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ON THE APPROXIMATION OF FUNCTIONS

BY MEANS OF THE OPERATORS OF BINOMIAL TYPE

OF TIBERIU POPOVICIU∗

DIMITRIE D. STANCU†

Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract. In 1931, Tiberiu Popoviciu has initiated a procedure for the con-
struction of sequences of linear positive operators of approximation. By using
the theory of polynomials of binomial type (pm) he has associated to a function
f ∈ C[0, 1] a linear operator defined by the formula

(Tmf) (x) = 1
pm(1)

m∑
k=0

(
m
k

)
pk(x)pm−k(1− x)f

(
k
m

)
.

Examples of such operators were considered in several subsequent papers.
In this paper we present a convergence theorem corresponding to the sequence

(Tmf) and we also present a more general sequence of operators of approximation
Sm,r,s, where r and s are nonnegative integers such that 2sr ≤ m.

We give an integral expression for the remainders, as well as a representation
by using divided differences of second order.

MSC 2000. 41A36, 41A25, 41A80.

1. DEFINITION OF THE OPERATORS OF BINOMIAL TYPE Tm OF TIBERIU

POPOVICIU

It is known that a sequence of polynomials (qm), where m is a nonnegative
integer, is said to be of binomial type if deg qm = m, p0 ≡ 1 and it obeys
the following identities
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(1.1) qm(u+ v) =
m∑
k=0

qk(u)qm−k(v),

for any nonnegative integer m.
The corresponding sister sequence (pm), where qm = pm/m!, obeys the

identities

(1.2) pm(u+ v) =
m∑
k=0

(
m
k

)
pk(u)pm−k(v).

By starting from the class of polynomials of binomial type (qm), the great
Romanian mathematician Tiberiu Popoviciu had already in 1931 [9] the won-
derful idea to indicate a general method for construction linear positive oper-
ators, useful in the constructive theory of functions.

It is known that the sequence (qm) is of binomial type if and only if it is
defined by a generating relation

[φ(t)]x = exϕ(t) =
∞∑
m=0

qm(x)tm,

where

(1.3)
φ(t) = 1 + a1t+ a2t

2 + . . . ,

ϕ(t) = c1t+ c2t
2 + . . . (c1 6= 0)

Selection u = x, v = 1 − x suggested to Tiberiu Popoviciu to introduce
an operator of binomial type, which associates to a function f ∈ C[0, 1] the
polynomial

(Tmf)(x) = 1
am

m∑
k=0

qk(x)qm−k(1− x)f
(
k
m

)
,

which can be used for the approximation of the function f .
It is easy to see that, in fact, we have am = qm(1), where we suppose that

qm(1) 6= 0.
Taking this into account and the identity for the sister polynomials (pm):

m∑
k=0

(
m
k

)
pk(x)pm−k(1− x) = pm(1),

we can write

(1.4) (Tmf)(x) = 1
pm(1)

m∑
k=0

(
m
k

)
pk(x)pm−k(1− x)f( km).

We call it the operator Tm of binomial type of Tiberiu Popoviciu.
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If we consider a result of T. Popoviciu [9], rediscovered later by P. Sablon-
nière [11], we have pν(x) ≥ 0 on [0, 1] (ν ∈ N), if and only if the coefficients ck
from (1.3) are non-negative. In this case the operator Tm is of positive type.

ILLUSTRATIVE EXAMPLES

A) If pm(x) = xm, we obtain the classical operator Bm of Bernstein

(1.5)

(Bmf)(x) =
m∑
k=0

pm,k(x)f
(
k
m

)
,

pm,k(x) =
(
m
k

)
xk(1− x)m−k.

B) If we use the binomial polynomials represented by the factorial powers

pm(x) = x[m,−α] (α ∈ R+), then we get the operator Sαm, defined by

(1.6) (Sαmf)(x) =
m∑
k=0

wαm,k(x)f
(
k
m

)
,

where

(1.7) wαm,k(x) =
(
m
k

)
x[k,−α](1− x)[m−k,−α]/1[m,−α].

The operator Sαm was introduced in 1968 in our paper [13]. It was later
investigated in several other papers [1], [2], [4], [7].

