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ACCELERATING THE CONVERGENCE
OF THE SUCCESSIVE APPROXIMATIONS∗

EMIL CĂTINAŞ†

Abstract. In a previous paper of us, we have shown that no q-superlinear con-
vergence to a fixed point x∗ of a nonlinear mapping G may be attained by the
successive approximations when G′(x∗) has no eigenvalue equal to 0. However,
high convergence orders may theoretically be attained if one considers perturbed
successive approximations.

We characterize here the correction terms which must be added at each step
in order to obtain convergence with q-order 2 of the resulted iterates.
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1. INTRODUCTION

We are interested in the convergence of the successive approximations
(1) xk+1 = G(xk), k = 0, 1, . . .
to a fixed point x∗ ∈ int(D) of the nonlinear mapping G : D ⊆ Rn → D.
A classical result on the local convergence of these sequences is given by the
Ostrowski theorem. First we remind the definitions of the convergence orders.

Let ‖ · ‖ denote a given norm on Rn.

Definition 1. [19, ch. 9] Let (xk)k≥0 ⊂ Rn be an arbitrary sequence con-
verging to some x∗ ∈ Rn. The quotient and the root convergence factors are
defined for each α ∈ [1,+∞) as

Qα{xk} =


0, if xk = x∗, for all but finitely many k,

lim sup
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖α

, if xk 6= x∗, for all but finitely many k,

+∞, otherwise,

Rα{xk} =


lim sup
k→∞

‖xk − x∗‖1/α
k
, when α > 1,

lim sup
k→∞

‖xk − x∗‖1/k, when α = 1.
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The q- and r-convergence orders are defined by

OQ{xk} =
{

+∞, if Qα{xk} = 0, ∀α ∈ [1,+∞),
inf
{
α ∈ [1,+∞) : Qα{xk} = +∞

}
, otherwise

OR{xk} =
{

+∞, if Rα{xk} = 0, ∀α ∈ [1,+∞),
inf
{
α ∈ [1,+∞) : Rα{xk} = 1

}
, otherwise.

When Q1{xk} = 0 or R1{xk} = 0, the sequence converges q-, resp. r-
superlinearly; if Qα0{xk} < +∞ for some α0 > 1, one may write

‖xk+1 − x∗‖ = O(‖xk − x∗‖α0), as k →∞.

The q-convergence rates require conditions stronger than for the r-convergence
rates: the q-convergence with a certain order implies r-convergence with at
least the same order, the converse being false. We refer the reader to [19, ch.
9] and [23] (see also [25, ch. 3] and [24]) for other different relating results.

The fixed point x∗ is an attraction fixed point if there exists an open ball
with center at x∗ such that for any initial approximation x0 from that ball,
the sequence (1) converges to x∗. We shall denote by S the set of all such
sequences.

The q- and r-factors of the iterative process S are then defined as

Qα(S) = sup
{
Qα{xk} : (xk)k≥0 ∈ S

}
, respectively

Rα(S) = sup
{
Rα{xk} : (xk)k≥0 ∈ S

}
,

the convergence orders being similarly defined as for a single sequence.
Now we can state the following classical result (see also [25, Th. 3.5]).
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Theorem 1 (Ostrowski). [20, Th. 22.1], [19, Thms. 10.1.3, 10.1.4] Assume
that the mapping G is differentiable at the fixed point x∗ ∈ int(D). If the
spectral radius of G′(x∗) satisfies

σ = ρ(G′(x∗)) < 1,

then x∗ is an attraction fixed point. Moreover, R1(S) = σ, and if σ > 0 then
OR(S) = OQ(S) = 1.

According to this theorem, when σ = 0, all the sequences from S con-
verge r-superlinearly; however, this does not imply that they also converge
q-superlinearly (an example is given in [19, E10.1-6]; see also [25, p. 30]).
A sufficient condition for q-superlinear convergence of S is that G′(x∗) = 0
[19, Th. 10.1.6] (see also [25, p. 30]). The q-convergence order of S is even
higher under some supplementary smoothness conditions: if G is continuously
differentiable on an open neighborhood of the fixed point x∗ ∈ int(D), G is
twice differentiable at x∗ and G′(x∗) = 0, then OR(S) ≥ OQ(S) ≥ 2 [19, Th.
10.1.7] (see also [25, Th. 3.6]).

