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Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 1, pp. 107–116
ictp.acad.ro/jnaat

ON THE WHITE’S ALGORITHM

FOR FRACTIONAL PROGRAMMING

ŞTEFAN ŢIGAN
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Abstract. In this note we extend for fractional case a method due to White for
solving a problem of maximizing over a finite set a function with some special
“convexity” properties. Three algorithms applied to a transformation of the
initial problem into a maximizing an auxilliary non-fractional function over a
bi-product set are given.
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1. INTRODUCTION

This paper is motivated by the following class of fractional quadratic pro-
gramming problems:

FQ. Find

max
x∈X

x′Cx + c′x + c0

x′Dx + e′x + e0
,

where X is a given (finite) subset of Rn, C is an n × n positive semidefinite
matrix, D is an n×n negative semidefinite matrix, c0, e0 ∈ R,and c and e are
given n-dimensional vectors, such that x′Cx+c′x+c0 > 0 and x′Dx+e′x+e0 >
0, for any x ∈ X.

The fractional quadratic programming problem FQ has various applica-
tions, e.g. fractional quadratic assignment problems of various kinds [8], non-
linear transportation problems, minimum risk stochastic programming prob-
lems [4], [6].

In this paper we extend some results obtained in [7] concerning the solving
problem FQ.
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2. GENERAL PROBLEM FORMULATION

In this section we will consider a more general maximization problem as FQ
and we will specify the functions involved in the statement of this programming
problem and the feasible set. We will give also some properties of these classes
of functions.

The feasible set X can be an arbitrary non-empty given set. In order to
formulate the fractional maximization problem under study we consider the
functions g(·, ·) : X×X → R, s(·) : X → R, d(·) : X → R, p(·, ·) : X×X → R,
f(·) : X → R with the following properties:

(1) f(x) =
g(x, x) + s(x)

p(x, x) + d(x)
, for any x ∈ X,

(2) p(x, x) + d(x) > 0 and g(x, x) + s(x) ≥ 0, for any x ∈ X.
Next we consider the following fractional maximization problem.
FP. Find

max
x∈X

g(x, x) + s(x)

p(x, x) + d(x)
.

In this paper we extend some results obtained in [7] concerning the solving
of problem FP.

For g(x, x) = x′Cx, s(x) = c′x + c0 and p(x, x) = x′Dx, d(x) = e′x + e0,for
any x ∈ X, problem FP becomes fractional quadratic programming problem
FQ.

Definition 1. [7] (i) The function g is called tr-convex (trace-convex) on
X ×X if g satisfies the inequality:

(3) g(x, y) ≤ 1
2(g(x, x) + g(y, y)), for any (x, y) ∈ X ×X.

(ii) The function g is called strictly tr-convex on X × X if g satisfies the
inequality (3) and:

(4) g(x, y) < 1
2(g(x, x) + g(y, y)), for any (x, y) ∈ X ×X,x 6= y.

(iii) The function g is called tr-concave (strictly tr-concave) on X × X if
−g is tr-convex (strictly tr-convex) on X.

Definition 2. [7]. (i) The function g is called tr-quasiconvex (trace-quasi-
convex) on X ×X if g satisfies the inequality:

(5) g(x, y) ≤ max{g(x, x), g(y, y)}, for any (x, y) ∈ X ×X.
(ii) The function g is called strictly tr-quasiconvex on X ×X if g satisfies

the inequality (3) and:
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(6) g(x, y) < max{g(x, x), g(y, y)}, for any (x, y) ∈ X ×X,x 6= y.
(iii) The function g is called tr-quasiconcave (strictly tr-quasiconcave) on

X if −g is tr-quasiconvex (strictly tr-quasiconvex) on X.

It is simple to prove that if g is tr-convex (strictly tr-convex) then g is
tr-quasiconvex (strictly tr-quasiconvex) too, but not conversely.

White [9], using functions g with properties (3) and (4), proposed two gen-
eral algorithms for finding the optimal solution for maximizing a real function
on a finite set.

We will associate to problem FP, for any t ∈ R, an extended non-fractional
objective function h(·, ·, ·) : X ×X ×R→ R defined by

(7) h(x, y, t) = g(x, y) + s(x)+s(y)
2 − t

(
p(x, y) + d(x)+d(y)

2

)
, for any

(x, y, t) ∈ X ×X ×R.
From (1) and (7), we have

(8) f(x) =
h(x, x, t)

p(x, x) + d(x)
+ t, for any (x, t) ∈ X ×R.

