REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 1, pp. 95-105 ictp.acad.ro/jnaat

ON THE APPROXIMATION OF FUNCTIONS

BY MEANS OF THE OPERATORS OF BINOMIAL TYPE OF TIBERIU POPOVICIU*

DIMITRIE D. STANCU ${ }^{\dagger}$

Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract

In 1931, Tiberiu Popoviciu has initiated a procedure for the construction of sequences of linear positive operators of approximation. By using the theory of polynomials of binomial type $\left(p_{m}\right)$ he has associated to a function $f \in C[0,1]$ a linear operator defined by the formula $$
\left(T_{m} f\right)(x)=\frac{1}{p_{m}(1)} \sum_{k=0}^{m}\binom{m}{k} p_{k}(x) p_{m-k}(1-x) f\left(\frac{k}{m}\right) .
$$

Examples of such operators were considered in several subsequent papers. In this paper we present a convergence theorem corresponding to the sequence ($T_{m} f$) and we also present a more general sequence of operators of approximation $S_{m, r, s}$, where r and s are nonnegative integers such that $2 s r \leq m$.

We give an integral expression for the remainders, as well as a representation by using divided differences of second order.

MSC 2000. 41A36, 41A25, 41A80.

1. DEFINITION OF THE OPERATORS OF BINOMIAL TYPE T_{m} OF TIBERIU POPOVICIU

It is known that a sequence of polynomials $\left(q_{m}\right)$, where m is a nonnegative integer, is said to be of binomial type if $\operatorname{deg} q_{m}=m, p_{0} \equiv 1$ and it obeys the following identities

[^0]\[

$$
\begin{equation*}
q_{m}(u+v)=\sum_{k=0}^{m} q_{k}(u) q_{m-k}(v), \tag{1.1}
\end{equation*}
$$

\]

for any nonnegative integer m.
The corresponding sister sequence $\left(p_{m}\right)$, where $q_{m}=p_{m} / m$!, obeys the identities

$$
\begin{equation*}
p_{m}(u+v)=\sum_{k=0}^{m}\binom{m}{k} p_{k}(u) p_{m-k}(v) . \tag{1.2}
\end{equation*}
$$

By starting from the class of polynomials of binomial type $\left(q_{m}\right)$, the great Romanian mathematician Tiberiu Popoviciu had already in 1931 [9] the wonderful idea to indicate a general method for construction linear positive operators, useful in the constructive theory of functions.

It is known that the sequence $\left(q_{m}\right)$ is of binomial type if and only if it is defined by a generating relation

$$
[\phi(t)]^{x}=\mathrm{e}^{x \varphi(t)}=\sum_{m=0}^{\infty} q_{m}(x) t^{m}
$$

where

$$
\begin{align*}
& \phi(t)=1+a_{1} t+a_{2} t^{2}+\ldots, \tag{1.3}\\
& \varphi(t)=c_{1} t+c_{2} t^{2}+\ldots \quad\left(c_{1} \neq 0\right)
\end{align*}
$$

Selection $u=x, v=1-x$ suggested to Tiberiu Popoviciu to introduce an operator of binomial type, which associates to a function $f \in C[0,1]$ the polynomial

$$
\left(T_{m} f\right)(x)=\frac{1}{a_{m}} \sum_{k=0}^{m} q_{k}(x) q_{m-k}(1-x) f\left(\frac{k}{m}\right),
$$

which can be used for the approximation of the function f.
It is easy to see that, in fact, we have $a_{m}=q_{m}(1)$, where we suppose that $q_{m}(1) \neq 0$.

Taking this into account and the identity for the sister polynomials $\left(p_{m}\right)$:

$$
\sum_{k=0}^{m}\binom{m}{k} p_{k}(x) p_{m-k}(1-x)=p_{m}(1)
$$

we can write

$$
\begin{equation*}
\left(T_{m} f\right)(x)=\frac{1}{p_{m}(1)} \sum_{k=0}^{m}\binom{m}{k} p_{k}(x) p_{m-k}(1-x) f\left(\frac{k}{m}\right) . \tag{1.4}
\end{equation*}
$$

We call it the operator T_{m} of binomial type of Tiberiu Popoviciu.

If we consider a result of T. Popoviciu [9, rediscovered later by P. Sablonnière [11], we have $p_{\nu}(x) \geq 0$ on $[0,1](\nu \in \mathbb{N})$, if and only if the coefficients c_{k} from (1.3) are non-negative. In this case the operator T_{m} is of positive type.

