REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION
 Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 1, pp. 9-14
 ictp.acad.ro/jnaat

COMPACTNESS IN SPACES OF LIPSCHITZ FUNCTIONS

§̧TEFAN COBZAŞ
Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract

The aim of this paper is to prove a compactness criterium in spaces of Lipschitz and Fréchet differentiable mappings.

MSC 2000. 46E15.

1. INTRODUCTION

In the last years there have been an increasing interest in the study of Lipschitz functions and of spaces of Lipschitz functions, as a first step to extend to the nonlinear setting results from linear functional analysis. For instance, in the attempt to build a spectral theory for nonlinear operators, a special attention was paid to spectra of Lipschitz operators (see, e.g., [9], [2], [4]). Lipschitz duals, meaning spaces of Lipschitz functions on a metric linear space, were used to study best approximation problems in such spaces (see [10]). A good account on Banach spaces and Banach algebras of Lipschitz functions is given in the monograph [11]. The monograph [6] contains a comprehensive study of Lipschitz functions on Banach spaces and their applications to the geometry of Banach spaces (e.g. the Lipschitz classification of Banach spaces).

As asserts Appell [1], apparently there is no compactness criterium in spaces of Hölder functions, and some criteria given in the literature turned to be false (e.g. that in [7]). The aim of this Note is to prove such a criterium (a true one, I hope) for families of Lipschitz and Fréchet differentiable mappings. The paper by J. Batt [5] contains a detailed study of compactness for nonlinear mappings and their adjoints, including Schauder type theorems. A Schauder type theorem for differentiable mappings was proved also by Yamamuro [12].

[^0]
2. THE RESULT

Let X, Y be real or complex normed linear spaces, and Ω a subset of X. Denote by $\operatorname{Lip}(\Omega, Y)$ the space of all Lipschitz mappings from Ω to Y, i.e. those mappings $f: \Omega \rightarrow Y$ for which the number

$$
\begin{equation*}
L(f):=\sup \{\|f(x)-f(y)\| /\|x-y\|: x, y \in \Omega, x \neq y\} \tag{1}
\end{equation*}
$$

is finite. The number $L(f)$ defined by (1) is called the Lipschitz norm of the mapping f, and it is the smallest Lipschitz constant for f. The function $L(\cdot)$ is a seminorm on $\operatorname{Lip}(\Omega, Y)$, so that $(\operatorname{Lip}(\Omega, Y), L)$ is a seminormed space which is complete if Y is a Banach space. (The operations of addition and multiplication by scalars are defined pointwisely)

If Ω is an open subset of X, denote by $C^{1}(\Omega, Y)$ the space of all continuously Fréchet differentiable mappings from Ω to Y, and for $K \subset \Omega$ put

$$
C^{1} \operatorname{Lip}(K, Y):=\left\{f \in \operatorname{Lip}(K, Y): \exists F \in C^{1}(\Omega, Y) \quad \text { such that }\left.\quad F\right|_{K}=f\right\}
$$

Let also $L(X, Y)$ denote the space of all continuous linear operators from X to Y equipped with the uniform norm.

The compactness result we shall prove is the following:
Theorem 1. Let X, Y be normed spaces, Ω an open subset of X and $K a$ compact convex subset of Ω.

Suppose that Z is a subset of $C^{1} \operatorname{Lip}(K, Y)$ such that
(i) for every $x \in K$ the set $\left\{f^{\prime}(x): f \in Z\right\}$ is totally bounded in $L(X, Y)$;
(ii) for every $x \in K$ and every $\epsilon>0$ there exists $\delta=\delta(x, \epsilon)>0$ such that

$$
\forall x^{\prime} \in B(x, \delta) \subset \Omega, \forall f \in Z \quad\left\|f^{\prime}(x)-f^{\prime}\left(x^{\prime}\right)\right\| \leq \epsilon
$$

Then the set Z is totally bounded in $\operatorname{Lip}(K, Y)$.
Conversely, if the set $Z \subset C^{1} \operatorname{Lip}(\Omega, Y)$ is totally bounded in $\operatorname{Lip}(\Omega, Y)$ then Z satisfies the conditions (i) and (ii).