These sufficient conditions (which are not also necessary) ensure the high
convergence orders of all the successive approximations near the fixed point,
but the restrictions on G′ are rather strong. In our paper [8] we have char-
acterized the high convergence orders of only one sequence converging to x∗.
We shall consider here only the q-order 2.

Theorem 2. [8] Assume that the mapping G is differentiable on an open
neighborhood of the fixed point x∗, with G′ Lipschitz continuous at x∗, i.e.
there exists L, ε > 0 such that

‖G′(x)−G′(x∗)‖ ≤ L‖x− x∗‖, when ‖x− x∗‖ < ε.

Suppose also that σ = ρ(G′(x∗)) < 1. Let x0 ∈ D be an initial approximation
such that the sequence of successive approximations converges to x∗. Then
(xk)k≥0 converges with q-order 2 iff

(2)
∥∥G′(xk)(xk −G(xk))

∥∥ = O
(
‖xk −G(xk)‖2

)
, as k →∞.

This result allowed us to show that condition (2) is in fact equivalent to

G′(x∗)(xk+1 − xk) = 0, ∀k ≥ k0,

i.e., from a certain step, the corrections xk+1−xk are eigenvectors correspond-
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ing to the eigenvalue 0 of G′(x∗). As a direct consequence, it followed that the
trajectories with high convergence orders are restricted to affine subspaces.

Apart from the instability in the presence of errors implied by this result,
it also means bad news when G′(x∗) is invertible (i.e. all its eigenvalues are
nonzero), since no trajectory may attain high convergence rates.

We are interested in accelerating the convergence of the successive approxi-
mations in the case 0 < σ < 1 (or even when G′(x∗) is nonsingular) by adding
some correction terms δk ∈ Rn, i.e., by considering the sequence

(3) xk+1 = G(xk) + δk, k = 0, 1, . . .

In [8] we have characterized the high convergence orders of this sequence,
but δk were viewed as error terms, and the above sequence was called as
perturbed successive approximations. We shall present a new result which
allows (at least theoretically) the computation of some terms δk leading to
q-quadratic convergence of the iterations (3).

2. ACCELERATED CONVERGENCE OF THE SUCCESSIVE APPROXIMATIONS

We have obtained the following result:

Theorem 3. [8] Suppose that G satisfies the assumptions of Theorem 2,
and that the sequence (3) of perturbed successive approximations converges to
x∗. Then the convergence is with q-order 2 iff

(4)
∥∥G′(xk)(xk −G(xk)

)
+
(
I −G′(xk)

)
δk
∥∥ = O

(
‖xk −G(xk)‖2

)
, as k →∞.

We note that this result no longer requires G′(x∗) to be singular.
We obtain an equivalent form of condition (4) in the following result:

Theorem 4. Suppose that G satisfies the assumptions of Theorem 2, that
the sequence (xk)k≥0 given by (3) converges to x∗, and that the matrices I −
G′(xk) are invertible starting from a certain step. Then the convergence is
with q-order 2 iff

δk =
(
I −G′(xk)

)−1(
G′(xk)(G(xk)− xk) + γk

)
,

where (γk)k≥0 ⊂ Rn is an arbitrary sequence converging to zero with γk =
O(‖xk −G(xk)‖2), as k →∞.

Proof. We can easily obtain this result from the previous theorem by de-
noting
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γk = G′(xk)
(
xk −G(xk)

)
+
(
I −G′(xk)

)
δk

and then computing δk. �

Under the assumption that ‖G′(x)‖ < q < 1 for all x in a certain neighbor-
hood of x∗, a natural choice (implied by the Banach lemma) for δk is

δk =
(
I + · · ·+G′(xk)ik

)
G′(xk)(G(xk)− xk),

with ik such that
qik+2

1− q ≤ K‖xk −G(xk)‖

for some fixed K > 0.
This choice may be useful when the powers of G′(x) and their sums are

computationally inexpensive (G′(x) is sparse, etc.). However, it is known that
for a matrixA ∈ Rn×n with ρ(A) < 1, additional conditions are needed in order
that Ak → 0 in floating point arithmetic (see [14, ch. 17] for a discussion of
this topic).

Also, the local convergence of these iterations remains to be studied.
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Anal. Numér. Théor. Approx., 28 (1999) no. 2, 125–132.
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