2. CONVERGENCE OF THE SEQUENCE (Tmf)

Assuming that all the coefficients ck from (1.3) are non-negative, for the
convergence of (Tmf), where f ∈ C[0, 1], we can use the convergence criterion
of Bohman-Popoviciu-Korovkin.

According to the identities satisfied by the binomial polynomials, we can
see at once that we have: Tme0 = e0.

In the case of the test function f = e1, we get

(Tme1)(x) = p−1
m (1)

m∑
k=0

k
m

(
m
k

)
pk(x)pm−k(1− x).

If we take into account that k
m

(
m
k

)
=
(
m−1
k−1

)
, we can write
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(Tme1)(x) = p−1
m (1)

m∑
k=1

(
m−1
k−1

)
pk(x)pm−k(1− x).

It is easy to see that employing the change of index of summation k−1 = ν
and then denoting again the summation variable by k, we get

(2.1) (Tme1)(x) = p−1
m (1)

m−1∑
k=0

(
m−1
k

)
pk+1(x)pm−1−k(1− x).

Because the binomial sequence (pm) is generated by the following expansion

exϕ(t) =
∞∑
m=0

pm(x) t
m

m! ,

by differentiation we obtain

xϕ′(t)exϕ(t) = p1(x) + p2(x)
t

1!
+ · · ·+ pm+1(x)

tm

m!
+ . . . .

It follows that we are able to write

(2.2′) ϕ′(t)exϕ(t) =
∞∑
m=0

pm+1(x)
x · tmm! .

We can now use the connection between sequences of polynomials of bino-
mial type and sequences of Sheffer polynomials.

One says that a sequence of polynomials (sm)m≥0 is a Sheffer sequence
for a theta operator θ if we have:

a) s0(x) = c 6= 0; b) θsm(x) = msm−1(x).
Now we notice that a sequence (sm) is a Sheffer sequence relative to a

sequence of binomial type (pm) if it satisfies the functional equation

(2.2) sm(u+ v) =
m∑
k=0

(
m
k

)
sk(u)pm−k(v).

A sequence of polynomials of Sheffer type is generated by an expansion
similar with that connected with the binomial sequence [11], namely

(2.3) ψ(t)exϕ(t) =
∞∑
m=0

sm(t) t
m

m! , where ψ(t) =
∞∑
j=0

bjt
j (b0 6= 0).

Because at (2.2′) we have an expansion of the form (2.3), corresponding to
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the functions ϕ and ψ = ϕ′, in our case we have the Sheffer sequence sm(x) =
pm+1(x)/x.

Imposing to this sequence to satisfy the equation (2.2), we get

pm+1(u+ v)

u+ v
=

m∑
k=0

(
m
k

)pk+1(u)
u pm−k(v).

If we decrease m by one and we choose u = x and v = 1− x, we find

xpm(1) =
m−1∑
k=0

(
m−1
k

)
pk+1(x)pm−1−k(1− x).

Replacing it in (2.1) we find that Tme1 = e1. This result was found earlier
by C. Manole [6] and then by P. Sablonnière [11].

Going on to the test function e2, we mention two results.
1) The first one was found by C. Manole [6]:

(2.4) (Tme2)(x) = x2 +
x(1− x)

m
+ x(1− x)a(2)

m ,

where

(2.4′) a(2)
m = m−1

m [1− p−1
m (θ′)pm−2(1)],

θ′ being the Pincherle derivative of the theta operator θ for which (pm) is a
basic sequence.

2) The second result belongs to P. Sablonnière [11]:

(2.5) (Tme2)(x) = x2 + x(1− x)bm, bm =
1

m
+
m− 1

m
· rm−2

pm
,

where pm = pm(1) and rm = rm(1), the sequence (rm) being generated by the
expansion

h′′(t)exh(t) =
∞∑
m=0

rm(x) t
m

m! .

Now we are able to state the following

Theorem 2.1. If f ∈ C[0, 1] and the operator Tm of Tiberiu Popoviciu is
of positive type, then the sequence of polynomials (Tmf) converges uniformly
to the function f on the interval [0, 1] if we have:
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lim
m→∞

a(2)
m = 0, or lim

m→∞

rm−2

pm
= 0.