Lemma 1. If g is a tr-convex (strictly tr-convex) and p is a tr-concave
(strictly tr-concave) function on X × X, then for any t ∈ R+ the function
h(·, ·, t) is tr-convex (strictly tr-convex) on X ×X.

Proof. Indeed, from (7) and (3), h satisfies

h(x, x, t) + h(y, y, t) =

= g(x, x) + s(x)− t(p(x, x) + d(x)) + g(y, y) + s(y)− t(p(y, y) + d(y))

≥ 2g(x, y) + s(x) + s(y)− 2tp(x, y)− t(d(x) + d(y))

= 2
[
g(x, y) + s(x)+s(y)

2 − tp(x, y)− td(x)+d(y)
2

]
= 2h(x, y, t),

for any (x, y, t) ∈ X ×X ×R+.
Therefore, h(·, ·, t) is tr-convex on X×X. For strictly tr-convexity the proof

is similar. �

Lemma 2. If t∗ = f(x∗) for some x∗ ∈ X, then h(x∗, x∗, t∗) = 0.

Proof. Indeed, from t∗ = f(x∗), using (1), we have

t∗ =
g(x∗, x∗) + s(x∗)

p(x∗, x∗) + d(x∗)
,

which is equivalent to
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h(x∗, x∗, t∗) = g(x∗, x∗) + s(x∗)− t∗(p(x∗, x∗) + d(x∗)) = 0.

�

Let us define the following optimal sets:
(9) X∗ = {x∗ ∈ X|f(x∗) ≥ f(x), for any x ∈ X},
(10) X∗(t) = {(x∗, y∗) ∈ X×X|h(x∗, y∗, t) ≥ h(x, y, t),∀(x, y) ∈ X×X},

for any t ∈ R+,
(11) F (x, t) = {y∗ ∈ X | h(x, y∗, t) ≥ h(x, y, t), for all y ∈ X}, for any

t ∈ R+.
The set X∗ is the optimal set for problem FP, X∗(t) is the optimal set for

the maximization problem over the bi-product X ×X,

max
(x,y)∈X×X

h(x, y, t),

and F (x, t) is the optimal set of the problem

max
y∈X

h(x, y, t).

Then we have the following theorems.

Theorem 1. Let g be tr-convex and p be tr-concave on X×X. If (x∗, y∗) ∈
X∗(t∗) and t∗ = f(x∗), then x∗ ∈ X∗.

Proof. Let (x∗, y∗) ∈ X∗(t∗). Then, using (10), we have
(12) h(x∗, y∗, t∗) ≥ h(x, x, t∗), for any x ∈ X,
(13) h(x∗, y∗, t∗) ≥ h(y, y, t∗), for any y ∈ X,
Combining (12) and (13) with (8), and by using Lemma 1 and Lemma 2,

we obtain

(14) f(x)(p(x, x) + d(x))− t∗(p(x, x) + d(x)) +

+f(y)(p(y, y) + d(y))− t∗(p(y, y) + d(y)

= h(x, x, t∗) + h(y, y, t∗)

≤ 2h(x∗, y∗, t∗)

≤ h(x∗, x∗, t∗) + h(y∗, y∗, t∗)

= g(x∗, x∗)− t∗(p(x∗, x∗) + d(x∗)) + s(x∗) +

+g(y∗, y∗)− t∗(p(y∗, y∗) + d(y∗)) + s(y∗)

= 0 + g(y∗, y∗)− t∗(p(y∗, y∗) + d(y∗)) + s(y∗)

= f(y∗)(p(y∗, y∗) + d(y∗))− t∗(p(y∗, y∗) + d(y∗)),

for any (x, y) ∈ X ×X.
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Setting y = y∗ in (14), we have

f(x)(p(x, x) + d(x))− t∗(p(x, x) + d(x)) ≤ 0, for any x ∈ X,

from where, since p(x, x) + d(x) > 0, it follows f(x) ≤ t∗, for any x ∈ X. This
means that x∗ ∈ X. �

Theorem 2. Let g be tr-convex and p be tr-concave on X × X and t∗ =
f(x∗). Then x∗ ∈ X∗ if and only if (x∗, y∗) ∈ X∗(t∗).