As consequence, one obtains the following corollary.
Corollary 1. If Y is a Banach space and $Z \subset C^{1} \operatorname{Lip}(K, Y)$ is closed and satisfies the conditions (i) and (ii) from Theorem 1 then the set Z is compact in $\operatorname{Lip}(K, Y)$.

The proof of Theorem 1 will be based on the following lemma:
Lemma 1. Let X, Y be normed spaces and Ω an open subset of X. If $g: \Omega \rightarrow Y$ satisfies

$$
\begin{equation*}
\left\|g\left(x_{0}\right)-g(x)\right\| \leq \lambda\left\|x_{0}-x\right\|, \tag{2}
\end{equation*}
$$

for every x in a neighborhood $U \subset \Omega$ of x_{0} and g is Fréchet differentiable at x_{0}, then

$$
\begin{equation*}
\left\|g^{\prime}\left(x_{0}\right)\right\| \leq \lambda \tag{3}
\end{equation*}
$$

Conversely, if g is Fréchet differentiable on an open convex neighborhood $U \subset \Omega$ of x_{0} and

$$
\begin{equation*}
\left\|g^{\prime}(x)\right\| \leq \lambda, \quad \forall x \in U \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\|g(x)-g(y)\| \leq \lambda\|x-y\|, \quad \forall x, y \in U \tag{5}
\end{equation*}
$$

Proof of Lemma 1. Suppose that $g: \Omega \rightarrow Y$ satisfies (2). The differentiability of g at x_{0} implies the existence of $g^{\prime}\left(x_{0}\right) \in L(X, Y)$ such that

$$
\begin{equation*}
g\left(x_{0}+h\right)-g\left(x_{0}\right)=g^{\prime}\left(x_{0}\right) h+\|h\| \alpha(h) \tag{6}
\end{equation*}
$$

where $\lim _{h \rightarrow 0} \alpha(h)=0$. For $n \in \mathbb{N}$ choose $\delta_{n}>0$ such that $\bar{B}\left(x_{0}, \delta_{n}\right) \subset \Omega$ and

$$
\|\alpha(h)\| \leq 1 / n, \quad \forall h \in \bar{B}\left(0, \delta_{n}\right)
$$

Then, from (6),

$$
\begin{aligned}
\left\|g^{\prime}\left(x_{0}\right)\right\| & \leq\left\|g\left(x_{0}+h\right)-g\left(x_{0}\right)\right\|+\|h\|\|\alpha(h)\| \\
& \leq\left(\lambda+\frac{1}{n}\right)\|h\|
\end{aligned}
$$

The inequality

$$
\left\|g^{\prime}\left(x_{0}\right) h\right\| \leq\left(\lambda+\frac{1}{n}\right)\|h\|, \quad \forall h, \quad\|h\| \leq \delta_{n}
$$

implies $\left\|g^{\prime}\left(x_{0}\right)\right\| \leq \lambda+1 / n, \forall n \in \mathbb{N}$, so that $\left\|g^{\prime}\left(x_{0}\right)\right\| \leq \lambda$.
Conversely, suppose that g is Fréchet differentiable on an open convex neighborhood $U \subset \Omega$ of x_{0}, and satisfies (4).

By the mean value theorem

$$
\|g(x)-g(y)\| \leq\|x-y\| \sup \left\{\left\|g^{\prime}(\xi)\right\|: \xi \in[x, y]\right\} \leq \lambda\|x-y\|
$$

for all $x, y \in U$.
Lemma 1 is proved.
Proof of Theorem 1 .
Suppose that the set $Z \subset C^{1} \operatorname{Lip}(K, Y)$ satisfies the conditions (i) and (ii), and let $\epsilon>0$ be given.