If we consider the approximation formula

(2.6) f(x) = (Tmf)(x) + (Rmf)(x),

we can say that this formula has the degree of exactness equal to one.
On the other hand, it is easily to check that x = 0 and x = 1 are interpola-

tion points of this polynomial, since (Tmf)(0) = f(0), (Tmf)(1) = f(1).

3. AN INTEGRAL REPRESENTATION OF THE REMAINDER

We can establish an integral form for the remainder of the approximation
formula (2.6).

Theorem 3.1. If f ∈ C2[0, 1] and x is a fixed point of the interval [0, 1]
then the remainder of the Tiberiu Popoviciu approximation formula (2.6) can
be represented under the following integral form

(3.1) (Rmf)(x) =

∫ 1

0
Gm(t;x)f ′′(t)dt,

where the Peano kernel Gm(t;x) is given by the formula

(3.2) Gm(t;x) = (Tmϕx)(t), ϕx(t) = 1
2 [x− t+ |x− t|].

Proof. The representation (3.1) can be obtained at once if we apply the well
known theorem of Peano.

If we introduce the notation

wm,k(x) = p−1
m (1)

(
m
k

)
pk(x)pm−k(1− x),

we obtain

(3.3) (Rmϕx)(t) = (x− t)+ −
m∑
k=0

wm,k(x)
(
k
m − t

)
+
.

�

Concerning the Peano kernel, we can state

Theorem 3.2. If we assume that x ∈
[
s−1
m , sm

]
(1 ≤ s ≤ m), the equation

(3.2) permits to write the explicit formula
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Gm(t;x) =



−
j−1∑
k=0

wm,k(x)
(
t− k

m

)
, if t ∈

[
j−1
m , jm

]
, 1 ≤ j ≤ s− 1

−
s−1∑
k=0

wm,k(x)
(
t− k

m

)
, if t ∈

[
s−1
m , x

]
−

m∑
k=s

wm,k(x)
(
k
m − t

)
, if t ∈

(
x, sm

]
−

m∑
k=j

wm,k(x)
(
k
m − t

)
, if t ∈

(
j−1
m , jm

]
, s < j ≤ m.

From these relations it is easy to see that on the square D = [0, 1] × [0, 1]
we have Gm(t;x) ≤ 0.

Consequently, the equation y = Gm(t) = Gm(t;x) represents a spline func-
tion of degree one, having the knots k

m (k =0, 1, . . . ,m).
It may actually be shown that Gm(t;x) represents the solution of a second-

order differential system, under certain boundary conditions, so that it is the
corresponding Green’s function.

Theorem 3.3. If f ∈ C2[0, 1], then the remainder of the T. Popoviciu
approximation formula (2.6) can be represented by the following Cauchy type
formula

(3.4) (Rmf)(x) = 1
2(Rme2)(x) · f ′′(ξ),

where ξ ∈ (0, 1).

Applying the first law of the mean to the integral (3.1) and replacing in the
formula (2.6), we obtain

f(x) = (Tmf)(x) + f ′′(ξ)

∫ 1

0
Gm(t;x)dt.

If we substitute here f(x) = e2(x) = x2, we find that

∫ 1

0
Gm(t;x)dt = 1

2(Rme2)(x)

and we obtain formula (3.4).
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4. REPRESENTATION OF THE REMAINDERS BY CONVEX COMBINATION OF

SECOND-ORDER DIVIDED DIFFERENCES

Let Lm : C[0, 1]→ C[0, 1] be a linear positive operator, defined by a formula
of the following form

(4.1) (Lmf)(x) =
m∑
k=0

qm,k(x)f
(
k
m

)
,

where on the interval [0, 1] we have qm,k(x) ≥ 0.
We assume that we have

(Lmf)(0) = f(0), (Lmf)(1) = f(1)

and the formula

(4.2) f(x) = (Lmf)(x) + (Rmf)(x)

has the degree of exactness N = 1.
As was shown in 1958 by I.J. Schoenberg, if Lm is not the identity operator

then we have Lme2 6= e2, that is Rme2 6= 0.
In many cases the remainder of the approximation formula (4.2) can be

represented under the following form

(Rmf)(x) = (Rme2)(x) · (Dmf)(x),

where Dmf is a linear functional representing a convex combination of second-
order divided differences of the function f on the point x and two consecutive
nodes.

