REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 1, pp. 75-80 ictp.acad.ro/jnaat

SINGLE-VALUED AND MULTI-VALUED MEIR-KEELER TYPE OPERATORS

ADRIAN PETRUŞEL

Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract. The purpose of this paper is to present several fixed point results for some single-valued and multi-valued Meir–Keeler type operators.

MSC 2000. 47H10, 58F13.

Keywords. fixed point, Hausdorff–Pompeiu metric, ε -chain.

1. INTRODUCTION

Let (X, d) be a complete metric space and P(X) the space of all nonempty subsets of X. Denote by $P_{cp}(X)$ the space of all nonempty compact subsets of X. If H is the Hausdorff–Pompeiu metric on $P_{cp}(X)$, it is well known that $(P_{cp}(X), H)$ is a complete metric space.

Let $f_i, i \in \{1, \ldots, m\}$ be a finite family of continuous single-valued operators of X into itself. We define the operator $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ by the following relation: $T(Y) = \bigcup_{i=1}^{m} f_i(Y)$. If f_i are α -contractions for each $i \in \{1, \ldots, m\}$ then the operator T is an α -contraction and hence has a unique fixed point.

On the other hand, if F_i , $i \in \{1, ..., m\}$ is a finite family of upper semicontinuous multivalued operators, then the (single-valued) operator

$$T: (P_{cp}(X), H) \to (P_{cp}(X), H)$$
 given by $T(Y) = \bigcup_{i=1}^{m} F_i(Y)$

is well defined. Moreover, it is well known that if F_i are α -contractions for

[&]quot;Babeş-Bolyai" University of Cluj-Napoca, Department of Applied Mathematics, 3400 Cluj-Napoca, Romania, e-mail: petrusel@math.ubbcluj.ro.

each $i \in \{1, \ldots, m\}$ then T is an α -contraction too (see [6], [7]).

The purpose of this note is to prove that for each finite family of singlevalued or multi-valued operators satisfying some Meir–Keeler type conditions the (single-valued) operator T has a fixed point.

2. PRELIMINARIES

Let (X, d) be a complete metric space and $P_{cp}(X)$ be the complete metric space of all nonempty, compact subsets of X. A metric space (X, d) is said to be ε -chainable (where $\varepsilon > 0$ is fixed) if and only if given $a, b \in X$ there is an ε -chain from a to b, that is a finite set of points x_0, x_1, \ldots, x_n in X such that $x_0 = a, x_n = b$ and $d(x_{i-1}, x_i) < \varepsilon$, for all $i \in \{1, 2, \ldots, n\}$.

If $f: X \to X$ is a single-valued operator then $x^* \in X$ is a fixed point for f iff $x^* = f(x^*)$. We will denote by Fixf the fixed points set of f.

If $F: X \to P(X)$ is a multi-valued operator then a fixed point for F is an element $x^* \in X$ such that $x^* \in F(x^*)$. The set of all fixed points for F will be denoted by Fix F.

Let us consider the following functionals :

 $D: X \times P_{cp}(X) \to \mathbb{R}_+, \ D(x, A) = \inf\{d(x, a) | a \in A\}, \ \text{for } x \in X$ $\rho: P_{cp}(X) \times P_{cp}(X) \to \mathbb{R}_+, \ \rho(A, B) = \sup\{D(a, B) | a \in A\}$ $H: P_{cp}(X) \times P_{cp}(X) \to \mathbb{R}_+, \ H(A, B) = \max\{\rho(A, B), \rho(B, A)\}.$ Some contractivity-type conditions are needed in the main section.

DEFINITION 2.1. If $f: X \to X$ is an single-valued operator, let us consider the following conditions:

i) α -contraction condition:

(1) there is $\alpha \in [0, 1[$ such that for $x, y \in X \Rightarrow d(f(x), f(y)) \le \alpha d(x, y)$

ii) strict contraction condition:

(2) $x, y \in X, x \neq y \Rightarrow d(f(x), f(y)) < d(x, y)$

iii) Meir–Keeler type condition:

(3) for each $\eta > 0$ there exists $\delta > 0$ such that $x, y \in X$, $\eta \leq d(x, y) < \eta + \delta$ we have $d(f(x), f(y)) < \eta$

iv) ε -locally Meir-Keeler type condition (where $\varepsilon > 0$)

(4) for each $0 < \eta < \varepsilon$ there is $\delta > 0$ such that $x, y \in X$, $\eta \le d(x, y) < \eta + \delta$ it follows $d(f(x), f(y)) < \eta$.