ILLUSTRATIVE EXAMPLES

A) If $p_{m}(x)=x^{m}$, we obtain the classical operator B_{m} of Bernstein

$$
\begin{align*}
\left(B_{m} f\right)(x) & =\sum_{k=0}^{m} p_{m, k}(x) f\left(\frac{k}{m}\right), \tag{1.5}\\
p_{m, k}(x) & =\binom{m}{k} x^{k}(1-x)^{m-k}
\end{align*}
$$

B) If we use the binomial polynomials represented by the factorial powers $p_{m}(x)=x^{[m,-\alpha]}\left(\alpha \in \mathbb{R}_{+}\right)$, then we get the operator S_{m}^{α}, defined by

$$
\begin{equation*}
\left(S_{m}^{\alpha} f\right)(x)=\sum_{k=0}^{m} w_{m, k}^{\alpha}(x) f\left(\frac{k}{m}\right) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{m, k}^{\alpha}(x)=\binom{m}{k} x^{[k,-\alpha]}(1-x)^{[m-k,-\alpha]} / 1^{[m,-\alpha]} . \tag{1.7}
\end{equation*}
$$

The operator S_{m}^{α} was introduced in 1968 in our paper [13]. It was later investigated in several other papers [1], 2], 4, [7.

2. CONVERGENCE OF THE SEQUENCE $\left(T_{m} f\right)$

Assuming that all the coefficients c_{k} from (1.3) are non-negative, for the convergence of $\left(T_{m} f\right)$, where $f \in C[0,1]$, we can use the convergence criterion of Bohman-Popoviciu-Korovkin.

According to the identities satisfied by the binomial polynomials, we can see at once that we have: $T_{m} e_{0}=e_{0}$.

In the case of the test function $f=e_{1}$, we get

$$
\left(T_{m} e_{1}\right)(x)=p_{m}^{-1}(1) \sum_{k=0}^{m} \frac{k}{m}\binom{m}{k} p_{k}(x) p_{m-k}(1-x) .
$$

If we take into account that $\frac{k}{m}\binom{m}{k}=\binom{m-1}{k-1}$, we can write

$$
\left(T_{m} e_{1}\right)(x)=p_{m}^{-1}(1) \sum_{k=1}^{m}\binom{m-1}{k-1} p_{k}(x) p_{m-k}(1-x)
$$

It is easy to see that employing the change of index of summation $k-1=\nu$ and then denoting again the summation variable by k, we get

$$
\begin{equation*}
\left(T_{m} e_{1}\right)(x)=p_{m}^{-1}(1) \sum_{k=0}^{m-1}\binom{m-1}{k} p_{k+1}(x) p_{m-1-k}(1-x) \tag{2.1}
\end{equation*}
$$

Because the binomial sequence $\left(p_{m}\right)$ is generated by the following expansion

$$
\mathrm{e}^{x \varphi(t)}=\sum_{m=0}^{\infty} p_{m}(x) \frac{t^{m}}{m!},
$$

by differentiation we obtain

$$
x \varphi^{\prime}(t) \mathrm{e}^{x \varphi(t)}=p_{1}(x)+p_{2}(x) \frac{t}{1!}+\cdots+p_{m+1}(x) \frac{t^{m}}{m!}+\ldots
$$

It follows that we are able to write

$$
\varphi^{\prime}(t) \mathrm{e}^{x \varphi(t)}=\sum_{m=0}^{\infty} \frac{p_{m+1}(x)}{x} \cdot \frac{t^{m}}{m!}
$$

We can now use the connection between sequences of polynomials of binomial type and sequences of Sheffer polynomials.

One says that a sequence of polynomials $\left(s_{m}\right)_{m \geq 0}$ is a Sheffer sequence for a theta operator θ if we have:
a) $s_{0}(x)=c \neq 0$;
b) $\theta s_{m}(x)=m s_{m-1}(x)$.