ILLUSTRATIONS

I. In 1964 we have proved that in the case of the Bernstein operator Bm we
have

(Rme2)(x) =
x(x− 1)

m
, (Dmf)(x) =

m−1∑
k=0

pm−1,k(x)
[
x, km ,

k+1
m ; f

]
.

II. In the case of the linear positive operator Sαm, introduced in 1968 in our
paper [13],

(Sαmf)(x) =
m∑
k=0

pαm,k(x)f
(
k
m

)
,

where
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pαm,k(x) =
(
m
k

)
x[k,−α](1− x)[m−k,−α]/1[m,−α],

α being a parameter which might depend on m, the remainder of the corre-
sponding approximation formula is

(4.3) (Rαmf)(x) = (Rαme2)(x) · (Dα
mf)(x),

where

(4.4) (Rαme2)(x) = 1+αm
1+α ·

x(1−x)
m

and

(4.5) (Dα
mf)(x) =

m−1∑
k=0

pαm−1,k(x+ α, 1− x+ α)
[
x, km ,

k+1
m ; f

]
.

Here we have used the notation

pαn,k(u, v) =
(
n
k

)
u[k,−α]v[n−k,−α]/(u+ v)[n,−α].

III. In the case of the operators Sm,r,s, defined by the formula

(Sm,r,sf)(x) =
m−sr∑
k=0

pm−sr,k(x)

[
s∑
j=0

ps,j(x)f
(
k+jr
m

)]
,

where r and s are nonnegative integer parameters satisfying the condition:
2sr ≤ m, we have the approximation formula

(4.6) f(x) = (Sm,r,sf)(x) + (Tm,r,sf)(x).

One observes that the polynomial Sm,r,sf is interpolatory at both sides of
the interval [0, 1], that is

(Sm,r,sf)(0) = f(0), (Sm,r,sf)(1) = f(1).

By a straightforward calculation one can verify that if we consider the mono-
mials ei(t) = ti (i = 0, 1, 2), where t ∈ [0, 1], then we obtain

Sm,r,se0 = e0, Sm,r,se1 = e1, (Sm,r,se2)(x) = x2 +
[
1 + s r(r−1)

m

]
· x(1−x)

m .

For the remainder of the approximation formula (4.6) one can find (see [15])
the following representation:



104 D. D. Stancu 10

(4.7) (Rm,r,sf)(x) =
[
1 + s r(r−1)

m

]
· x(x−1)

m (Dm,r,sf)(x),

where (Dm,r,sf)(x) is given by the following convex combination of certain
second-order divided differences of the function f on the point x and two
consecutive nodes:

(Dm,r,sf)(x) = 1
m+sr(r−1)

{
(m− sr)

m−sr−1∑
k=0

pm−sr−1,k(x)·

(4.8)

·
(

s∑
j=0

ps,j(x)
[
x, k+jr

m , k+jr+1
m ; f

])
+

+ sr2
m−sr∑
k=0

pm−sr,k(x)

(
s−1∑
j=0

ps−1,j(x)
[
x, k+jr

m , k+jr+r
m ; f

])}
.

One observes that all the coefficients of this linear functional are positive
and their sum equals (Dm,r,se2)(x) = 1, for any x ∈ [0, 1]. Hence it is made
up by a convex combination of the second-order divided differences evidenced
in the formula (4.8).

By using a theorem of T. Popoviciu [10] we can state

Corollary 4.1. If f ∈ C[0, 1] and x is any fixed point of [0, 1], then there
exist in this interval three distinct points um, vm, wm, which might depend on
f , such that

(Rm,r,sf)(x) =
[
1 + s r(r−1)

m

]
· x(x−1)

m [um, vm, wm; f ].

If we now apply the law of the mean for divided differences, we are able to
state

Corollary 4.2. If f ∈ C2[0, 1] then there exists a point ξ ∈ [0, 1] such that
the remainder can be expressed under the Cauchy form

(Rm,r,sf)(x) =
[
1 + s r(r−1)

m

]
· x(x−1)

2m f ′′(ξ).

In the special case r = s = 0 this formula was established in our paper [12].
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