Let us observe that, condition (iii) implies (ii), (iii) implies (iv) and each of these conditions implies the continuity of f.

DEFINITION 2.2. If $F : X \to P_{cp}(X)$ is a multi-valued operator then F is said to be:

i) α -contraction if:

(5) there is $\alpha \in [0,1[$ such that for $x, y \in X \Rightarrow H(F(x), F(y)) \leq \alpha d(x, y)$ ii) strict contraction if:

(6) $x, y \in X, x \neq y \Rightarrow H(F(x), F(y)) < d(x, y)$

iii) Meir-Keeler type operator if:

(7) for each $\eta > 0$ there exists $\delta > 0$ such that $x, y \in X$, $\eta \leq d(x, y) < \eta + \delta \Rightarrow H(F(x), F(y)) < \eta$

iv) ε -locally Meir-Keeler type operator (where $\varepsilon > 0$) if:

(8) for each $0 < \eta < \varepsilon$ there is $\delta > 0$ such that $x, y \in X$, $\eta \le d(x, y) < \eta + \delta \Rightarrow H(F(x), F(y)) < \eta$.

It is easily to see that condition (iii) implies (ii), (iii) implies (iv) and each of these conditions implies the upper semi-continuity of F.

On the other hand, if $F: X \to P_{cp}(X)$ is an upper semi-continuous operator then $F(Y) \in P_{cp}(X)$ (see for example [1]).

Finally let us consider two fixed point principles given by Meir–Keeler [5] and Xu [8], that we need in the main section.

THEOREM 2.1. [5] Let (X, d) be a complete metric space and f an operator from X into itself. If f satisfies the Meir-Keeler type condition (4) then f has a unique fixed point, i.e. $F_f = \{x^*\}$. Moreover for any $x \in X$, $\lim_{n \to \infty} f^n(x) = x^*$.

THEOREM 2.2. [8] Let (X, d) be a complete ε -chainable metric space and $f: X \to X$ be an operator satisfying the ε -locally Meir-Keeler type condition (5). Then f has a fixed point.

3. MAIN RESULTS

Let us consider first the single-valued operators $f_i : X \to X, i \in \{1, \ldots, m\}$ and $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ the (single-valued) operator defined by the relation:

(3.1)
$$T(Y) = \bigcup_{i=1}^{m} f_i(Y).$$

77

Our first main result is:

THEOREM 3.1. Let (X, d) be a complete metric space and $f_i : X \to X$, for $i \in \{1, 2, ..., m\}$ are operators satisfying the Meir-Keeler type condition (3). Then the operator $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ defined by the relation (3.1.) is a Meir-Keller type operator and hence $FixT = \{A^*\}$.

Proof. We shall prove that for each $\eta > 0$ there is $\delta > 0$ such that the following implication holds

$$\eta \le H(A,B) < \eta + \delta \implies H(T(A),T(B)) < \eta.$$

Let us consider $A, B \in P_{cp}(X)$ such that $\eta \leq H(A, B) < \eta + \delta$.

If $u \in T(A)$ then there exists $j \in \{1, \ldots, m\}$ and $x \in A$ such that $u = f_j(x)$. For $x \in A$ we can choose $y \in B$ such that $d(x, y) \leq H(A, B) < \eta + \delta$. We have the following alternative:

If $d(x,y) \ge \eta$ then $\eta \le d(x,y) < \eta + \delta$ implies $d(f_j(x), f_j(y)) < \eta$. Hence $D(u, T(B)) \le d(u, f_j(y)) < \eta$.

On the other hand, if $d(x, y) < \eta$ then from (3) we have $d(f_j(x), f_j(y)) < d(x, y) < \eta$ and again the conclusion $D(u, T(B)) < \eta$.

Because T(A) is compact we have that $\rho(T(A), T(B)) < \eta$.

Interchanging the roles of T(A) and T(B) we obtain $\rho(T(B), T(A)) < \eta$ and hence $H(T(A), T(B)) < \eta$, showing the fact that T is a Meir–Keeler-type operator. From Meir–Keeler fixed point result (Theorem 2.1 below) we obtain that there exists an unique $A^* \in P_{cp}(X)$ such that $T(A^*) = A^*$.

A fixed point result for a finite family of ε -locally single-valued Meir–Keeler type operators is:

THEOREM 3.2. Let (X, d) be a complete ε -chainable metric space and $f_i : X \to X$, for $i \in \{1, \ldots, m\}$ be operators satisfying the ε -locally-Meir-Keeler type condition (4). Then the operator $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ defined by the relation (3.1.) is an ε -locally-Meir-Keeler type operator, having a fixed point.