Now we notice that a sequence $\left(s_{m}\right)$ is a Sheffer sequence relative to a sequence of binomial type $\left(p_{m}\right)$ if it satisfies the functional equation

$$
\begin{equation*}
s_{m}(u+v)=\sum_{k=0}^{m}\binom{m}{k} s_{k}(u) p_{m-k}(v) \tag{2.2}
\end{equation*}
$$

A sequence of polynomials of Sheffer type is generated by an expansion similar with that connected with the binomial sequence [11], namely

$$
\begin{equation*}
\psi(t) e^{x \varphi(t)}=\sum_{m=0}^{\infty} s_{m}(t) \frac{t^{m}}{m!}, \quad \text { where } \quad \psi(t)=\sum_{j=0}^{\infty} b_{j} t^{j} \quad\left(b_{0} \neq 0\right) \tag{2.3}
\end{equation*}
$$

Because at $\left(2.2^{\prime}\right)$ we have an expansion of the form (2.3), corresponding to
the functions φ and $\psi=\varphi^{\prime}$, in our case we have the Sheffer sequence $s_{m}(x)=$ $p_{m+1}(x) / x$.

Imposing to this sequence to satisfy the equation 2.2 , we get

$$
\frac{p_{m+1}(u+v)}{u+v}=\sum_{k=0}^{m}\binom{m}{k} \frac{p_{k+1}(u)}{u} p_{m-k}(v)
$$

If we decrease m by one and we choose $u=x$ and $v=1-x$, we find

$$
x p_{m}(1)=\sum_{k=0}^{m-1}\binom{m-1}{k} p_{k+1}(x) p_{m-1-k}(1-x)
$$

Replacing it in (2.1) we find that $T_{m} e_{1}=e_{1}$. This result was found earlier by C. Manole [6] and then by P. Sablonnière [11].

Going on to the test function e_{2}, we mention two results.

1) The first one was found by C. Manole [6]:

$$
\begin{equation*}
\left(T_{m} e_{2}\right)(x)=x^{2}+\frac{x(1-x)}{m}+x(1-x) a_{m}^{(2)} \tag{2.4}
\end{equation*}
$$

where

$$
a_{m}^{(2)}=\frac{m-1}{m}\left[1-p_{m}^{-1}\left(\theta^{\prime}\right) p_{m-2}(1)\right]
$$

θ^{\prime} being the Pincherle derivative of the theta operator θ for which $\left(p_{m}\right)$ is a basic sequence.
2) The second result belongs to P. Sablonnière [11]:

$$
\begin{equation*}
\left(T_{m} e_{2}\right)(x)=x^{2}+x(1-x) b_{m}, \quad b_{m}=\frac{1}{m}+\frac{m-1}{m} \cdot \frac{r_{m-2}}{p_{m}} \tag{2.5}
\end{equation*}
$$

where $p_{m}=p_{m}(1)$ and $r_{m}=r_{m}(1)$, the sequence $\left(r_{m}\right)$ being generated by the expansion

$$
h^{\prime \prime}(t) \mathrm{e}^{x h(t)}=\sum_{m=0}^{\infty} r_{m}(x) \frac{t^{m}}{m!}
$$

Now we are able to state the following
Theorem 2.1. If $f \in C[0,1]$ and the operator T_{m} of Tiberiu Popoviciu is of positive type, then the sequence of polynomials $\left(T_{m} f\right)$ converges uniformly to the function f on the interval $[0,1]$ if we have:

$$
\lim _{m \rightarrow \infty} a_{m}^{(2)}=0, \quad \text { or } \quad \lim _{m \rightarrow \infty} \frac{r_{m-2}}{p_{m}}=0
$$

If we consider the approximation formula

$$
\begin{equation*}
f(x)=\left(T_{m} f\right)(x)+\left(R_{m} f\right)(x) \tag{2.6}
\end{equation*}
$$

we can say that this formula has the degree of exactness equal to one.
On the other hand, it is easily to check that $x=0$ and $x=1$ are interpolation points of this polynomial, since $\left(T_{m} f\right)(0)=f(0), \quad\left(T_{m} f\right)(1)=f(1)$.

3. AN INTEGRAL REPRESENTATION OF THE REMAINDER

We can establish an integral form for the remainder of the approximation formula (2.6).

Theorem 3.1. If $f \in C^{2}[0,1]$ and x is a fixed point of the interval $[0,1]$ then the remainder of the Tiberiu Popoviciu approximation formula (2.6) can be represented under the following integral form

$$
\begin{equation*}
\left(R_{m} f\right)(x)=\int_{0}^{1} G_{m}(t ; x) f^{\prime \prime}(t) d t \tag{3.1}
\end{equation*}
$$

where the Peano kernel $G_{m}(t ; x)$ is given by the formula

$$
\begin{equation*}
G_{m}(t ; x)=\left(T_{m} \varphi_{x}\right)(t), \quad \varphi_{x}(t)=\frac{1}{2}[x-t+|x-t|] . \tag{3.2}
\end{equation*}
$$

Proof. The representation (3.1) can be obtained at once if we apply the well known theorem of Peano.