By (ii), for every $x \in K$ there exists $\delta_{x}>0$ such that

$$
\begin{equation*}
\forall f \in Z \quad \text { and } \quad \forall x^{\prime} \in B\left(x, \delta_{x}\right) \cap K \quad\left\|f^{\prime}(x)-f^{\prime}\left(x^{\prime}\right)\right\| \leq \epsilon \tag{7}
\end{equation*}
$$

Since the set K is compact, there exists x_{1}, \ldots, x_{p} in K such that

$$
\begin{equation*}
K \subset \bigcup_{k=1}^{p} B\left(x_{k}, \delta_{k}\right), \quad \text { where } \quad \delta_{k}=\delta_{x_{k}} \tag{8}
\end{equation*}
$$

By (i), the set $Y_{k}=\left\{f^{\prime}\left(x_{k}\right): f \in Z\right\}$ is totally bounded in $L(X, Y)$, for $k=1,2, \ldots, p$. It follows that the set

$$
W=Y_{1} \times \cdots \times Y_{k}
$$

is totally bounded in $(L(X, Y))^{p}$ with respect to the norm

$$
\left\|\left(A_{1}, \ldots, A_{p}\right)\right\|=\max \left\{\left\|A_{1}\right\|, \ldots,\left\|A_{p}\right\|\right\}
$$

as well as the set

$$
H=\left\{\left(f^{\prime}\left(x_{1}\right), \ldots, f^{\prime}\left(x_{p}\right)\right): f \in Z\right\} \subset W
$$

Therefore we can find f_{1}, \ldots, f_{n} in Z such that

$$
\begin{equation*}
\forall f \in Z \exists j \in\{1, \ldots, n\} \quad \text { such that } \quad\left\|f^{\prime}\left(x_{k}\right)-f_{j}^{\prime}\left(x_{k}\right)\right\| \leq \epsilon \tag{9}
\end{equation*}
$$

for $k=1, \ldots, p$.
We shall show that $\left\{f_{1}, \ldots, f_{n}\right\}$ is a 3ϵ-net for the set Z with respect to the Lipschitz norm (1) on $\operatorname{Lip}(K, Y)$.

Let $f \in Z$. By (9) there is $j \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
\left\|f^{\prime}\left(x_{k}\right)-f_{j}^{\prime}\left(x_{k}\right)\right\| \leq \epsilon, \quad \text { for } \quad k=1, \ldots, n \tag{10}
\end{equation*}
$$

By the mean value theorem, we have for $x, y \in K$

$$
\begin{equation*}
\left\|\left(f-f_{j}\right)(x)-\left(f-f_{j}\right)(y)\right\| \leq\|x-y\| \sup \left\{\left\|\left(f^{\prime}-f_{j}^{\prime}\right)(\xi)\right\|: \xi \in[x, y]\right\} \tag{11}
\end{equation*}
$$

Since $\xi \in[x, y] \subset K$, by (8) there exists $k \in\{1, \ldots, p\}$ such that $\xi \in$ $B\left(x_{k}, \delta_{k}\right)$. But then
(12) $\left\|\left(f^{\prime}-f_{j}^{\prime}\right)(\xi)\right\| \leq\left\|f^{\prime}(\xi)-f^{\prime}\left(x_{k}\right)\right\|+\left\|\left(f^{\prime}-f_{j}^{\prime}\right)\left(x_{k}\right)\right\|+\left\|f_{j}^{\prime}\left(x_{k}\right)-f_{j}^{\prime}(\xi)\right\| \leq 3 \epsilon$.
(We have applied (7) to the first and the last term, and 10 to the middle one).

By (11) and (12)

$$
\left\|\left(f-f_{j}\right)(x)-\left(f-f_{j}\right)(y)\right\| \leq 3 \epsilon\|x-y\|
$$

for all $x, y \in K$ or, equivalently,

$$
L\left(f-f_{j}\right) \leq 3 \epsilon .
$$

To prove the converse implication, suppose that $Z \subset \operatorname{Lip}(\Omega, Y) \cap C^{1}(\Omega, Y)$ is totally bounded in $\operatorname{Lip}(\Omega, Y)$, and let $\epsilon>0$ be given. Choose an ϵ-net $\left\{f_{1}, \ldots, f_{n}\right\} \subset Z$, i.e. $\forall f \in Z \exists j \in\{1, \ldots, n\}$ such that $\forall x, y \in \Omega$:

$$
\left\|\left(f-f_{j}\right)(x)-\left(f-f_{j}\right)(y)\right\| \leq \epsilon\|x-y\| .
$$

