac{n}{2} \right\rceil.$

(b) φ_n is affine on every interval determined by two consecutive points from the sequence

$$0, \frac{n-2[n/2]}{n}, \dots, \frac{n-4}{n}, \frac{n-2}{n}, 1.$$

(c) φ_n is an even function. Then $\varphi_1 = 1, \varphi_n(1) = 1, n = 2, 3, \ldots$ and for $k = 1, 2, \ldots, \left\lceil \frac{n-1}{n} \right\rceil, n \geq 2$, we have

(18)
$$\begin{cases} \frac{n-2k}{n} = \left(1 - \frac{k}{n}\right) \frac{n-1-2k}{n-1} + \frac{k}{n} \frac{n-1-2(k-1)}{n-1} \\ \varphi_n\left(\frac{n-2k}{n}\right) = \left(1 - \frac{k}{n}\right) \varphi_{n-1}\left(\frac{n-1-2k}{n-1}\right) + \\ + \frac{k}{n}\varphi_{n-1}\left(\frac{n-1-2(k-1)}{n-1}\right) \end{cases}$$

Using these relations it is easy to construct recursively the graphs of $\varphi_2, \varphi_3, \ldots$ Restricted to [0,1], this is a decreasing sequence of increasing concave functions.

Consider now the classical Bernstein operators on C[-1,1]:

$$B_n g(t) = \sum_{k=0}^n b_{n,k}(t) g\left(\frac{n-2k}{n}\right), \quad g \in C[-1,1], \quad t \in [-1,1],$$

where

$$b_{n,k}(t) = 2^{-n} \binom{n}{k} (1+t)^{n-k} (1-t)^k, \quad k = 0, 1, \dots, n.$$

We shall express $\beta_n f$ by means of B_n and φ_n .

Let $f \in C[0,1]$. Since $\beta_n f = \beta_n (f - f(0)) + f(0)$, we may suppose that f(0) = 0. Let $f_1, f_2 \in C[-1,1]$, f_1 odd, f_2 even, $f_1 = f_2 = f$ on [0,1]. Then for $x \in [0,1]$ we have

$$\beta_n f(x) = \frac{1+x}{2x} \sum_{k=0}^{[n/2]} (\varphi_n f) \left(\frac{n-2k}{n}\right) b_{n,k}(x) - \frac{1-x}{2x} \sum_{k=0}^{[n/2]} (\varphi_n f) \left(\frac{n-2k}{n}\right) b_{n,k}(-x) = \frac{1+x}{4x} B_n \varphi_n (f_1 + f_2)(x) - \frac{1-x}{4x} B_n \varphi_n (f_1 + f_2)(-x).$$

Since $\varphi_n f_1$ is odd and $\varphi_n f_2$ is even, it follows that $B_n(\varphi_n f_1)$ is odd and $B_n(\varphi_n f_2)$ even. We conclude that

(19)
$$\beta_n f(x) = \frac{1}{2} \left(B_n(\varphi_n f_2)(x) + \frac{1}{x} B_n(\varphi_n f_1)(x) \right)$$

for all $n \ge 1, x \in [0, 1]$ and $f \in C[0, 1]$ with f(0) = 0.

Theorem 3.1. If $f \in C[0,1]$ is increasing and convex, then

$$\beta_n f \ge \beta_{n+1} f \ge f, \quad n = 1, 2, \dots$$

Proof. Let $f \in C[0,1]$, f(0) = 0. Then $f_1(0) = f_2(0) = 0$. By virtue of (18) we have for i = 1, 2 and $k = 0, 1, \ldots, n + 1$,

(21)
$$(\varphi_{n+1}f_i)\left(\frac{n+1-2k}{n+1}\right) = (\varphi_nf_i)\left(\frac{n+1-2k}{n+1}\right).$$

This yields $B_{n+1}(\varphi_{n+1}f_i) = B_n(\varphi_n f_i)$, i = 1, 2. Now (19) implies

(22)
$$2(\beta_n f(x) - \beta_{n+1} f(x)) = B_n(\varphi_n f_2)(x) - B_{n+1}(\varphi_n f_2)(x) + \frac{1}{x} (B_n(\varphi_n f_1)(x) - B_{n+1}(\varphi_n f_1)(x)), \quad x \in [0, 1].$$

On the other hand it is well-known that for $g \in C[-1,1]$ and $t \in [-1,1]$,

$$(23)B_{n}g(t) - B_{n+1}g(t) = \frac{1 - t^{2}}{n(n+1)2^{n-1}} \sum_{k=0}^{n-1} {n-1 \choose k} (1+t)^{n-1-k} \times (1-t)^{k} \left[\frac{n-2k-2}{n}, \frac{n-2k-1}{n}, \frac{n-2k}{n}; g \right].$$