If we introduce the notation

$$
w_{m, k}(x)=p_{m}^{-1}(1)\binom{m}{k} p_{k}(x) p_{m-k}(1-x)
$$

we obtain

$$
\begin{equation*}
\left(R_{m} \varphi_{x}\right)(t)=(x-t)_{+}-\sum_{k=0}^{m} w_{m, k}(x)\left(\frac{k}{m}-t\right)_{+} . \tag{3.3}
\end{equation*}
$$

Concerning the Peano kernel, we can state
THEOREM 3.2. If we assume that $x \in\left[\frac{s-1}{m}, \frac{s}{m}\right](1 \leq s \leq m)$, the equation (3.2) permits to write the explicit formula

$$
G_{m}(t ; x)= \begin{cases}-\sum_{k=0}^{j-1} w_{m, k}(x)\left(t-\frac{k}{m}\right), & \text { if } t \in\left[\frac{j-1}{m}, \frac{j}{m}\right], 1 \leq j \leq s-1 \\ -\sum_{k=0}^{s-1} w_{m, k}(x)\left(t-\frac{k}{m}\right), & \text { if } t \in\left[\frac{s-1}{m}, x\right] \\ -\sum_{k=s}^{m} w_{m, k}(x)\left(\frac{k}{m}-t\right), & \text { if } t \in\left(x, \frac{s}{m}\right] \\ -\sum_{k=j}^{m} w_{m, k}(x)\left(\frac{k}{m}-t\right), & \text { if } t \in\left(\frac{j-1}{m}, \frac{j}{m}\right], s<j \leq m .\end{cases}
$$

From these relations it is easy to see that on the square $D=[0,1] \times[0,1]$ we have $G_{m}(t ; x) \leq 0$.

Consequently, the equation $y=G_{m}(t)=G_{m}(t ; x)$ represents a spline function of degree one, having the knots $\frac{k}{m}(k=0,1, \ldots, m)$.

It may actually be shown that $G_{m}(t ; x)$ represents the solution of a secondorder differential system, under certain boundary conditions, so that it is the corresponding Green's function.

Theorem 3.3. If $f \in C^{2}[0,1]$, then the remainder of the T. Popoviciu approximation formula (2.6) can be represented by the following Cauchy type formula

$$
\begin{equation*}
\left(R_{m} f\right)(x)=\frac{1}{2}\left(R_{m} e_{2}\right)(x) \cdot f^{\prime \prime}(\xi) \tag{3.4}
\end{equation*}
$$

where $\xi \in(0,1)$.

Applying the first law of the mean to the integral (3.1) and replacing in the formula (2.6), we obtain

$$
f(x)=\left(T_{m} f\right)(x)+f^{\prime \prime}(\xi) \int_{0}^{1} G_{m}(t ; x) d t
$$

If we substitute here $f(x)=e_{2}(x)=x^{2}$, we find that

$$
\int_{0}^{1} G_{m}(t ; x) d t=\frac{1}{2}\left(R_{m} e_{2}\right)(x)
$$

and we obtain formula (3.4).

4. REPRESENTATION OF THE REMAINDERS BY CONVEX COMBINATION OF SECOND-ORDER DIVIDED DIFFERENCES

Let $L_{m}: C[0,1] \rightarrow C[0,1]$ be a linear positive operator, defined by a formula of the following form

$$
\begin{equation*}
\left(L_{m} f\right)(x)=\sum_{k=0}^{m} q_{m, k}(x) f\left(\frac{k}{m}\right) \tag{4.1}
\end{equation*}
$$

where on the interval $[0,1]$ we have $q_{m, k}(x) \geq 0$.
We assume that we have

$$
\left(L_{m} f\right)(0)=f(0), \quad\left(L_{m} f\right)(1)=f(1)
$$

and the formula

$$
\begin{equation*}
f(x)=\left(L_{m} f\right)(x)+\left(R_{m} f\right)(x) \tag{4.2}
\end{equation*}
$$

has the degree of exactness $N=1$.
As was shown in 1958 by I.J. Schoenberg, if L_{m} is not the identity operator then we have $L_{m} e_{2} \neq e_{2}$, that is $R_{m} e_{2} \neq 0$.

