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Abstract. The aim of this paper is to prove a compactness criterium in spaces
of Lipschitz and Fréchet differentiable mappings.
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1. INTRODUCTION

In the last years there have been an increasing interest in the study of
Lipschitz functions and of spaces of Lipschitz functions, as a first step to extend
to the nonlinear setting results from linear functional analysis. For instance,
in the attempt to build a spectral theory for nonlinear operators, a special
attention was paid to spectra of Lipschitz operators (see, e.g., [9], [2], [4]).
Lipschitz duals, meaning spaces of Lipschitz functions on a metric linear space,
were used to study best approximation problems in such spaces (see [10]). A
good account on Banach spaces and Banach algebras of Lipschitz functions
is given in the monograph [11]. The monograph [6] contains a comprehensive
study of Lipschitz functions on Banach spaces and their applications to the
geometry of Banach spaces (e.g. the Lipschitz classification of Banach spaces).

As asserts Appell [1], apparently there is no compactness criterium in spaces
of Hölder functions, and some criteria given in the literature turned to be false
(e.g. that in [7]). The aim of this Note is to prove such a criterium (a true
one, I hope) for families of Lipschitz and Fréchet differentiable mappings. The
paper by J. Batt [5] contains a detailed study of compactness for nonlinear
mappings and their adjoints, including Schauder type theorems. A Schauder
type theorem for differentiable mappings was proved also by Yamamuro [12].
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2. THE RESULT

Let X,Y be real or complex normed linear spaces, and Ω a subset of X.
Denote by Lip(Ω, Y ) the space of all Lipschitz mappings from Ω to Y , i.e.
those mappings f : Ω→ Y for which the number

(1) L(f) := sup{‖f(x)− f(y)‖/‖x− y‖ : x, y ∈ Ω, x 6= y}

is finite. The number L(f) defined by (1) is called the Lipschitz norm of
the mapping f , and it is the smallest Lipschitz constant for f . The function
L(·) is a seminorm on Lip(Ω, Y ), so that (Lip(Ω, Y ), L) is a seminormed space
which is complete if Y is a Banach space. (The operations of addition and
multiplication by scalars are defined pointwisely)

If Ω is an open subset of X, denote by C1(Ω, Y ) the space of all continuously
Fréchet differentiable mappings from Ω to Y , and for K ⊂ Ω put

C1 Lip(K,Y ) := {f ∈ Lip(K,Y ) : ∃F ∈ C1(Ω, Y ) such that F |K = f}.

Let also L(X,Y ) denote the space of all continuous linear operators from
X to Y equipped with the uniform norm.

The compactness result we shall prove is the following:

Theorem 1. Let X,Y be normed spaces, Ω an open subset of X and K a
compact convex subset of Ω.

Suppose that Z is a subset of C1 Lip(K,Y ) such that

(i) for every x ∈ K the set {f ′(x) : f ∈ Z} is totally bounded in L(X,Y );
(ii) for every x ∈ K and every ε > 0 there exists δ = δ(x, ε) > 0 such that

∀x′ ∈ B(x, δ) ⊂ Ω, ∀f ∈ Z ‖f ′(x)− f ′(x′)‖ ≤ ε.

Then the set Z is totally bounded in Lip(K,Y ).
Conversely, if the set Z ⊂ C1 Lip(Ω, Y ) is totally bounded in Lip(Ω, Y ) then

Z satisfies the conditions (i) and (ii).

As consequence, one obtains the following corollary.

Corollary 1. If Y is a Banach space and Z ⊂ C1 Lip(K,Y ) is closed and
satisfies the conditions (i) and (ii) from Theorem 1 then the set Z is compact
in Lip(K,Y ).

The proof of Theorem 1 will be based on the following lemma:

Lemma 1. Let X,Y be normed spaces and Ω an open subset of X. If
g : Ω→ Y satisfies
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(2) ‖g(x0)− g(x)‖ ≤ λ‖x0 − x‖,

for every x in a neighborhood U ⊂ Ω of x0 and g is Fréchet differentiable at
x0, then

(3) ‖g′(x0)‖ ≤ λ.

Conversely, if g is Fréchet differentiable on an open convex neighborhood
U ⊂ Ω of x0 and

(4) ‖g′(x)‖ ≤ λ, ∀x ∈ U,

then

(5) ‖g(x)− g(y)‖ ≤ λ‖x− y‖, ∀x, y ∈ U.

Proof of Lemma 1. Suppose that g : Ω → Y satisfies (2). The differentia-
bility of g at x0 implies the existence of g′(x0) ∈ L(X,Y ) such that

(6) g(x0 + h)− g(x0) = g′(x0)h+ ‖h‖α(h),

where limh→0 α(h) = 0. For n ∈ N choose δn > 0 such that B(x0, δn) ⊂ Ω and

‖α(h)‖ ≤ 1/n, ∀h ∈ B(0, δn).

Then, from (6),

‖g′(x0)‖ ≤ ‖g(x0 + h)− g(x0)‖+ ‖h‖‖α(h)‖
≤ (λ+ 1

n)‖h‖.