Let $x \in [0,1]$; by using (22), (23) and the properties of φ_n we find after some calculation:

$$\beta_{2m}f(x) - \beta_{2m+1}f(x) = \frac{1 - x^2}{xm(2m+1)2^{2m+1}} \sum_{k=0}^{m-1} \binom{2m-1}{k} \left((1+x)^{2m-k}(1-x)^k - \frac{1 - x^2}{2m(2m+1)2^{2m+1}} \right) \times \\ \times \left(\frac{2m-2k-1}{2m-k} \left[\frac{m-k-1}{m}, \frac{2m-2k-1}{2m+1}, \frac{m-k}{m}; f \right] + \frac{m(2m+1)}{(2m-k)(2m-k+1)} \left[\frac{2m-2k-1}{2m+1}, \frac{m-k}{m}; f \right] \right),$$

$$\beta_{2m-1}f(x) - \beta_{2m}f(x) = 2 \left(\frac{1-x^2}{4} \right)^m \binom{2m-2}{m-1} \frac{2m-1}{m(m+1)} \left(f \left(\frac{1}{2m-1} \right) - f(0) \right) + \frac{1-x^2}{xm(2m-1)4^m} \sum_{k=0}^{m-2} \binom{2m-2}{k} \right)$$

$$(25) \qquad \left((1+x)^{2m-1-k}(1-x)^k - (1+x)^k(1-x)^{2m-1-k} \right) \times \\ \times \left(\frac{2m-2k-2}{2m-k-1} \left[\frac{2m-2k-3}{2m-1}, \frac{m-k-1}{m}, \frac{2m-2k-1}{2m-1}; f \right] + \frac{m(2m-1)}{(2m-k)(2m-k-1)} \left[\frac{m-k-1}{m}, \frac{2m-2k-1}{2m-1}; f \right] \right).$$

We have proved (24) and (25) for $f \in C[0,1]$ with f(0) = 0; it is easy to infer that they are valid for an arbitrary $f \in C[0,1]$.

If $f \in C[0,1]$ is increasing and convex, then (24) and (25) show that $\beta_n f \geq \beta_{n+1} f, n \geq 1$. In order to prove the last inequality in (20) we have only to apply Theorem 1.1.

4. A VORONOVSKAJA-TYPE FORMULA

Suppose that $x \in [-1, 1]$, $g \in C[-1, 1]$ and g''(x) is finite; for the classical Bernstein operators B_n on C[-1, 1], Voronovskaja's formula is

(26)
$$\lim_{n \to \infty} n(B_n g(x) - g(x)) = \frac{1 - x^2}{2} g''(x).$$

THEOREM 4.1. Let $x \in (0,1]$ and $f \in C[0,1]$ with f''(x) finite. Then

(27)
$$n(\beta_n f(x) - f(x)) = \frac{1 - x^2}{2} f''(x) + \frac{1 - x}{x} f'(x).$$

Proof. Consider the functions $\varphi, \psi \in C[-1, 1]$,

$$\varphi(t) = \frac{2|t|}{1+|t|}, \quad \psi(t) = \frac{2(1-|t|)}{(1+|t|)^2}, \quad t \in [-1,1].$$

It is a matter of calculus to prove that

(28)
$$\lim_{n\to\infty} n (\varphi_n - \varphi) = \psi, \text{ uniformly on } [-1, 1].$$

Now let $x \in (0,1]$ and $f \in C[0,1]$ with f''(x) finite and f(0) = 0. Then

$$n(\beta_n f(x) - f(x)) = \frac{1}{2} B_n (n(\varphi_n - \varphi) - \psi) f_2(x) + \frac{1}{2x} B_n (n(\varphi_n - \varphi) - \psi) f_1(x) + \frac{1}{2} B_n (\psi f_2)(x) + \frac{1}{2x} B_n (\psi f_1)(x) + \frac{1}{2x} n(B_n(\varphi f_2)(x) - (\varphi f_2)(x)) + \frac{1}{2x} n(B_n(\varphi f_1)(x) - (\varphi f_1)(x)).$$

By virtue of (28) we have $\lim_{n\to\infty} B_n((n(\varphi_n-\varphi)-\psi)f_i)(x)=0, \quad i=1,2.$ Moreover, $\lim_{n\to\infty} B_n(\psi f_i)(x)=\psi(x)f(x), \quad i=1,2.$ From (26) we infer:

$$\lim_{n\to\infty} n(B_n(\varphi f_i)(x) - (\varphi f_i)(x)) = \frac{1-x^2}{2} (\varphi f)''(x), \quad i=1,2.$$

Summing up, we find

$$\lim_{n \to \infty} n(\beta_n f(x) - f(x)) = \frac{1 - x^2}{2} f''(x) + \frac{1 - x}{x} f'(x)$$

Thus we have proved (27) for $f \in C[0,1]$ with f(0) = 0 and f''(x) finite; it is easy to infer that (27) is true for an arbitrary $f \in C[0,1]$ with f''(x) finite. This finishes the proof.

REFERENCES

- [1] ALTOMARE, F., CAMPITI, M., Korovkin-type approximation theory and its applications, Walter de Gruyter, Berlin-New York, 1994.
- [2] ANASTASSIOU, A., COTTIN, C., GONSKA, H. H., Global smoothness of approximating functions, Analysis, 11, pp. 43-57, 1991.
- [3] GOODMAN, T. N. T., Total positivity and the shape of curves, in: Total positivity and its applications, M. Gasca and C. A. Micchelli (Eds.), Kluwer Academic Publishers, Dordrecht, pp. 157-186, 1996.
- [4] KARLIN, S., Total positivity, Stanford University Press, Standford, 1968.
- [5] LORENTZ, G. G., Bernstein polynomials, Chelsea, New York, 1986.

[6] SOARDI, P., Bernstein polynomials and random walks on hypergroups, in: Probability measures on groups, X (Oberwolfach 1990), Plenum, New York, pp. 387-393, 1991.

Received September 30, 1998

Technical University
of Cluj-Napoca
Department of Mathematics
str. Gh. Bariţiu 25
3400 Cluj-Napoca, Romania
E-mail: Ioan.Rasa@math.utcluj.ro