In many cases the remainder of the approximation formula 4.2 can be represented under the following form

$$
\left(R_{m} f\right)(x)=\left(R_{m} e_{2}\right)(x) \cdot\left(D_{m} f\right)(x)
$$

where $D_{m} f$ is a linear functional representing a convex combination of secondorder divided differences of the function f on the point x and two consecutive nodes.

ILLUSTRATIONS

I. In 1964 we have proved that in the case of the Bernstein operator B_{m} we have

$$
\left(R_{m} e_{2}\right)(x)=\frac{x(x-1)}{m}, \quad\left(D_{m} f\right)(x)=\sum_{k=0}^{m-1} p_{m-1, k}(x)\left[x, \frac{k}{m}, \frac{k+1}{m} ; f\right] .
$$

II. In the case of the linear positive operator S_{m}^{α}, introduced in 1968 in our paper [13,

$$
\left(S_{m}^{\alpha} f\right)(x)=\sum_{k=0}^{m} p_{m, k}^{\alpha}(x) f\left(\frac{k}{m}\right),
$$

where

$$
p_{m, k}^{\alpha}(x)=\binom{m}{k} x^{[k,-\alpha]}(1-x)^{[m-k,-\alpha]} / 1^{[m,-\alpha]}
$$

α being a parameter which might depend on m, the remainder of the corresponding approximation formula is

$$
\begin{equation*}
\left(R_{m}^{\alpha} f\right)(x)=\left(R_{m}^{\alpha} e_{2}\right)(x) \cdot\left(D_{m}^{\alpha} f\right)(x) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(R_{m}^{\alpha} e_{2}\right)(x)=\frac{1+\alpha m}{1+\alpha} \cdot \frac{x(1-x)}{m} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(D_{m}^{\alpha} f\right)(x)=\sum_{k=0}^{m-1} p_{m-1, k}^{\alpha}(x+\alpha, 1-x+\alpha)\left[x, \frac{k}{m}, \frac{k+1}{m} ; f\right] . \tag{4.5}
\end{equation*}
$$

Here we have used the notation

$$
p_{n, k}^{\alpha}(u, v)=\binom{n}{k} u^{[k,-\alpha]} v^{[n-k,-\alpha]} /(u+v)^{[n,-\alpha]} .
$$

III. In the case of the operators $S_{m, r, s}$, defined by the formula

$$
\left(S_{m, r, s} f\right)(x)=\sum_{k=0}^{m-s r} p_{m-s r, k}(x)\left[\sum_{j=0}^{s} p_{s, j}(x) f\left(\frac{k+j r}{m}\right)\right]
$$

where r and s are nonnegative integer parameters satisfying the condition: $2 s r \leq m$, we have the approximation formula

$$
\begin{equation*}
f(x)=\left(S_{m, r, s} f\right)(x)+\left(T_{m, r, s} f\right)(x) \tag{4.6}
\end{equation*}
$$

One observes that the polynomial $S_{m, r, s} f$ is interpolatory at both sides of the interval $[0,1]$, that is

$$
\left(S_{m, r, s} f\right)(0)=f(0), \quad\left(S_{m, r, s} f\right)(1)=f(1)
$$

By a straightforward calculation one can verify that if we consider the monomials $e_{i}(t)=t^{i}(i=0,1,2)$, where $t \in[0,1]$, then we obtain

$$
S_{m, r, s} e_{0}=e_{0}, S_{m, r, s} e_{1}=e_{1},\left(S_{m, r, s} e_{2}\right)(x)=x^{2}+\left[1+s \frac{r(r-1)}{m}\right] \cdot \frac{x(1-x)}{m}
$$