The inequality

‖g′(x0)h‖ ≤ (λ+ 1
n)‖h‖, ∀h, ‖h‖ ≤ δn,

implies ‖g′(x0)‖ ≤ λ+ 1/n, ∀n ∈ N, so that ‖g′(x0)‖ ≤ λ.
Conversely, suppose that g is Fréchet differentiable on an open convex neigh-

borhood U ⊂ Ω of x0, and satisfies (4).
By the mean value theorem

‖g(x)− g(y)‖ ≤ ‖x− y‖ sup{‖g′(ξ)‖ : ξ ∈ [x, y]} ≤ λ‖x− y‖,

for all x, y ∈ U.
Lemma 1 is proved. �
Proof of Theorem 1.
Suppose that the set Z ⊂ C1 Lip(K,Y ) satisfies the conditions (i) and (ii),

and let ε > 0 be given.
By (ii), for every x ∈ K there exists δx > 0 such that
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(7) ∀f ∈ Z and ∀x′ ∈ B(x, δx) ∩K ‖f ′(x)− f ′(x′)‖ ≤ ε.

Since the set K is compact, there exists x1, . . . , xp in K such that

(8) K ⊂
p⋃

k=1

B(xk, δk), where δk = δxk
.

By (i), the set Yk = {f ′(xk) : f ∈ Z} is totally bounded in L(X,Y ), for
k = 1, 2, . . . , p. It follows that the set

W = Y1 × · · · × Yk

is totally bounded in (L(X,Y ))p with respect to the norm

‖(A1, . . . , Ap)‖ = max{‖A1‖, . . . , ‖Ap‖},

as well as the set

H = {(f ′(x1), ..., f ′(xp)) : f ∈ Z} ⊂W.

Therefore we can find f1, . . . , fn in Z such that

(9) ∀f ∈ Z ∃j ∈ {1, . . . , n} such that ‖f ′(xk)− f ′j(xk)‖ ≤ ε,

for k = 1, . . . , p.
We shall show that {f1, . . . , fn} is a 3ε-net for the set Z with respect to the

Lipschitz norm (1) on Lip(K,Y ).
Let f ∈ Z. By (9) there is j ∈ {1, . . . , n} such that

(10) ‖f ′(xk)− f ′j(xk)‖ ≤ ε, for k = 1, . . . , n.

By the mean value theorem, we have for x, y ∈ K

(11) ‖(f − fj)(x)− (f − fj)(y)‖ ≤ ‖x− y‖ sup{‖(f ′ − f ′j)(ξ)‖ : ξ ∈ [x, y]}.

Since ξ ∈ [x, y] ⊂ K, by (8) there exists k ∈ {1, . . . , p} such that ξ ∈
B(xk, δk). But then

(12) ‖(f ′−f ′j)(ξ)‖ ≤ ‖f ′(ξ)−f ′(xk)‖+‖(f ′−f ′j)(xk)‖+‖f ′j(xk)−f ′j(ξ)‖ ≤ 3ε.

(We have applied (7) to the first and the last term, and (10) to the middle
one).

By (11) and (12)

‖(f − fj)(x)− (f − fj)(y)‖ ≤ 3ε‖x− y‖

for all x, y ∈ K or, equivalently,
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L(f − fj) ≤ 3ε.

To prove the converse implication, suppose that Z ⊂ Lip(Ω, Y ) ∩ C1(Ω, Y )
is totally bounded in Lip(Ω, Y ), and let ε > 0 be given. Choose an ε-net
{f1, . . . , fn} ⊂ Z, i.e. ∀f ∈ Z ∃j ∈ {1, . . . , n} such that ∀x, y ∈ Ω:

‖(f − fj)(x)− (f − fj)(y)‖ ≤ ε‖x− y‖.

Taking into account Lemma 1, one obtains

‖f ′(x)− f ′j(x)‖ ≤ ε,

for all x ∈ Ω, showing that {f ′1(x), . . . , f ′n(x)} is an ε-net for the set {f ′(x) :
f ∈ Z}. Therefore (i) holds.

To prove (ii), let ε > 0 and x ∈ Ω be fixed. Choose again an ε-net
{f1, . . . , fn} for the set Z. Since the mappings fi are of class C1 there ex-
ists δ > 0 such that

(13) ∀x′ ∈ B(x, δ) ⊂ Ω and ∀i ∈ {1, . . . , n} ‖f ′i(x)− f ′i(x′)‖ ≤ ε.

For f ∈ Z choose j ∈ {1, . . . , n} such that

(14) L(f − fj) ≤ ε.

By Lemma 1 this implies

(15) ∀y ∈ Ω ‖(f ′ − f ′j)(y)‖ ≤ ε.

Taking into account (13) and (15), we obtain

‖f ′(x)− f ′(x′)‖ ≤ ‖f ′(x)− f ′j(x)‖+ ‖f ′j(x)− f ′j(x′)‖+ ‖f ′j(x′)− f ′(x′)‖ ≤ 3ε

for all x′ ∈ B(x, δ), which shows that (ii) holds too.
Theorem 1 is completely proved. �
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