Proof. (a) Let x∗ ∈ X and (x, y) ∈ X ×X. Then, we have
(15) t∗ = f(x∗) ≥ f(x), for any x ∈ X,
(16) t∗ = f(x∗) ≥ f(y), for any y ∈ X.
Since p(x, x)+d(x) > 0 and p(y, y)+d(y) > 0, from (15) and (16), it follows

h(x, x, t∗) = g(x, x) + s(x)− t∗(p(x, x) + d(x)) ≤ 0,

h(y, y, t∗) = g(y, y) + s(y)− t∗(p(y, y) + d(y)) ≤ 0,

from where, using Lemma 1, we obtain

2h(x, y, t∗) ≤ h(x, x, t∗) + h(y, y, t∗) ≤ 0 = 2h(x∗, x∗, t∗),

what means that (x∗, y∗) ∈ X∗(t∗).
(b) Let (x∗, y∗) ∈ X∗(t∗). Then, by Theorem 1, it follows that x∗ ∈ X∗. �

Theorem 3. Let g be tr-convex and p be tr-concave on X × X and t∗ =
f(x∗). If x∗ ∈ X∗ then x∗ ∈ F (x∗, t∗).

Proof. Let x∗ ∈ X∗. This means that

f(x∗) ≥ f(x), for any x ∈ X,

that is

t∗ ≥ g(x, x) + s(x)

p(x, x) + d(x)
, for any x ∈ X.

Hence, since p(x, x) + d(x) > 0, by Lemma 2, we obtain

h(x, x, t∗) = g(x, x) + s(x)− t∗(p(x, x) + d(x))

≤ 0 = h(x∗, x∗, t∗), for any x ∈ X.
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Therefore, it results that x∗ ∈F(x∗,t∗). �

Theorem 4. Let g be tr-convex and p be tr-concave on X×X, x∗ ∈ X and
t∗ = f(x∗).

(i) If y∗ ∈ F (x∗, t∗), then f(y∗) ≥ f(x∗).
(ii) If x∗ ∈ X∗ and y∗ ∈ F (x∗, t∗), then y∗ ∈ X∗.

Proof. (i) Let y∗ ∈ F (x∗, t∗). Then, using Lemma 1, we have

h(y∗, y∗, t∗)− h(x∗, y∗, t∗) ≥ h(x∗, y∗, t∗)− h(x∗, x∗, t∗).

But y∗ ∈ F (x∗, t∗) implies h(x∗, y∗, t∗) ≥ h(x∗, x∗, t∗). Hence, we have

h(y∗, y∗, t∗) ≥ h(x∗, y∗, t∗) ≥ h(x∗, x∗, t∗) = 0.

This means that g(y∗, y∗) + s(y∗)− t∗(p(y∗, y∗) +d(y∗)) ≥ 0, from where we
obtain

(17) f(x∗) = t∗ ≤ g(y∗, y∗) + s(y∗)

p(y∗, y∗) + d(y∗)
= f(y∗).

(ii) On the other side, because x∗ ∈ X∗ and t∗ = f(x∗), it follows that
t∗ ≥ f(y∗), which together with (17) implies that y∗ ∈ X∗. �

3. EXTENDED WHITE’S ALGORITHMS

The following algorithms are inspired by White [9] and represent a combi-
nation between parametric algorithms [3], [5] for fractional programming and
White’s algorithms.

Algorithm (FW) for solving problem FP is as follows:

Algorithm 1 (FW).
Step 1. Select x1 ∈ X and set k := 1.
Step 2. Set tk = f(xk).
Step 3. (i) If F (xk, tk) ⊆ {x1, x2, ..., xk} then stop. The optimal solution of

FP is x∗ = xk.
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(ii) If F (xk, tk) * {x1, x2, ..., xk}, find

xk+1 ∈ F (xk, tk)− {x1, x2, ..., xk}

and go to Step 4.
Step 4. Set k := k + 1 and go to Step 2.

Algorithm FW has the properties given in the following theorem.

Theorem 5. Let g be tr-convex and p be tr-concave on X ×X.
(i) If algorithm FW generates at least two points, then

f(xk+1) ≥ f(xk), k ≥ 1.

(ii) If X is a finite set, algorithm FW terminates after a finite number of
iterations.

(iii) If algorithm FW terminates after a finite number of iterations, then
xk ∈ F (xk, tk).

Proof. (i) Since, by Step 3(ii), xk+1 ∈ F (xk, tk), and tk = f(xk), the in-
equality f(xk+1) ≥ f(xk) follows by Theorem 4 (i).