For the remainder of the approximation formula (4.6) one can find (see [15]) the following representation:

$$
\begin{equation*}
\left(R_{m, r, s} f\right)(x)=\left[1+s \frac{r(r-1)}{m}\right] \cdot \frac{x(x-1)}{m}\left(D_{m, r, s} f\right)(x) \tag{4.7}
\end{equation*}
$$

where $\left(D_{m, r, s} f\right)(x)$ is given by the following convex combination of certain second-order divided differences of the function f on the point x and two consecutive nodes:

$$
\begin{align*}
\left(D_{m, r, s} f\right)(x)= & \frac{1}{m+s r(r-1)}\left\{(m-s r) \sum_{k=0}^{m-s r-1} p_{m-s r-1, k}(x) .\right. \tag{4.8}\\
& \cdot\left(\sum_{j=0}^{s} p_{s, j}(x)\left[x, \frac{k+j r}{m}, \frac{k+j r+1}{m} ; f\right]\right)+ \\
& \left.+s r^{2} \sum_{k=0}^{m-s r} p_{m-s r, k}(x)\left(\sum_{j=0}^{s-1} p_{s-1, j}(x)\left[x, \frac{k+j r}{m}, \frac{k+j r+r}{m} ; f\right]\right)\right\} .
\end{align*}
$$

One observes that all the coefficients of this linear functional are positive and their sum equals $\left(D_{m, r, s} e_{2}\right)(x)=1$, for any $x \in[0,1]$. Hence it is made up by a convex combination of the second-order divided differences evidenced in the formula 4.8).

By using a theorem of T. Popoviciu [10] we can state
Corollary 4.1. If $f \in C[0,1]$ and x is any fixed point of $[0,1]$, then there exist in this interval three distinct points u_{m}, v_{m}, w_{m}, which might depend on f, such that

$$
\left(R_{m, r, s} f\right)(x)=\left[1+s \frac{r(r-1)}{m}\right] \cdot \frac{x(x-1)}{m}\left[u_{m}, v_{m}, w_{m} ; f\right] .
$$

If we now apply the law of the mean for divided differences, we are able to state

Corollary 4.2. If $f \in C^{2}[0,1]$ then there exists a point $\xi \in[0,1]$ such that the remainder can be expressed under the Cauchy form

$$
\left(R_{m, r, s} f\right)(x)=\left[1+s \frac{r(r-1)}{m}\right] \cdot \frac{x(x-1)}{2 m} f^{\prime \prime}(\xi)
$$

In the special case $r=s=0$ this formula was established in our paper [12].

REFERENCES

[1] O. Agratini, Application of divided differences to the study of monotonicity of a sequence of D. D. Stancu polynomials, Rev. Anal. Numér. Theor. Approx., 25 (1996), 3-10. [
[2] W. Z. Chen, Approximation theorems for Stancu-type operators, Xiamen Daxue, 32 (1993), 679-684.
[3] B. Della Vecchia, On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babes-Bolyai, 37 (1992), 3-36.
[4] I. Horova and M. Budikova, A note on D. D. Stancu operators, Ricerche di Matematica, 44 (1995), 397-407.
[5] L. Lupaş and A. Lupaş, Polynomials of binomial type and approximation operators, Studia Univ. Babeş-Bolyai, 32 (1987), 61-69.
[6] C. Manole, Approximation operators of binomial type, Res. Seminar on Numerical and Statistical Calculus (Cluj), Preprint Nr. 9 (1987), 93-98.
[7] G. Mastroianni and M. R. Occorsio, Sulle derivate dei polinomi di Stancu, Rend. Accad. Sci. M.F.N., 45 (1978), 273-281.
[8] G. Moldovan, Discrete convolutions and linear positive operators, Ann. Univ. Sci. Budap., 15 (1972), 31-44.
[9] T. Popoviciu, Remarques sur les polynomes binomiaux, Bul. Soc. Sci. Cluj, 6 (1931), 146-148.
[10] T. Popoviciu, Sur le reste dans certaines formules lineaires d'approximation de l'analyse, Mathematica, 1 (24) (1959), 95-142.
[11] P. Sablonnière, Positive Bernstein-Sheffer operators, J. Approx. Theory, 83 (1995), 330-341.
[12] D. D. Stancu, The remainder of certain linear approximation formulas, J. SIAM Numer. Anal. B, 1 (1964), 137-163.
[13] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13 (1968), 1173-1194.
[14] D. D. Stancu, Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 15 (1983), 211-229.
[15] D. D. Stancu, A note on the remainder in a polynomial approximation formula, Studia Univ. Babeş-Bolyai, 41 (1996), 95-101.

Received: June 10, 2000.

[^0]: *Communicated at the Seminar of Best Approximation (October 25-29, 2000, "BabesBolyai" University).
 ${ }^{\dagger}$ Faculty of Mathematics and Informatics, "Babeş-Bolyai" University, Str. Kogălniceanu nr. 1, 3400 Cluj-Napoca, Romania, email: ddstancu@math.ubbcluj.ro.