Proof. There are only minor modifications of the above arguments. The proof runs exactly as before, but instead of using the Meir–Keeler fixed point principle, the conclusion follows from Theorem 2.2. \Box

For the multi-valued case our main results are:

THEOREM 3.3. Let (X, d) be a complete metric space and $F_i : X \to P_{cp}(X)$, for $i \in \{1, 2, ..., m\}$ are multi-valued Meir-Keeler type operators. Then the operator $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ defined by the relation:

(3.2)
$$T(Y) = \bigcup_{i=1}^{m} F_i(Y).$$

is a (single-valued) Meir-Keller type operator, having a unique fixed point.

Proof. Let us suppose that for each $\eta > 0$ there exists $\delta > 0$ such that $\eta \leq d(x,y) < \eta + \delta$ implies

(3.3)
$$H(F_i(x), F_i(y)) < \eta \text{ for } i \in \{1, \dots, m\}.$$

It follows that F_i is contractive and hence F_i is upper semi-continuous, for $i \in \{1, \ldots, m\}$. As consequence $T : P_{cp}(X) \to P_{cp}(X)$.

Let us consider $\eta > 0$ and $Y_1, Y_2 \in P_{cp}(X)$ such that $\eta \leq H(Y_1, Y_2) < \eta + \delta$. We will prove that $H(T(Y_1), T(Y_2)) < \eta$.

For this purpose, let $u \in T(Y_1)$ be arbitrary. Then there exist $k \in \{1, \ldots, m\}$ and $y_1 \in Y_1$ such that $u \in F_k(Y_1)$. For this $y_1 \in Y_1$ there is $y_2 \in Y_2$ such that $d(y_1, y_2) \leq H(Y_1, Y_2) < \eta + \delta$.

If $d(y_1, y_2) \ge \eta$, then from (7) we get that $H(F_k(y_1), F_k(y_2)) < \eta$. It follows that there is $v \in F_k(y_2)$ such that $d(u, v) < \eta$ and hence $D(u, T(Y_2)) \le d(u, v) < \eta$.

On the other hand if $0 < d(y_1, y_2) < \eta$, then from the strict contraction condition we have that

$$H(F_k(y_1), F_k(y_2)) < d(y_1, y_2) < \eta$$

and as before $D(u, T(Y_2)) < \eta$.

Because $T(Y_1)$ is a compact set, we have that $\rho(T(Y_1), T(Y_2)) < \eta$. Interchanging the roles of $T(Y_1)$ and $T(Y_2)$ we obtain $\rho(T(Y_2), T(Y_1)) < \eta$ and the conclusion $H(T(Y_1), T(Y_2)) < \eta$ follows.

So $T: P_{cp}(X) \to P_{cp}(X)$ is a Meir-Keeler type operator and by Theorem 2.1 has a unique fixed point, i.e. $A^* \in P_{cp}(X)$ such that $T(A^*) = A^*$.

A local version of the previous result is:

THEOREM 3.4. Let (X, d) be a complete ε -chainable metric space (where $\varepsilon > 0$) and $F_i : X \to P_{cp}(X)$, for $i \in \{1, \ldots, m\}$ be a finite family of multi-valued ε -locally-Meir-Keeler type operators. Then the operator $T : (P_{cp}(X), H) \to (P_{cp}(X), H)$ defined by the relation (3.2.) is an ε -locally-Meir-Keeler type operator, having a fixed point.

REFERENCES

- G. BEER, Topologies on Closed and Closed Convex Sets, Kluwer Acad. Publ., Dordrecht, 1994.
- J. JACHYMSKI, Continuous dependence of attractors of iterated function systems, J. Math. Anal. Appl., 198 (1996), 221–226.
- [3] J. JACHYMSKI, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293–303.
- [4] J. JACHYMSKI, Equivalent of some contractivity properties over metrical structures, Proc. A.M.S., 125 (1997), 2327–2335.
- [5] A. MEIR and E. KEELER, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329.
- [6] S. B. NADLER, JR., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488.
- [7] I. A. RUS, Stability of attractor of a φ-contractions system, Babeş-Bolyai University, Seminar on Fixed Point Theory, 3 (1998), 31–34.
- [8] H. K. XU, ε-chanability and fixed points of set-valued mappings in metric spaces, Math. Japonica, 39 (1994), 353–356.

Received July 19, 2000.