(ii) This part follows from Step 3(ii) and the finiteness of X.
(iii) Let x∗ = xk be a terminal point of the algorithm. From Step 3(i), we

have
(18) F (x∗, tk) ⊆ {x1, x2, ..., xk}.
Then, from (18), for some 1 ≤ i ≤ k, we have
(19) h(x∗, xi, tk) ≥ h(x∗, x∗, tk), xi ∈ F (x∗, tk).
Since h(·, ·, tk) is tr-convex from (1) it results
(20) h(xi, xi, tk) ≥ h(x∗, xi, tk) ≥ h(x∗, x∗, tk).
From part (i) we have tk = f(xk) ≥ f(xi), which implies
(21) h(x∗, x∗, tk) = 0 ≥ h(xi, xi, tk).
From (20) and (21) we have h(x∗, xi, tk) = h(x∗, x∗, tk). Therefore, it follows

that xi ∈ F (xk, tk) and xk ∈ F (xk, tk). �

Algorithm FW at each iteration requires to keep all the previous obtained
solutions as well as to make in Step 3 a lot of tests with these solutions.
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Using Theorem 5 (i), we can improve algorithm FW, such at each iteration
to memorize only a part of the previous obtained points.

Algorithm FWM for solving problem FP is as follows:

Algorithm 2 (FWM).
Step 1. Select x1 ∈ X and set k := 1 and s := 1.
In the algorithm, k represents the index of current iteration and s is the

iteration index of the last modification of the function f , that is, the last
iteration when f(xs−1) < f(xs) = f(xs+1) = ... = f(xk).

Step 2. Set tk = f(xk).
Step 3. (i) If F (xk, tk) ⊆ {xs, xs+1, ..., xk} then stop. The optimal solution

of FP is x∗ = xk.
(ii) If F (xk, tk) * {xs, xs+1, ..., xk}, find

xk+1 ∈ F (xk, tk)− {xs, xs+1, ..., xk}

and go to Step 4.
Step 4. (i) If f(xk+1) > f(xk), then set k := k + 1, s := k + 1 and go to

Step 2.
(ii) If f(xk+1) = f(xk), then set k := k + 1 and go to Step 3.

In order to obtain a better variant of algorithms FW or FWM next we
consider that g is strictly tr-convex. The new variant of the algorithm will
keep at each iteration only the current feasible solution obtained at previous
iteration.

Algorithm 3 (FWS).
Step 1. Select x1 ∈ X and set k := 1.
Step 2. Set tk = f(xk).
Step 3. (i) If F (xk, tk) = {xk} then stop. The optimal solution of FP is

x∗ = xk.
(ii) If F (xk, tk) 6= {xk}, find xk+1 ∈ F (xk, tk)− {xk} and go to Step 4.
Step 4. Set k := k + 1 and go to Step 2.

Algorithm FWS has the properties given in the following theorem.

Theorem 6. Let g be strictly tr-convex and p be tr-concave on X ×X.
(i) If algorithm FWS generates at least two points, then

f(xk+1) > f(xk), k ≥ 1.

(ii) If X is a finite set, algorithm FWS terminates after k iterations.
(iii) If algorithm FW terminates after k iterations, then

F (xk, tk) = {xk}.
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Proof. (i) Because xk+1 is generated in Step 3(ii), it follows that xk+1 6= xk,
otherwise the algorithm should terminate in Step 3(i) with the optimal point
xk. Following the proof of Theorem 4(i), by using the strictly tr-convexity of
g, we obtain in (17) a strict inequality and this strict inequality implies that
f(xk+1) > f(xk).

(ii) Since, by part (i), we have

f(x1) < f(x2) < ... < f(xk) < f(xk+1) < ...

it follows that algorithm FWS cannot cycle. Then, because X is finite, the
requisite result follows.

(iii) This part of theorem follows immediately from Step 4(i) of the algo-
rithm. �

In order to apply these algorithms to the fractional quadratic programming
problem FQ, we state the following result that can be easily obtained by White
[9] and Definitions 1 and 2.

Theorem 7. Let g : X ×X → R be such that g(x, y) = x′Cy and p(x, y) =
x′Dy for any (x, y) ∈ X ×X. Then the following properties hold:

(i) If C is positive semidefinite, then g is tr-convex on X ×X.
(ii) If C is positive definite, then gis strictly tr-convex on X ×X.
(iii) If D is negative semidefinite, then p is tr-concave on X ×X.
(iv) If D is negative definite, then p is strictly tr-concave on X ×X.

4. CONCLUSIONS

The algorithms FW, FWM and FWS can be interpreted as combinations
between the White’s algorithms [9] and parametric method for fractional pro-
gramming [3],[5]. These algorithms are especially appropriate when X has a
particular special form, such as assignment polytopes [8]. Otherwise, by a vari-
able change of Charnes-Cooper type [2], the fractional quadratic programming
problem could be reduced to a quadratic programming problem with an addi-
tional linear constraint, and this problem could be solved by an appropriate
method.

We mention that an important class of fractional programming problems are
obtained as equivalent deterministic problems of minimum risk programming
problems [1], [4], [6].
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