Taking into account Lemma 1, one obtains

$$
\left\|f^{\prime}(x)-f_{j}^{\prime}(x)\right\| \leq \epsilon,
$$

for all $x \in \Omega$, showing that $\left\{f_{1}^{\prime}(x), \ldots, f_{n}^{\prime}(x)\right\}$ is an ϵ-net for the set $\left\{f^{\prime}(x)\right.$: $f \in Z\}$. Therefore (i) holds.

To prove (ii), let $\epsilon>0$ and $x \in \Omega$ be fixed. Choose again an ϵ-net $\left\{f_{1}, \ldots, f_{n}\right\}$ for the set Z. Since the mappings f_{i} are of class C^{1} there exists $\delta>0$ such that

$$
\begin{equation*}
\forall x^{\prime} \in B(x, \delta) \subset \Omega \quad \text { and } \quad \forall i \in\{1, \ldots, n\} \quad\left\|f_{i}^{\prime}(x)-f_{i}^{\prime}\left(x^{\prime}\right)\right\| \leq \epsilon \tag{13}
\end{equation*}
$$

For $f \in Z$ choose $j \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
L\left(f-f_{j}\right) \leq \epsilon . \tag{14}
\end{equation*}
$$

By Lemma 1 this implies

$$
\begin{equation*}
\forall y \in \Omega \quad\left\|\left(f^{\prime}-f_{j}^{\prime}\right)(y)\right\| \leq \epsilon . \tag{15}
\end{equation*}
$$

Taking into account (13) and (15), we obtain

$$
\left\|f^{\prime}(x)-f^{\prime}\left(x^{\prime}\right)\right\| \leq\left\|f^{\prime}(x)-f_{j}^{\prime}(x)\right\|+\left\|f_{j}^{\prime}(x)-f_{j}^{\prime}\left(x^{\prime}\right)\right\|+\left\|f_{j}^{\prime}\left(x^{\prime}\right)-f^{\prime}\left(x^{\prime}\right)\right\| \leq 3 \epsilon
$$

for all $x^{\prime} \in B(x, \delta)$, which shows that (ii) holds too.
Theorem 1 is completely proved.

REFERENCES

[1] J. Appell, The superposition operator in function spaces - A survey, Report No. 41, Universität Augsburg 1987, 70 pp.
[2] J. Appell and M. Dörfner, Some spectral theorem for nonlinear operators, Nonlinear Anal., 28 (1997), 1955-1976.
[3] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990.
[4] J. Appell, E. De Pascale and A. Vignoli, A comparison of different spectra for nonlinear operators, Nonlinear Anal., 40A (1999), 703-713.
[5] J. Batt, Nonlinear compact mappings and their adjoints, Math. Ann., 189 (1970), 5-25.
[6] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Colloq. Publ. Vol. 49, AMS, Providence, RI, 2000.
[7] A. I. Gusejnov and H. Sh. Muhtarov, Introduction to the Theory of Nonlinear Singular Integral Equations, Nauka, Moskva, 1980 (in Russian).
[8] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moskva, 1984 (in Russian).
[9] I. J. Maddox and A. W. Wickstead, The spectrum of uniformly Lipschitz mappings, Proc. Roy. Irish Acad., 89A (1989), 101-114.
[10] K. Schnatz, Nonlinear duality and best approximations in metric linear spaces, J. Approx. Theory, 49 (1987), 201-218.
[11] N. Weaver, Lipschitz Algebras, World Scientific, Singapore, 1999.
[12] S. Yamamuro, The adjoint of differentiable mappings, J. Austral. Math. Soc., 8 (1968), 397-409.
Received February 7, 2000.

[^0]: "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, RO-3400 Cluj-Napoca, Romania, e-mail: scobzas@math.ubbcluj.ro.

